五年级数学下册《分解质因数》的教学反思(共15篇)
篇1:五年级数学下册《分解质因数》的教学反思
分解质因数是四年级第五单元倍数和因数中的内容,是在因数和倍数以及能被2、5、3整除的数的特征的基础上进行教学的。分解质因数是求最大公约数、最小公倍数以及约分、通分的基础。下面给大家分享《分解质因数》的教学反思,欢迎借鉴!《分解质因数》的教学反思1
有以下几个问题值得反思:
第一,质因数、分解质因数的意义和用短除法分解质因数的教学落实不到位。
通过学生的观察发现,引出了质因数的定义后,学生对质因数的理解还是可以的,但对分解质因数的意义就处理得不够好,我只是通过60=2×2×3×5这个例子指出60这个合数可以通过2、3、5这几个60的质因数相乘的形式表示出来,像这样的表示方法就叫做分解质因数,接着课件显示分解质因数的意义,指出分解质因数的书写格式要注意的地方后就直接进入几个式子是否是分解质因数的判断练习。其实在练习之前,我还可以抓住质因数和分解质因数这两个意义的重点词提出质因数和分解质因数是两个不同的概念,指出质因数是一个质数,这个质数是对应合数的因数,而分解质因数是一个合数的表示形式,是用几个质因数想乘的形式表示一个合数。经过这一强调后再来做相关练习可能效果会更好。
第二,要明白什么时候该老师讲,什么时候该学生讲。在教学短除法分解质因数时,我本来的设想是想让学生去说,想经过他们的思考去认识短除法分解质因数的一般规律,这样印象会更深刻。想不到这种方法并没有收到很好的效果,即使后来老师的点评中也强调了各步骤中的细节问题,但在学生练习时还是出现了很多问题。所以像短除法这样操作性步骤性强的基础性的知识,刚开始还是由老师来讲解比较好,因为学生的第一印象很重要,最初灌输的知识它们很快就会定型,所以繁琐性的问题还是由老师讲比较好。但如果是学生完全可以通过观察发现的知识点,还要由学生自己去发现,老师作引导便可。
第三,清楚课堂上学生才是主角,多给学生展示的机会。在学生回答问题时,没有给太多的时间让学生思考,有几次在发现学生迟疑了一点,我就会忍不住提示他。整节课下来,个人感觉也是我讲得多,学生讲得少。用拍电影做个比喻,老师既是编剧,又是导演,更身担策划,舞台设计等多重身份,但即使这样,主角永远都是学生,学生才是学习的主体。在学生学习过程中,老师只起到穿针引线的作用。时刻记住要把学习的主动权还给学生。
《分解质因数》的教学反思2本节课的教学目标有三点:
1、在自主写算式、小组合作验证等学习活动中,经历认识质因数、分解质因数的过程。
2、知道质因数,会把一个数分解质因数。
3、在小组合作中积极与他人交流,体验合作学习的收获和乐趣。
认识质因数、会分解质因数是本节课知识技能目标的重点和难点。而自主探究、合作交流恰恰是突破难点的有效手段,在突破难点的过程中有效地落实过程性目标和情感目标。
在认识质因数的教学中,利用课前学生猜老师的年龄、身高、体重的数据,选取其中具有代表性的数据开展研究。如先研究老师的年龄(36),通过学生自主写算式、比较、分析、交流得出36=2×2×3×3是与众不同的,从而引出“质因数”的概念,而此时学生对质因数的概念并不是真正了解。因为概念的形成大致要经过以下几个过程:展示大量的感性材料——分析、比较、综合、抽象——得出一类事物的本质属性——初步形成概念的表象——试误辨析充分理解概念的内涵和外延——形成概念——付诸实践应用——加深概念的理解。而上述过程中学生只是初步形成了概念的表象。所以,此时,充分利用黑板上板书的大量数据,让学上按要求把他们写成几个质数相乘的形式,使学生在实际的操作过程中、在自我试误辨析中、在同学间的交流中形成质因数的概念。在质因数概念的形成过程中,对分解质因数的基本方法也已基本形成。下面关于分解质因数的教学主要是指导学生书写方法和格式方面的问题了。水到渠成,迎刃而解。
篇2:五年级数学下册《分解质因数》的教学反思
这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。
本单元内容在编排上与老教材有较大的差异,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题,我也不由得佩服这些孩子对知识的迁移能力。在这个环节的处理上,教材的本意是先由教师提出“想一想,几和几相乘得18?”引导学生从因数的概念,用乘法来找因数,而我考虑到本班孩子的学情(绝大多数学生能够运用所学知识,找到求因数的方法),如教师一开始就引导学生:想几和几相乘,势必会造成先入为主,妨碍学生创造性的思维活动?用已有的经验自主建构新知是提高学生学习能力的有效途径,让学生独立思考、自主探索、促思(促进学生思维发展)、提能(提高学习能力)是我的教学策略主要内容。至于这两种方法孰重孰轻,的确难以定论。实际上,对于数字较小的数(口诀表内的),用乘法来求因数还是比较容易,但是超出口诀表范围的数用除法则更能显示出它的优势,如求54的因数有哪些?学生要直接找出2和几相乘得54,3和几相乘得54,4和几相乘得54,显然加大了思维难度,如用除法不是更简单直接一些吗?学生的学习潜力是巨大的,教师是学生学习的引领者,因此教师的观念和行为决定了学生的学习方式和结果,所以我认为教师要专研教材,充分利用教材,根据学生的实际情况,创造性地使用教材,为学生能力的发展提供素材和创造条件,真正实现学生学习的主体地位。
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的。
篇3:五年级数学下册《分解质因数》的教学反思
一、数的质因数分解
在教学数的质因数分解之前,先要理清一些概念。什么是质数(也叫素数),什么是合数,什么是质因数,都应该让学生清清楚楚、明明白白。讲解质数和合数的概念,最好用定义加解释(诠释)的方法(因为下定义的方法比较抽象、概括),解释之后,再举一些具体的例子。如讲解质数,可如此进行:在大于1的自然数中,既能被1整除,同时也能被自己整除的数,叫质数(素数),如20以内的质数有:2、3、5、7、11、13、17、19共八个。讲解合数也同样用这种定义加解释加具体例子的方法。在学生对质数与合数形成概念之后,可引导他们讨论一下数1,使学生明确认识到数1既不列入质数内,也不列入合数内。为了使学生能够比较熟练地判断一个数是不是质数,可以向学生介绍一下100以内的质数表(共25个质数),其中20以内的质数共八个,即2、3、5、7、11、13、17、19,最好能让学生记住。如果一时看不出来,可让学生进行试除加以判断。
