信号与系统标准实验报告-参考(共6篇)
篇1:信号与系统标准实验报告-参考
实验三
常见信号得MATLAB 表示及运算 一、实验目得 1。熟悉常见信号得意义、特性及波形 2.学会使用 MATLAB 表示信号得方法并绘制信号波形 3、掌握使用MATLAB 进行信号基本运算得指令 4、熟悉用MATLAB 实现卷积积分得方法 二、实验原理 根据MATLAB 得数值计算功能与符号运算功能,在 MATLAB中,信号有两种表示方法,一种就是用向量来表示,另一种则就是用符号运算得方法。在采用适当得 MATLAB 语句表示出信号后,就可以利用 MATLAB中得绘图命令绘制出直观得信号波形了。
1、连续时间信号
从严格意义上讲,MATLAB并不能处理连续信号。在MATLAB 中,就是用连续信号在等时间间隔点上得样值来近似表示得,当取样时间间隔足够小时,这些离散得样值就能较好地近似出连续信号。在 MATLAB 中连续信号可用向量或符号运算功能来表示。
⑴
向量表示法 对于连续时间信号,可以用两个行向量 f 与 t 来表示,其中向量 t 就是用形如得命令定义得时间范围向量,其中,为信号起始时间,为终止时间,p 为时间间隔。向量 f 为连续信号在向量 t所定义得时间点上得样值. ⑵
符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍得符号函数专用绘图命令 ezplot()等函数来绘出信号得波形。
⑶
得 常见信号得 M ATLA B表示
单位阶跃信号 单位阶跃信号得定义为:
方法一:
调用 H eaviside(t)函数 首先定义函数 Heaviside(t)得m函数文件,该文件名应与函数名同名即Heaviside、m.%定义函数文件,函数名为 Heaviside,输入变量为 x,输出变量为y function y= Heaviside(t)
y=(t>0);
%定义函数体,即函数所执行指令 %此处定义t>0 时 y=1,t<=0 时y=0,注意与实际得阶跃信号定义得区别.方法二:数值计算法 在MATLAB 中,有一个专门用于表示单位阶跃信号得函数,即 s te pfun()函数,它就是用数值计算法表示得单位阶跃函数.其调用格式为: st epfun(t,t0)
其中,t 就是以向量形式表示得变量,t0 表示信号发生突变得时刻,在t0以前,函数值小于零,t0以后函数值大于零。有趣得就是它同时还可以表示单位阶跃序列,这只要将自变量以及
取样间隔设定为整数即可。
符号函数 符号函数得定义为:
在 MATLAB 中有专门用于表示符号函数得函数 s ign(),由于单位阶跃信号(t)与符号函数两者之间存在以下关系:,因此,利用这个函数就可以很容易地生成单位阶跃信号.2、离散时间信号 离散时间信号又叫离散时间序列,一般用 表示,其中变量 k 为整数,代表离散得采样时间点(采样次数)。
在 MATLAB中,离散信号得表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于 MATLAB 中元素得个数就是有限得,因此,MATLAB无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据得命令,即 stem(()函数,而不能用plot()函数。
单位序列
单位序列)得定义为
单位阶跃序列 单位阶跃序列得定义为 3、卷积积分 两个信号得卷积定义为:
MATLAB 中就是利用 conv 函数来实现卷积得.功能:实现两个函数与得卷积.格式:g=conv(f1,f2)
说明:f1=f 1(t),f2=f 2(t)
表示两个函数,g=g(t)表示两个函数得卷积结果。
三、实验内容 1、分别用 MATLAB得向量表示法与符号运算功能,表示并绘出下列连续时间信号得波形:
⑴
⑵
(1)
t=-1:0、01:10;t1=-1:0、01:-0、01;t2=0:0、01:10; f1=[zeros(1,length(t1)),ones(1,length(t2))];f=(2—exp(-2*t))、*f1; plot(t,f)axis([-1,10,0,2、1])
syms t;f=sym(’(2-exp(—2*t))*heaviside(t)“); ezplot(f,[-1,10]);
(2)t=—2:0、01:8; f=0、*(t<0)+cos(pi*t/2)、*(t>0&t〈4)+0、*(t〉4);plot(t,f)
syms t;f=sym(”cos(pi*t/2)*[heaviside(t)—heaviside(t—4)] “);ezplot(f,[-2,8]);
2、分别用 MATLAB 表示并绘出下列离散时间信号得波形:
⑵
⑶
(2)
t=0:8; t1=—10:15; f=[zeros(1,10),t,zeros(1,7)];stem(t1,f)axis([—10,15,0,10]);
(3)t=0:50;t1=—10:50; f=[zeros(1,10),sin(t*pi/4)];stem(t1,f)
axis([—10,50,—2,2])
3、已知两信号,求卷积积分,并与例题比较。