分解质因数这部分内容,学生不太好理解,而且在开始学习时,学生还认识不到学习这部分内容有什么用处而不加重视。因此,教学中首先要指出学习这部分知识的重要性。首先,需要讲清质因数,然后再讲分解质因数。这两个概念都需要通过实例来引入。例如,教师可举一些例子,把几个合数改写成质因数相乘的形式,比如18=3×3×2,18是合数,3、3、2是它的质因数。这样,学生就能够比较直观地理解什么是质因数和分解质因数了。分解质因数可用连乘积的方式,如分解630这个合数可用下面这种方法:630=2×3×3×5×7=2×32×5×7。
学生理解了这些概念后,我们应该提醒他们掌握质因数分解法,一般每次都先用最小的质因数来除,当然,有的时候,也可以先用一个合数来除,再把这个合数分解成质因数连乘积。例如12000=12×1000,然后再把12和1000分别分解成质因数连乘积的形式:12000=12×1000=2×2×3×2×5×2×5×2×5=25×3×53。除1外,任何整数只能分解为一种质因数连乘积。对这个问题这里不作论证。教师可掌握这个内容,不必讲给学生。
二、最大公约数的求法
在讲解最大公约数的求法之前,需先理清什么叫公约数。这个问题的讲解,也应从复习约数开始较为妥当。比如举出12和18两个数的所有约数(2、3、6),然后再指出它们的最大公约数(6)。分解质因数一般用连乘积的形式,然后把所有的公共质因数按指数最小的拿出来相乘。例如求210、630、1155三个数的最大公约数,可按如下步骤来进行。先把各数分解成质因数连乘积的形式:210=2×3×5×7;630=2×32×5×7;1155=3×5×7×11。然后取公共质因数,即取3、5、7这三个数,其中公共质因数3,有二次方和一次方,公共质因数只能取最小的,因此,只能取3的一次方的,即取3。取最大公约数也用这种方法,学生会很容易求出。这种方法,学生容易掌握,但计算中容易出错误,应引起注意。最大公约数的求法中,还有些特殊情况应向学生指出。教学中对特殊情况,也应通过实例启发学生认识清楚。
三、最小公倍数和约数的求法
最小公倍数的求法,也要先举出一些实例,明白什么是公倍数,再在此基础上概括出概念。例如12、20和45三个数的最小公倍数是180。因为任何小于180的数都不能同时被12、20和45同时所整除,而180则同时能被这些数整除。12、20和45的最小公倍数用下面的格式来表示:[12,20,45]=180。求这几个数的最小公倍数也要用到质因数分解的方法。例如求12、20和45三个数的最小公倍数,先把这三个数分解成质因数连乘积的形式,即12=22×3;20=22×5;45=32×5。
用质因数分解法求约数也很有效。学生如果切实掌握了这种方法,对于将来的学习会有很大帮助。比如630能被5×7=35整除,得18。为了看得清楚,我们可以把质因数连乘积中的5×7移到前面,即630=5×7×2×3×3=35×2×3×3。因此,630能被35整除,所得的商恰是2×3×3=18。这里不再作具体地论证和举例。
笔者经过多年的教学实践认为,教学质因数分解这部分内容,一是要给学生讲清概念,而讲概念时一定要结合具体的例子;二是要放慢教学的节奏,多给学生思考的时间,同时要给学生做一定量的练习;三是老师在讲解时,要注意方法,要做到深入浅出,等学生真正理解了,再进入下一个环节的讲解。如果能够做到以上三点,笔者认为,质因数分解这部分内容,不会成为学生成绩下滑的节点。
摘要:教学质因数分解这部分内容,一是要给学生讲清概念,二是要放慢教学的节奏,三是要注意方法。这样,教学质因数分解这部分内容就不会成为学生成绩下滑的节点。
篇4:五年级数学下册《分解质因数》的教学反思
师:同学们,喜欢做游戏吗?好!下面我们就做一个小游戏。
出示方法与规则:请两个小组选出代表上台,下面的同学比划图形,谁猜得多那组就获胜。(多媒体展示)
游戏结束,刚才的小游戏获胜的是哪个组?好,咱们比一比后面的环节哪个小组能获胜。有没有信心?
刚才游戏中出现的长方形、正方形、三角形、圆形再加上平行四边形、梯形,这些图形叫做平面图形,长方体、正方体、圆柱这些图形叫做立体图形。今天我们就一起来认识一下立体图形中的长方体和正方体。(板书课题:认识长方体和正方体)
【评析】教师从游戏入手,在游戏中体验平面图形与立体图形的区别,既回顾了旧知,又唤起了学生探究新知的欲望。
二、小组探究,体验长方体和正方体的特征
1、认识长方体、的面、棱、顶点。
1、认识面、棱、顶点。
师:长方体和正方体大家都不陌生.现在,举起你手中的长方体,(环视)闭上眼睛用手摸一摸,你有什么感觉?
生:滑滑的,有面。
师:刚才有同学说,有“面”真棒!你知道什么是面吗?(老师摸一摸,告诉同学什么是面。)(教师板书:面)
师:再摸一摸还有什么感觉?
生:有边,有点硌手
师:真棒!两个面相交的地方有一条边,这条边叫做“棱”。(板书:棱)
师:还有什么?
生:这里尖尖的。
师:这里是三条棱相交的地方,叫做“顶点”。(板书:顶点。)
【评析】通过自己动手感知长方体的面、棱、顶点,引导学生多种感官参与,建立面、棱、顶点的概念。
2、小组研究长方体的特征
现在我们已经知道了长方体各部分的名称,你想知道他们各部分的奥秘吗?好,请同学们观察手中的长方体完成“合作探究”第一部分—活动一。
小组展示并根据提示完成板书。
师利用课件总结。
面:长方体有6个面,每个面都是长方形(可能有两个面是正方形),相对的两个面完全相同。
棱:长方体有12条棱,每相对的4条棱相等。
顶点:有8个顶点。
【评析】学生自己在小组合作中获得新知,体验自主探索的乐趣,教师通过多媒体验证学生的认识,学生能形成新的知识结构,顺利解决本节课的重点内容。
3、长方体的长、宽、高。
出示长方体框架,问:看这个长方体框架,仔细观察,相交于同一顶点的棱有几条?指出这三条棱的长度叫做长方体的长、宽、高。
现在,把手中的长方体平放在桌子上,小组内互相说一说它的长、宽、高。
哪个小组愿意上台展示一下!
展示:同一个长方体,摆放位置不同,长、宽、高不同,
指出:平放在桌上的长方体,相交于同一顶点的三条棱中,垂直于桌面的棱的长度叫做高,其余两条长的为长,短的叫宽.
4、小组探究正方体特征
刚才我们认识了长方体的特征下面请同学们利用探究长方体特点的方法研究正方体的特点,完成“合作探究”第二部分—活动二:
小组展示并根据提示完成板书。
师小结。
出示长方体变成正方体的动画。
看一看新得到的长方体与原来的长方体相比长、宽、高有什么变化?