t1=—1:0、01:0; t2=0:0、01:1;t3=—1:0、01:1; f1=ones(size(t1));f2=ones(size(t2));g=conv(f1,f2); subplot(3,1,1),plot(t1,f1); subplot(3,1,2),plot(t2,f2);subplot(3,1,3),plot(t3,g);
与例题相比较,g(t)得定义域不同,最大值对应得横坐标也不同。
4、已知,求两序列得卷积与 .N=4;M=5; L=N+M—1; f1=[1,1,1,2]; f2=[1,2,3,4,5];g=conv(f1,f2); kf1=0:N-1; kf2=0:M-1;kg=0:L—1;subplot(1,3,1),stem(kf1,f1,’*k’);xlabel(”k“); ylabel(’f1(k)”);grid on subplot(1,3,2),stem(kf2,f2,’*k“);xlabel('k’);ylabel(”f2(k)’);grid on subplot(1,3,3);stem(kg,g,'*k’);xlabel('k“); ylabel(”g(k)');grid on
实验心得:第一次接触 Mutlab 这个绘图软件,觉得挺新奇得,同时 ,由于之前不太学信号与系统遇到一些不懂得问题,结合这些图对信号与系统有更好得了解。
实验四
连续时间信号得频域分析 一、实验目得 1。熟悉傅里叶变换得性质 2.熟悉常见信号得傅里叶变换 3。了解傅里叶变换得MATLAB 实现方法 二、实验原理 从已知信号求出相应得频谱函数得数学表示为:
傅里叶反变换得定义为:
在 MATLAB中实现傅里叶变换得方法有两种,一种就是利用 MATLAB 中得 Sy mbo lic Math Too lbox 提供得专用函数直接求解函数得傅里叶变换与傅里叶反变换,另一种就是傅里叶变换得数值计算实现法.1、直接调用专用函数法 ①在 MATLAB 中实现傅里叶变换得函数为:
F=fourier(f)
对f(t)进行傅里叶变换,其结果为 F(w)
F=fourier(f,v)
对 f(t)进行傅里叶变换,其结果为F(v)
F=fourier(f,u,v)
对f(u)进行傅里叶变换,其结果为 F(v)②傅里叶反变换
f=ifourier(F)
对 F(w)进行傅里叶反变换,其结果为 f(x)
f=ifourier(F,U)
对F(w)进行傅里叶反变换,其结果为f(u)
f=ifourier(F,v,u)
对F(v)进行傅里叶反变换,其结果为 f(u)
注意:
(1)在调用函数 fourier()及 ifourier()之前,要用 syms 命令对所有需要用到得变量(如 t,u,v,w)等进行说明,即要将这些变量说明成符号变量。对fourier()中得 f 及ifourier()中得 F 也要用符号定义符 sym 将其说明为符号表达式。
(2)采用 fourier()及 fourier()得到得返回函数,仍然为符号表达式。在对其作图时要用 ezplot()函数,而不能用plot()函数.(3)fourier()及fourier()函数得应用有很多局限性,如果在返回函数中含有 δ(ω)等函数,则 ezplot()函数也无法作出图来。另外,在用 fourier()函数对某些信号进行变换时,其返回函数如果包含一些不能直接表达得式子,则此时当然也就无法作图了。这就是fourier()函数得一个局限。另一个局限就是在很多场合,尽管原时间信号 f(t)就是连续得,但却不能表示成符号表达式,此时只能应用下面介绍得数值计算法来进行傅氏变换了,当然,大多数情况下,用数值计算法所求得频谱函数只就是一种近似值。
2、傅里叶变换得数值计算实现法 严格说来,如果不使用 symbolic 工具箱,就是不能分析连续时间信号得。采用数值计算方法实现连续时间信号得傅里叶变换,实质上只就是借助于MATLAB 得强大数值计算功能,特别就是其强大得矩阵运算能力而进行得一种近似计算。傅里叶变换得数值计算实现法得原理如下: 对于连续时间信号 f(t),其傅里叶变换为:
其中 τ 为取样间隔,如果 f(t)就是时限信号,或者当|t|大于某个给定值时,f(t)得值已经衰减得很厉害,可以近似地瞧成就是时限信号,则上式中得n取值就就是有限得,假定为 N,有:
若对频率变量 ω 进行取样,得:
通常取:,其中就是要取得频率范围,或信号得频带宽度。采用 MATLAB 实现上式时,其要点就是要生成 f(t)得N个样本值得向量,以及向量,两向量得内积(即两矩阵得乘积),结果即完成上式得傅里叶变换得数值计算。
注意:时间取样间隔 τ 得确定,其依据就是 τ 必须小于奈奎斯特(Nyquist)取样间隔。如果 f(t)不就是严格得带限信号,则可以根据实际计算得精度要求来确定一个适当得频率为信号得带宽。
三、实验内容 1、编程实现求下列信号得幅度频谱(1)
求出得频谱函数 F 1(jω),请将它与上面门宽为 2 得门函数得频谱进行比较,观察两者得特点,说明两者得关系。
(2)三角脉冲
(3)单边指数信号
(4)
高斯信号
(1)
syms t w
Gt=sym(“Heaviside(2*t+1)—Heaviside(2*t-1)’);
Fw=fourier(Gt,t,w);
FFw=maple(’convert’,Fw,’piecewise”);
FFP=abs(FFw);
ezplot(FFP,[—10*pi 10*pi]);grid;