生:长、宽、高相等,长方体变成了正方体。
师:那说明正方体是特殊的长方体。
【评析】利用动画演示的方法让学生体验正方体是特殊的长方体。
5、对比长方体和正方体的相同点和不同点。它们有什么关系?
同学们,我们已经掌握了长方体和正方体的特征,看一下黑板,你能根据板书总结出长方体和正方体的相同点和不同点吗?
通过相同点和不同点你觉得长方体和正方体有什么关系呢?
三、达标检测,体验数学与生活的密切联系
1、自主练习第2题
2、课外实践:思考怎样计算长方体和正方体的棱长总和?
【评析】这两个问题让学生不仅巩固了新知,而且发展了空间观念。
四、自我反思,体验收获的快乐
篇5:五年级数学下册《分解质因数》的教学反思
本节课是第二单元的第一课时,第二单元的教学内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。还有要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
今天这节课的教学的倍数和因数是讲述两个数之间的一种相互依存关系,于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。然后我让学生根据情境列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。同时,我还出示了一个除法的算式,让学生来找找倍数和因数的关系,这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
找出一个数的因数要做到不重复和不遗漏,有些学生还不能找全,没有掌握方法,我在今后的教学中还要注意对学困生的辅导。
篇6:五年级数学下册《分解质因数》的教学反思
我执教的四年级数学拓展平台《因数和倍数》一节,这一内容,学生初次接触。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。首先以贴画为素材,让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。
这节课另一个给我感触最深的是:在引导学生找一个数的因数和倍数。我借助学生开课摆的12个小正方形,写出的三个乘法算式。首先引导学生找12的因数,我给学生充分的自主探究时间,让学生经历知识的形成过程,自主构建新知。出乎意料的是学生竟然用口诀,乘法和除法等等方法找出12的因数,找到两个因数非常接近,紧接着师生互动,交流讨论出12的所有因数。学生在轻松愉快中掌握了找一个数的所有因数的方法。再找9的13的因数,一环扣一环,总结归纳再能不能找出这些数的因数了?学生说不能,从而引出因数的个数是有限的。及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师及时跟上个性化的语言评价,激活学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己学习找一个数的倍数。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念――适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。
篇7:五年级数学下册《分解质因数》的教学反思
1、使学生通过动手操作理解公因数与最大公因数的概念,并掌握求两个数的最大公因数的方法。
2、培养学生[此文转于斐斐课件园ffkj.net]分析、归纳等思维能力。
3、激发学生自主学习、积极探索和合作交流的良好习惯。教学重难点:
通过动手操作引出公因数概念的过程。掌握求两个数最大公因数的方法。教具准备:
课件,印有长方形的纸,不同边长的正方形纸片(硬卡纸做的)、水彩笔
一、自学要求:
1、自学课本p79-81
2、解决“可以选择边长是几分米的地砖?边长最大是几分米?”这个问题时,你是怎么想的?有几种不同的方法?
3、有什么疑惑?
4、回忆因数和倍数的知识。(与同桌说一说)
二、创设情境,引导动手操作
1、出示问题,明确要求。*王叔叔家的贮藏室要铺地砖了,可选择什么样的地砖让他挺伤脑筋,能帮帮他吗?我们来看看他的要求。
*王叔叔对于地砖有什么要求?
当学生提到一些重点要求,例如:整块,整分米时,教师利用课件使这些重点要求下面出现下划线。
追问:整分米是什么意思?整块呢?在铺地时有时剩余的部分放不下一块地砖时,我们就要把地砖进行切割,那么这样做符合王叔叔的要求吗?
2、初步感知
*王叔叔家贮藏室的地面是长16分米,宽12分米的长方形,要用边长是整分米的整块正方形地砖把它铺满,该选择边长是几分[内容来于斐-斐_课-件_园ffkj.net]米的地砖? 生汇报课前自学的情况。
*到底哪种方砖符合王叔叔的要求呢?还有没有其他答案,咱们亲自动手试一试好吗?(每位同学都有一张纸,上面的长方形代表贮藏室长16分米宽12分米的地面,学具盒里的几种正方形纸片,代表了几种边长为整分米的正方形地砖,你们可以动笔在纸上画一画,也可以动手铺一铺,每位同学选择一种边长的“地砖”铺在“地面”上,只要铺满一条长边和一条宽边就可以了,然后小组内展示交流,选出符合条件的方砖。)
三、自主探索,形成概念
1、汇报,揭示概念
①通过亲自动手铺,找到符合要求的地砖了吗?谁来汇报一下你们的结果。学生汇报。②边长一分米的方砖沿着长边和宽边各铺几块? ③边长2分米和4分米的呢?
小结:看来边长1分米2分米4分米的方砖确实符合要求,那你们为什么不选择边长3分米和5分米的地砖呢?
(引导孩子说出由于3只是12的因数而不是16的因数,5既不是12的因数也不是16的因数。)
追问:也就是要满足用整块方砖铺满地面的要求,地砖的边长必须符合什么条件?
补问:你们说的都对,它必须是12和16共同的公有的因数,12和16公有的因数有哪些? *我们就把1、2、4叫做12和16的公因数。(师板书)*谁还能完整地说一说?(多找几个孩子说以深化概念)*如果王叔叔想选择铺的最快的一种地砖,该选择边长是多少的地砖? 生回答。
*4也是公因数中最大的,我们就叫它12和16的最大公因数。(师板书)
2、用集合表示
我们还可以用集合的形式来表示几个数的公因数。左边是表示12因数的集合,右边是表示16因数的集合,两个集合慢慢相交,重合的部分叫做什么?4呢?对照这个集合图自己试着填一填。说说你是怎样填的? 学生汇报。
3、巩固:了解了公因数和最大公因数的知识,以后我们再遇到选择地砖的问题,怎么做就可以了? 生回答。
四、自主探究,掌握方法
1、那你们会找两个数的公因数和最大公因数吗?试着找到18和27的公因数和最大公因数。(学生做题教师巡视,找到不同方法的同学板演在黑板上。)
2、做完的同学可以和同位说一说,交流一下你们的方法。汇报时让学生自己说找的过程。
3、还有别的方法吗?(如果没有其他方法)书中还为我们介绍了其他方法,打开书81页自己看一看。学生自己看书。
4、书中还为我们介绍了哪种方法?
学生说的过程中教师演示课件,使第二种方法更直观,展示出过程。
5、观察:18和27的最大公因数与他们的公因数有什么关系? 生回答。
师:这个规律不仅适用于18和27,还适用于所有自然数,几个数的最大公因数是他们公因数的倍数,他们的公因数是最大公因数的因数。
五、巩固练习
1、做81页的做一做。独立完成,说说你发现了什么?
教师帮助学生推导出:两个数的公因数是1时,那他们的最大公因数就是1。当两个数是倍数关系时,较小数就是最大公因数。
2、做82页第3题。
3、做83页的第7题。
(反思:实际教学过后,感觉这些练习有些难,尤其做一做,不能简单的把4个小题出示给学生,再让他们去找每一组的最大公约数,然后说一说发现,因为对于最大公约数的求法还应再做一些练习)(对于做一做,可以先出示成倍数关系的两个数(4,8),让学生找出他们的最大公约数,然后再出示一道(9,27)、(8、16)学生可能会在做题的过程中有所发现,回答问题的速度会有所提高,这时教师再出示一个(20、10)可能有的学生不等教师写10就抢着说20,等老师写完后发现原来是10。这时教师再让学生说一说为什么说得这么快,有什么发现。)
六、课堂小结
篇8:五年级数学下册《分解质因数》的教学反思
关键词:数学游戏 亲手尝试 动手操作 培养能力 提高能力
一、教学目标
1.通过本课的教学,让学生感受一下其中有趣的数学现象。
2.通过课内合作学习培养和提高学生的合作交流能力。
3.在动手操作过程中培养学生观察问题、思维能力,提高分析问题的能力。
二、教学过程与片段案例分析
(一)猜想从问题设置开始
师:这节课老师和你们一起做个游戏,大家有兴趣吗?
生:有!
师:老师现在这有两枚骰子(教师出示两枚骰子),现在我同时掷在桌子上,大家猜测一下它们的和可能出现哪几种结果?不可能出现哪几种结果?并说出理由。
生1:它们的和应该在2-12之间。
(教师板书:2-12中的任意一个)
生2:它们的和肯定不会超过12,12是最大了。
生3:它们的和大于2或等于2。因为1个骰子最小是1,2个骰子的和最小是2。
学生动手操作结果显示:掷两枚骰子的和在2-12之间的任意一个数。(板书:大于等于2,小于等于12)
教学心得:学生在这个活动中,亲手尝试可能出现的情形与不可能出现的情形,整个过程中操作——观察——思维——反馈,亲历认知过程,有助于对知识的理解和掌握。
师:同学们做得很好!下面我们一起来投两枚骰子比赛,假如和是5,6,7,8,9这五个数,就算老师赢;如果出现5,6,7,8,9以外的数,就算你们赢,这样好吗?
生:好!
师:你们猜猜,谁赢的可能性大呢?
生1:老师选了5,6,7,8,9是五种可能;5,6,7,8,9以外的数2,3,4,10,11,12是六种可能,应该是我们赢的可能性大。
生2:这要看运气,谁赢的可能性大!
……
师:还是让我们看实验的结果来说话吧!
(学生动手投骰子,边投边记录)
教学心得:学生对猜想和动手操作活动积极性高,兴趣浓厚,进一步促进了学生的实践活动的开展。
(二)从发现问题中,进一步猜想与探究
师:通过你们几次的尝试,操作中发现了什么问题?
生:通过操作看记录结果,显示老师赢的次数多。
师:我选了5个数的结果,你们选了6个数的结果,但是,实验的结果还是老师赢的次数多,这是不是说老师的运气好呀?
生:……
师:小实验的结果老师赢的次数多,不是老师幸运,是其中隐藏着小小的秘密,下面,我们一起研究一下这个秘密。
师:我们知道每粒骰子有6个面,分别是1、2、3、4、5、6。在一个面上,1-6出现的可能性应该是一样的,但是两枚骰子出现2-12这11个数的可能性是不是一样呢?我们下面去研究一下。
教学心得:从实验中发现问题,激发强烈的求知欲,促使学生深入探究。
(三)小组合作学习,通过实验探究解决问题,验证开始的猜想
学生每4个人为一个合作学习小组,一名同学负责记录,其他3个同学轮流抛骰子。
生:(活动开始)抛骰子。
……
通过小组动手操作——研讨——总结,根据师生的共同活动,记录结果发现11个数出现的可能性是不一样的。
师生对这一过程进行分析:
板书(每次的结果分析):
2=1+1
3=1+2=2+1
4=1+3=2+2=3+1
5=1+4=2+3=3+2=4+1
6=1+5=2+4=3+3=4+2=5+1
7=1+6=2+5=3+4=4+3=5+2=6+1
8=2+6=3+5=4+4=5+3=6+2
9=3+6=4+5=5+4=6+3
10=4+6=5+5=6+4
11=5+6=6+5
12=6+6
从直观的列表中我们可以看出:掷出的和是5、6、7、8、9的次数相对较多,而和是2、3、4、10、11、12的次数较少。
师:从上面的分析中,现在你们明白了为什么老师赢的次数多了吗?
生:明白了!
师:请同学们自己再动手操作并分析一下其中的原因,一会跟大家说说其中的道理。
生:老师选的5,6,7,8,9这五种可能的机会明显多。
师:这就是老师赢的机会多的原因。
教学心得:通过简便、直观的方式呈现出现的结果,会更直接感受实验的结果。使动手操作从表面现象延伸到深层次的内涵。
(四)小结
师:今天这个活动虽然很简单,同学们做起这个活动也很方便,但是,通过今天的活动,你们是不是感觉到做任何活动,只要善于动脑,善于探究,就会有很大的收获?请说说你今天的收获。
生1:简单的实验,让我们明白其中的大道理。
生2:无论是做实验,还是做游戏,不能只看表面,应该善于动脑子,多思考。
生3:再简单的动手操作,其中往往会让我们变得很聪明。
……
师:同学们说得都很好,学数学会让我们越来越聪明;动手操作会揭开许多小秘密;以后还要勤于动手,善于思考,动手动脑,会越来越聪明。老师希望你们越来越聪明!
教学心得:通过这样一个“可能性的大小”的实验游戏揭开了这个隐秘的秘密,让学生感受到了动手操作的意义。动手操作不单单是看表面现象,要进一步地分析内含的隐性秘密才能解决数学问题。
三、课后反思
我们设计了这样一个游戏来探讨可能性大小的实践活动。在这个活动中,通过学生猜想、实验、验证的过程,巩固了“组合”的知识内容,来进行可能性大小的探讨,解决“为什么老师赢的次数多”的问题,同时提高了学生的动手实践能力。
本节课的教学虽然很简单,但是环环相扣,逐步将学生的思维引向更深层次的研究。
第一个环节:设置问题质疑——猜想的开始
学生在这个活动中,用很简单的问题和简单的游戏,亲手尝试可能出现的情形与不可能出现的情形,整个过程中操作——观察——思维——反馈,亲历认知过程,有助于对知识的理解和掌握,促进智力的发展和提高。
第二个环节:从实验中发现问题——猜想的深入
实验结果与事先估计不一样时,引起了认知冲突,激发了学生探究的欲望。学生亲历猜想——实验——验证的过程,自己得出正确的结论。当学生通过统计有限次数的实验结果,看到掷出的和是5、6、7、8、9的次数相对较多,而和是2、3、4、10、11、12的次数较少时,教师及时引导学生用直观的数的分解的形式来分析其中的奥秘,找出其中内含的秘密。
第三个环节:从实践活动中解决问题——验证猜想的结果
只有猜想没有行动——是空想。猜想后的探究活动会验证猜想的结果。过程很简单,但是猜想——实验——探究的过程就是我们从发现问题到寻找解决问题的过程。动手实验是解决问题的方法,更是解决问题的活动方案,最终圆满地解决了所有的问题。同时让学生感受到了动手操作的意义,动手操作不单单是看表面现象,要进一步地分析内含的隐性秘密才能解决数学问题。
参考文献:
[1]余思丽.小学数学中的概念教学小议[J].新课程:教师.2008(8).
[2]葛军.让学生徜徉在自主学习的数学世界[J].小学教学参考.2011(11).
篇9:五年级数学下册《分解质因数》的教学反思
教学目标
1、进一步理解自然数、整数、整除、除尽、约数、倍数、奇数、偶数、素数、合数、质因数、分解质因数的概念,掌握能被2、5、3整除数的特征。
2、能对以上概念作正确判断,能熟练地把合数分解质因数。
教学重点、难点
重点、难点:理解概念,并能熟练运用。
教具、学具准备
教 学过程
备 注
一、知识整理与基本练习
1、判断:下列各式,哪些能整除?哪些不能整除?哪些能除尽?把算式填到相应的圈里。
6.9÷9111÷3除尽整除
18÷669÷1
10÷42.4÷0.8
反馈后提问:什么叫做整除?什么叫约数?什么叫倍数?说一说上面整除算式中谁是谁的约数?谁是谁的倍数?
2、练习:课本P65第1题。
(1)学生在课本上全体练(1人做在投影片上)
(2)投影反馈,矫正错误。
(3)提问:
A、自然数与整数之间有什么关系?(学生回答后出示投影片)
B、什么是素数?什么是合数?怎样判断一个数是素数还是合数?有哪些方法?171和395是素数还是合数?为什么?
C、么是奇数?什么是偶数?判断一个数是奇数还是偶数的标准是什么?
D、答:自然数和()组成,或者由(),()和()组成。
3、练习,课本P66第4题(学生练习后反馈)
4、出示:在36、48、84、75、15、210、130、204这些数中,
(1)能被2整除的数有(),能被5整除的数有(),能被3整除的数有()。
(2)能同时被2、5整除的数有(),能同时被3、5整除的数有(),能同时被2、3整除的数有()。
(3)说一说,它们各有什么特征?
5、提问:
什么叫分解质因数?把课本P65第1题中的合数分解质因数。
教学过程
备 注
(1)生练习(两个做在投影片上)
(2)反馈,矫正。
(3)练习:课本P66第6题(学生练习后反馈)
二、综合练习
1、填空:(投影片逐题出示,学生先思考,想好后再回答)
(1)12的全部约数有(),把72分解质因数是()。
(2)最小的.自然数是(),最小的素数是()最小的合数是(),最小的奇数是(),最小的偶数是()。
(3)一个数的最大约数是60,则它的最小倍数是(),最小约数是()。
(4)自然数A÷B=4,则A能被B(),B是A的(),4能整除()。
2、练习:课本P66第5题(学生练习后反馈,说理)
3、思考题:
有一位初中生参加一次数学竞赛,别人问他成绩如何?他说:“我的分数在60分以上并且我的分数,我的年龄和取得的名词的乘积是4275,你们说我考了几分?得了第几名?”你能想出来吗?
三、课堂作业《作业本》
四、学生总结
篇10:五年级数学找因数教学反思
反思这节课的教学过程使我认识到,只要教学中着眼于学生的发展,重视学生已有的生活经验,让学生通过自己已有的经验来构建新知识,那么,教学过程将会变的更精彩而富有活力。
1.要紧扣教学目标,准确定位教学重难点。本节课中,我认为教学的重点是找一个数的因数的方法;难点是找出某个非零自然数的.所有因数。而学校的数学骨干陈再锋老师更精准的定位不得不让我折服,他指出本节课的重点就是找因数的方法,一对一对的找;难点是找的过程中能有序思考,避免重复和遗漏。教学目标是一节课的灵魂,课堂的一切教学行为都是为了实现这一目的。作为教师,真该好好炼就这样一双火眼金睛,责无旁贷!
2.要紧密联系学生生活、创设问题情境、激发学习兴趣。找因数是一个相对来说比较枯燥的课题,单纯的让学生用乘法或者除法算式找出某些数的因数会让人提不起精神。对此,许承妙教导主任建议,可以用“学生排队”、“学生植树”等为例,在这些具体的情境中让学生自己去探索该怎么样排,在充分合作交流的基础上自然而然地引出乘法算式,教师只需稍加说明就能找出某个数的全部因数,从而掌握找因数的方法。这样不仅能使数学学习不再枯燥无味地重复再现,而且还培养了学生分析和解决实际问题的能力,能让学生体验到数学知识的价值所在。此后,我将时时牢记“数学源于生活又服务于生活”的宗旨,并努力付诸于实践。
篇11:五年级数学下册《分解质因数》的教学反思
上饶县第一小学
胡云富
一、概况分析
学习内容:《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。学习目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。2.培养抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。3.培养合作意识、探索意识,以及热爱数学学习的情感。学习重点:理解因数和倍数的含义。
学法指导: 自读课本第12~13页,理解倍数与因数的意义。准备方格纸3张和水彩笔。
二、导学过程及评析
(一)、动手操作,初步感知。
1.画出面积是12平方厘少的长方形。有几种画法?(要求:边长是整厘米数)
2.小组交流摆法。
3.请用算式表达你的摆法。
学生汇报:1×12=12,2×6=12,3×4=12。
[评析】通过让学生动手操作、感受体验、交流探讨等活动,为探求新知提供知识铺垫,渗透化归的数学思想与推理的数学方法]
(二)、问题引领,合作探究。
问题:
1、什么叫因数?什么叫倍数?
2、因数与倍数之间是一种怎样的关系?
学生活动:
1、: 观察3×4=12,并从乘法算式各部分之间的名称来说说它们之间的关系。
2、:练习
()和()是()的因数
()是()和()的倍数
3、:用因数和倍数的意义说说算式l×12=12,2×6=12的关系。
4、:观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。
小组合作探究:
1、因为0.5×4=2,所以0.5和4是2的因数。2是0.5和4的倍数。
2、在“5×4=20”中,5和4是因数,20是倍数。
问题:如何求一个数的因数。学生活动:
1、写出乘积是20的所有乘法算式(提示:不出现小数)
2、学生独立思考,小组展示
3、教师引导小结恨纳方法
1×20=20 结论:1和20是20的因数 2×10=20 2和10是20的因数 4× 5=20 4和5是20的因数 20的因数有:1、2、4、5、10、20。
4、学生练习;
24的因数有(); 36的因数有();
[评析:学生围绕问题,探索写出20的所有因数的方法。既有自主探索、合作探究的空间,在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的方法,发现了按顺序一对一对找的好方法,培养了有序思考的习惯,成功突破了教学难点。]
问题:怎样求一个数的倍数。
1、2的倍数有:()提示:从小到大写:
引导归纳方法: 参照方法:
2×1= 2 ; 2 ×4=8 2×7=14 2×2=4 ; 2 ×5 =10 2×8=16 2×3=6; 5 ×6=12 2×9=18 …… 2的倍数有:(2、4、6、8、10、12、14、18、…..)
2,练一练:3的倍数有:();从小到大写10个;
5的倍数有:()从小到大写10个;
50以内8的倍数有:()
[评析:由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。培养学生类比的思想方法,提升角类旁通的学习能力]
(三)展示交流、知识共享。
问题:体验新知应用——举座位号起立游戏。
(1)学号是3的倍数的请起立。
(2)学号是5的倍数的请起立。
(3)学号是36的因数的请起立
问题: 通过学习,你还有什么其他发现?
学生汇报:
一个数的最小因数是I,最大因数是它本身; 一个数的最小倍数是它本身,没有最大的倍数。
一个数的因数的个数是有限的,它的倍数的个数是无限的
[评析:学生经历了寻求因数和倍数的策略的探索过程,这时放手让它们寻找和发现规律,应用知识,既突出了学生的主体地位,又培养了他们的观察、归纳和实践能力]
(四)、整理知识,内化新知。
引导学生画知识结构图,整理所学知识。如:
(1)因数和倍数是相互的,不能单独存在。
(2)找一个数的因数和倍数,应有序思考。
……..(五)、达标测评、巩固成果。1、5的倍数有(),6的倍数有()。从小到大写6个 2、12的因数有(),18的因数有()
3.判断。
(1)因为2×3=6,所以2和3是因数,6是倍数。
()
(2)因为0.5×2=1,所以1是0.5和2的倍数。
()
(3)一个数的倍数总比它的因数大。
()
[评析:本环节侧重巩固新知和发展学生思维。通过运算和辩析,发展学生的个性思维]。
教学设想
本课教学设计重在让学生通过动手实践,自主探索及合作交流,探求一个数的因数和倍数的方法,体验有序思考的重要性。
一、以学定教,学生是数学学习的主人
学过学生的自主学习,小组合作探究,充分发挥学生已朋知识水平和生活经验,使合作学习成为知识不断提升、思维不断发展、情感不断丰富的过程。先学后教,以学定教,使教师的教学有方向,始终以学生为中心,学生真正成为数学学习的主人。
第一,把教材中的飞机图改为画面积一定的长方形,巩固了学生的旧有知识,降低了新知的学习难度。同时,由于画法的多样性,为学生的思维发展现提供了巨大空间。
第二:放手让每个同学找出20的所有因数,由于个人经验和思维的差异性,出现了不同的求解方法,但这些不同的方法却成为探索新知的资源,在比较不同的方法中提炼出较为简明的求解方法。
第三:在学生经过了求一个数与倍数的基础上,引导他们应用知识,发现规律。丰富了数学的学习主题。激发学生学习数的兴趣。
二、问题引领,让探索有方向。
问题是数学学习的基石。从问题引入,学生为解决问题去思想,探讨,引发思维产生碰撞。让学生的探索更有方向性与针对性,探索前的适度引导正是为了让学生的学习更具有效性。如:画积是12平方厘米的正方形,教师提示面积等于长乘宽。求20的倍数时,提示写出积是20的所有乘法算式。写因数数要遵循从小到大列举的格式。
三、充分展示,激发信心 本节课中,课堂始终遵循这样一种过种:问题引出——学生独立思考——小组整合意见——小组代表展示汇报——教师适时点评——形成共识,共享成果。
整堂课,学生想象丰富、思维活跃、思考有序,参与率极高。整个学习过程是学生知识不断丰富、方法更加优化,能力不断提升、情感不断升华的过程。
篇12:五年级数学下册《分解质因数》的教学反思
关键词 小学数学;“鸡兔同笼”问题;教学反思
引言:著名的苏联教育学家苏霍姆林斯基曾经说过:不能促进学生进步的课堂教学是毫无益处的,而且,如果课堂教学没有实际作用,对教师和学生来说都是严重的损失。随着我国社会水平和经济水平的不断发展,新课改和素质教育的观念深入人心,对教师的教学方式也提出了更高的要求,教师必须顺应教改的步伐,转变自己的教学思路。只有灵活多变的教学方式,才能激发学生的学习热情,提高他们的学习主动性,同时也能够提高教师的教学质量。
一、“鸡兔同笼”问题的解决
“鸡兔同笼”问题早在一千五百多年前的《孙子算经》中就出现了,而北师大版的小学五年级数学课本的“数学广角”环节再现了这一题目。“鸡兔同笼”问题表现出了我国历史悠久的数学文化,解决这个问题能够大大增加学生对数学学习的兴趣,能在一定程度上培养逻辑思维的能力。“鸡兔同笼”问题贴近生活,具有很强的代表性。在以往的教材中,这类问题一般是针对水平较高的学生,用来锻炼自己的能力,而新教材则把这道问题作为全体学生都能够面对的问题。解决“鸡兔同笼”问题有多种多样的方法,例如假设法和列表法等,也表现出数学学习的灵活性。下面通过课堂上使用列表法解决“鸡兔同笼”问题:
教师:大家通过了解这道题目,知道主要问题是什么吗?
学生:题目告诉我们鸡兔共有八只,脚共有二十六只,问鸡和兔子各有多少只。
教师:大家可以先猜一下结果,也可以和你身边的同学交流一下,比较一下答案。然后来列举一下可能的情况。
学生:可能的情况有七只鸡,一只兔子;六只鸡,两只兔子;五只鸡,三只兔子;四只鸡的话,就有四只兔子;三只鸡,五只兔子;两只鸡;六只兔子;或者一只鸡,七只兔子,这么多种情况。
教师:还有其他可能吗。
学生:全部是鸡或者全部是兔子。
教师:那么我们来分别计算上面的情况,看哪种情况下,脚的数量是二十六只。大家来计算一下。
学生:计算后得到的结果是有五只兔子和三只鸡。
通过上述课堂教学的过程,让学生自主的解决了“鸡兔同笼”问题。这种方式加强了学生在课堂教学中的主体地位。在解决问题的初始阶段,鼓励学生大胆猜想,发散自己的思维。然后让学生列举所有可能的情况,再引导他们通过计算得到正确答案。让学生了解解决问题的基本思路和方法,培养良好的学习习惯。
二、“鸡兔同笼”问题的教学反思
从小学数学“鸡兔同笼”问题的解决过程中,可以引起数学教师的反思。第一个方面趣味是最好的老师,激发了学生的学习兴趣,那么课堂教学基本成功了一半。通过灵活多变的教学方式,活跃课堂氛围,转变传统课堂枯燥无味的气氛,能够大幅度激发学生的求知欲,而只有有了求知欲,学生才会主动去了解问题,解决问题。通过教师的引导,让学生感受到解决问题带来的快乐,满足他们丰富的学习欲望,才能保证高涨的学习热情。美国的教育学家通过研究证明,激发了学习兴趣,学习效果能够成倍增加。孔子的《论语》中也提到过“知之者不如好之者,好知之不如乐之者”,只有激发学习兴趣,才能达到教学的最终目标——快乐学习。但是,现今很多小学数学教师,虽然知道新课改和素质教育的理念,但是仍然固步自封,不远转变观念,填鸭式的教学,造成课堂效率低下,浪费时间,又阻碍了学生的发展,所以,激发兴趣对学生的数学学习至关重要。
学无定法,掌握方法也是提高学习质量的重要因素。而课堂教学除了提高学生的学习热情外,更重要的是让学生掌握方法。在“鸡兔同笼”问题的教学中,就体现了以下两种数学方法:
(1)检查检验:要保证得到的答案准确,就要做好检查和检验。通过培养学生良好的检查习惯,能够揪出在解决数学题时出现的问题,保证答案符合题目要求。在教师引导学生自主解决“鸡兔同笼”问题后,很多同学会将答案弄错,比如将鸡和兔子的数量弄反了,这种情况是很常见的。所以,检验是保证解题正确的重要方法。通过方程或者其他方法得到了鸡和兔子的只数,还要通过计算总的脚的数量,来保证答案的正确性。检查和检验,是学生务必养成的良好学习习惯。
(2)数形结合:数学知识是比较抽象难懂的,而且小学生的知识水平认知水平都还不高,对过于理论性的解题方式,很多都是一知半解。针对这个问题,在数学教学中就要采用数形结合的方法,教师可以使用符号、图形来代替题目中的元素,通过题目中的条件将这些元素结合起来,就能很快得到答案。教师还可以利用现今普遍使用的信息化技术,通过计算机、课件让抽象的数学知识更加形象、易于理解,课件还能够提供给学生视觉、听觉上的全方位的接受知识的方式,能够有效加深学生对知识的理解和记忆。
小学生的思维方式还不是很成熟,而且正处在由形象思维向逻辑思维发展过度的阶段,所以,这个阶段接受的数学知识,仍然具有较强的具体形象性。数学知识贴近生活,数学上的很多问题,都能够用生活上的知识来解答,而我们也可以使用数学知识解答生活中的难题,所以,数学和生活是紧密结合的。数学课堂的教学内容都是来源于生活的,经过知识性的凝聚和提高,成为专业的数学知识。学生对来源于生活的数学知识接受程度最高,而且,在讲解这部分内容的时候,学生首先能够通过自己在生活中的体验,了解这部分知识的大致内容,基本相当于预习,对接下来的学习有很大帮助。
结束语
综上,通过小学数学课本中的“鸡兔同笼”问题教学,可以发现教学中仍然存在一定问题。在教学中,教师应该使用多变的教学方法,活跃课堂气氛,激发学生的学习热情,通过知识的生活化,让抽象的数学知识易于接受。这样才能做好小学数学教学工作。
参考文献:
[1]卢春华.初中数学教学反思刍议[J].中学教学参考.2012,(31):90.
[2]周胜琼.小学数学六年级上册“鸡兔同笼”教学反思[J].中国科教创新导刊.2012,(18):86.
篇13:五年级数学下册《分解质因数》的教学反思
教学目标:
1、学生掌握因数,倍数的概念及找一个数因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的数学抽象能力。
教学重点:掌握找一个数的因数和倍数的方法。教学难点:能熟练地找一个数的因数和倍数。
教学过程:
一、创设情景,生成问题
1、出示主题图,观察下面的算式,能把算式分分类吗? 12÷2=6
8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=1.8
26÷8=3.25 20÷10=2
21÷21=1
63÷9=7
2、学生分类。预设:分成二类(出示课件)
3、看算式12÷2=6,我们说2是12的因数,6也是12的因数; 12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数
倍数)
二、探索交流,解决问题
(一)找因数:
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些? 学生尝试完成:汇报
(18的因数有: 1,2,3,6,9,18)
师:说说看你是怎么找的?
预设1:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…; 预设2:用乘法一对一对找,如1×18=18,2×9=18…
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有: 1,2,3,4,6,9,12,18,36 师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?
4、其实写一个数的因数除了这样写以外,还可以用集合表示:出示课件展示
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完? 你是怎么找到这些倍数的?
生:只要用2去乘
1、乘
2、乘
3、乘
4、… 那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报:3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?
生:用3分别乘以1,2,3,……倍
5的倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数
3的倍数
5的倍数
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、巩固应用,内化提高
(一)、填空:
1.5×7=35,()是()的倍数,()是()的因数。
2.9×10=90,()是()的倍数,()是()的因数。
3.23×1=23,()是()的倍数,()是()的因数。
4.在8和48中,能被整除,是的倍数,是的因数。
5.在2、3、6、15、16、24、48中,是48的因数,是2的倍数。
二、判断题
1.任何自然数,它的最大因数和最小倍数都是它本身.()2.一个数的倍数一定大于这个数的因数.()3.因为1.2÷0.6=2,所以1.2能够被0.6整除.()
4.一个数的因数的个数是有限的,一个数的倍数的个数是无限的.()5.5是因数,8是倍数.()
6.36的全部因数是2、3、4、6、9、12和18,共有7个.()7.因为18÷9=2,所以18是倍数,9是因数.()8.25÷10=2.5,商没有余数,所以25能被10整除.()9.任何一个自然数最少有两个因数.()
10.一个数如果能被24整除,则这个数一定是4和8的倍数.()11.15的倍数有15、30、45.()12.一个自然数越大,它的因数个数就越多.()
四、回顾整理,反思提升
篇14:五年级数学下册《分解质因数》的教学反思
教学内容:人教版五年级数学下册第79-80页。教学目标:
1、知识与能力:结合解决问题理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。
2、过程与方法:
⑴在探索公因数和最大公因数意义的过程中,经历观察、猜测、归纳等数学活动,进一步发展初步的推理能力。在解决问题的过程中,能进行有条理、有根据地进行思考。
⑵学会用公因数、最大公因数的知识解决简单的现实问题,体验数学与生活的密切联系。
3、情感态度价值观:在学生探索新知的过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神。教学重点:理解公因数与最大公因数的意义。教学难点:找公因数和最大公因数的方法。
学具准备:若干张长16厘米,宽12厘米的长方形格子纸;边长是1厘米,2厘米,3厘米,4厘米的小正方形;水彩笔等。教学过程:
一、复习巩固
1、让学生和同桌说一说自己学号的因数。
2、游戏:看谁反应快。第一组:
(1)学号只有两个因数的同学起立。点拨:这样的数叫质数。(2)学号是合数的同学起立。
(3)谁一次也没有站起来?为什么? 第二组:
学号是20(1、2、4、5、10、20等6人)的因数的同学起立,学号是16(1、2、4、8、16等5人)的同学起立,1、2、4号同学为什么起立两次?
二、创设情境,提出问题。
1、出示王叔叔铺地情景图,导入新课。
同学们,王叔叔买了一套房子,正忙着装修,但他遇到了一个问题,我们一起来看看。(这是一个储藏室,地面长16分米,宽12分米如果用边长是整分米的正方形地砖把这个房间的地面铺满(使用的地砖都是整块)可以选择边长是几分米的地砖?)
教师引导:谁能说说王叔叔对铺地砖有什么要求?
三、合作探讨,理解意义,学习方法。
1、演示课件,指导操作方法。
教师引导:这个房间长16分米,宽12分米如果用边长是整分米的正方形地砖把这个房间的地面铺满(使用的地砖都是整块)可以选择边长是几分米的地砖?请同学们猜想一下。(学生回答自己的猜想)
教师引导:怎样验证你们的猜想呢?(学生提出自己的方法,教师评价,学生评价。)
教师总结:你的方法很好,我们可以先选用边长1厘米的正方形来摆摆看,有没有剩余。请看屏幕。(课件演示过程)
教师引导:长方形的长有没有剩余?长方形的宽有没有剩余? 教师质疑提出新学习目标:用其他的正方形来摆有没有剩余呢?请同学们拿出准备好的学具,摆一摆,算一算或用水彩笔在长方形纸上画一画,把出现的几种的情况记录下来,看看有几种不同的摆法。
(学生分组进行画,在小组内进行交流)
2、分组操作,发现规律。①学生操作。
学生在长方形纸上试画边长是2、3、4、5、6……厘米的正方形。②交流汇报。
请xx小组汇报一下你们讨论的结果。(展示学生作品,教师评价,课件出示对应的幻灯片,演示铺地过程。)
教师引导:结合刚才的操作,我们发现,正方形的边长可以是多少厘米?为什么只选择边长是1、2、4厘米的正方形呢? ③观察发现。
教师引导:请大家认真观察我们摆的结果,这些正方形的边长与长方形的长和宽有什么关系?(引导学生发现正方形的边长与长方形的长和宽之间的关系。)
④得出结论。教师引导:要使长方形没有剩余,正方形的边长有怎样的要求?(学生得出正方形的边长是长方形长、宽的公因数。)⑤明确公因数、最大公因数的意义。(1)探讨抽象公因数的概念。
同学们真了不起!发现了里面含有因数和倍数的知识。要想得到题目中要求的正方形,它的边长必须既是16的因数,又是12的因数。下面我们就继续用因数的知识来探索,为什么可以选择边是1cm、2 cm、4 cm的正方形。请同学们说,老师写。
教师提问:16的因数有哪些?12的因数呢?既是16的因数,又是12的因数有哪些?
教师引导:1、2、4既是16的因数,又是12的因数。谁能用比较简洁的话说一说,他们是16和12的什么数?
教师引导:谁能说一说,什么是公因数?(2)用集合图表示
课件动态显示:用集合图的形式写出16和12的因数、公因数。(学生观察)
(3)认识最大公因数
教师提问:如果王叔叔想用最少的地砖铺地可以选择边长多少的地砖?
教师小结:4就是16和12的……(最大公因数)(板书:16和12的最大公因数:4)今天我们通过解决王叔叔铺地的问题认识了公因数和最大公因数。
我们今天探讨的课题就是最大公因数。(板书:最大公因数)⑥跟踪练习,深化理解公因数、最大公因数意义。
教师提问:如果现在让我们考虑可以“选择边长是几厘米的正方形”,还要用摆一摆、画一画吗?可以怎么办呢? 教师提问:如果解决“边长最大是几分米”呢?
四、应用知识,解决问题,加深对公因数和最大公因数的理解。
1、找两个数的公因数和最大公因数
(1)教师引导:像刚才我们先找出两个数的公因数,再从公因数中找最大公因数是我们求最大公因数的一般方法。现在你能找出两个数的最大公因数吗?下面我们来看练习
出示例2:你还能找出18和27的公因数和最大公因数吗?(生独立做,集体交流。)
哪个同学来说说你是怎么找的?(鼓励学生用自己的方法求两个数的公因数和最大公因数,并在比较中,学会择优。)
(2)“练习十五”第1题。
同学们刚才完成得不错,如果让你找出两个数的公因数,有信心吗?
10和15的公因数 14和49的公因数
同学们对公因数和最大公因数的知识掌握的不错,下面我们尝试用公因数和最大公因数的知识解决一些生活中的问题。
2、战队,我该站那儿呢? 学号是12的因数而不是18的因数的同学站左边,是18的因数而不是12的因数的同学站右边,是12和18公因数的站中间。
3、破译电话号码
这是一个7位数的电话号码 ABCDEFG 这个电话号码满足以下条件:
A是18和12的最大公因数:
B是6和24的最大公因数: C是最小合数与最小质数的和:
D是最大的一位数:
E是不能做分母的数: F比任意两个非0自然数的最小公因数还要小: G既不是质数也不是合数:
这个电话号码是()
五、回顾反思,总结全课。
通过这节课的学习你都有哪些收获呢?(学生谈收获,教师给予积极评价)教师小结:这节课我们认识了公因数和最大公因数,还在解决问题的过程中体会到,怎样找两个数的公因数。学到了新知识,并用知识解决实际问题。希望同学们学到更多的知识,品味知识给我们带来的快乐!
六、布置作业
教科书第82页第2题任选四小题,第83页第6、七、板书:
最大公因数
16的因数: 1 2 4 8 16 12的因数: 1 2 3 4 6 12 16和12的公因数: 1 2 4 16和12的最大公因数:4
篇15:五年级数学下册《分解质因数》的教学反思
《公倍数和公因数》的教学已接近尾声,但练习反馈,部分学生求两个数的最大公因数和最小公倍数错误百出,细细思量,用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的`最大公因数有学生写5。……而且去问问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“烦”,“很烦”,“太麻烦了”。
在了解了学生的感受以后,我又重新通过练习概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。
另外,我又结合教材后面的“你知道吗?”,指导了一下用短除法求两个数的最小公倍数和最大公因数的方法。在完成练习时,让学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢。
相关文章:
一剪梅舒怀剑分解教学02-19
肚皮舞教学分解动作02-19
因式分解教学案范文02-19
《因式分解》教学反思02-19
实心球分解教学02-19
《短除法和分解质因数》教学设计02-19
分解质因数教学设计 宿传刚02-19
分解质因数教学设计02-19
全国初中数学竞赛辅导(八年级)教学案全集第01讲因式分解02-19
五十六式陈式太极拳教学分解学习步骤02-19