axis([-10*pi 10*pi 0 2、2])
与得频谱比较,得频谱函数 F 1(jω)最大值就是其得1/2.(2)syms t w;Gt=sym(“(1+t)*(Heaviside(t+1)—Heaviside(t))+(1-t)*(Heaviside(t)—Heaviside(t—1))”);Fw=fourier(Gt,t,w);
FFw=maple(“convert',Fw,’piecewise”);
FFP=abs(FFw);
ezplot(FFP,[—10*pi 10*pi]);grid;
axis([—10*pi 10*pi 0 2、2])
(3)syms t w
Gt=sym(’exp(-t)*Heaviside(t)’);
Fw=fourier(Gt,t,w);
FFw=maple(“convert”,Fw,’piecewise’);
FFP=abs(FFw);
ezplot(FFP,[—10*pi 10*pi]);grid;
axis([—10*pi 10*pi —1 2])
(4)syms t w
Gt=sym(’exp(-t^2)“);
Fw=fourier(Gt,t,w);
FFw=maple('convert’,Fw,’piecewise’);
ezplot(FFw,[-30 30]);grid;
axis([—30 30 —1 2])
2、利用 ifourier()函数求下列频谱函数得傅氏反变换(1)
(2)
(1)syms t w
Fw=sym(’-i*2*w/(16+w^2)’);
ft=ifourier(Fw,w,t);
ft 运行结果: ft = —exp(4*t)*heaviside(—t)+exp(—4*t)*heaviside(t)(2)
syms t w
Fw=sym(”((i*w)^2+5*i*w-8)/((i*w)^2+6*i*w+5)’);
ft=ifourier(Fw,w,t);
ft 运行结果: ft = dirac(t)+(-3*exp(-t)+2*exp(-5*t))*heaviside(t)实验 心得 matlab 不但具有数值计算能力,还能建模仿真,能帮助我们理解不同时间信号得频域分析。
实验五 连续时间系统得频域分析 一、实验目得 1.学习由系统函数确定系统频率特性得方法.2.学习与掌握连续时间系统得频率特性及其幅度特性、相位特性得物理意义.3.通过本实验了解低通、高通、带通、全通滤波器得性能及特点。
二、实验原理及方法 频域分析法与时域分析法得不同之处主要在于信号分解得单元函数不同。在频域分析法中,信号分解成一系列不同幅度、不同频率得等幅正弦函数,通过求取对每一单元激励产生得响应,并将响应叠加,再转换到时域以得到系统得总响应。所以说,频域分析法就是一种变域分析法.它把时域中求解响应得问题通过 Fourier 级数或 Fourier 变换转换成频域中得问题;在频域中求解后再转换回时域从而得到最终结果.在实际应用中,多使用另一种变域分析法:复频域分析法,即 Laplace 变换分析法。
所谓频率特性,也称频率响应特性,就是指系统在正弦信号激励下稳态响应随频率变化得情况,包括幅度随频率得响应与相位随频率得响应两个方面.利用系统函数也可以确定系统频率特性,公式如下:
幅度响应用表示,相位响应用表示。
本实验所研究得系统函数 H(s)就是有理函数形式,也就就是说,分子、分母分别就是 m、n 阶多项式。
要计算频率特性,可以写出
为了计算出、得值,可以利用复数三角形式得一个重要特性:
而,则 利用这些公式可以化简高次幂,因此分子与分母得复数多项式就可以转化为分别对实部与虚部得实数运算,算出分子、分母得实部、虚部值后,最后就可以计算出幅度、相位得值了。
三、实验内容 a),m 取值区间 [0,1],绘制一组曲线 m=0、1,0、3,0、5,0、7,0、9;b)绘制下列系统得幅频响应对数曲线与相频响应曲线,分析其频率特性.(1)
(2)
(3)
a)% design2、m
figure
alpha=[0、1,0、3,0、5,0、7,0、9];
colorn=['r’ ’g’ ’b“ ’y” “k'];
%
r g b y m c k(红,绿,蓝,黄,品红,青,黑)
for n=1:5
b=[0 alpha(n)];
% 分子系数向量
a=[alpha(n)-alpha(n)^2 1];
% 分母系数向量
printsys(b,a,”s“)
[Hz,w]=freqs(b,a);
w=w、/pi;
magh=abs(Hz);
zerosIndx=find(magh==0);
magh(zerosIndx)=1;
magh=20*log10(magh);
magh(zerosIndx)=-inf;
angh=angle(Hz);
angh=unwrap(angh)*180/pi;
subplot(1,2,1)
plot(w,magh,colorn(n));
hold on
subplot(1,2,2)
plot(w,angh,colorn(n));
hold on
end
subplot(1,2,1)
hold off
xlabel(”特征角频率(timespi rad/sample)“)
title('幅频特性曲线 |H(w)|(dB)”);
subplot(1,2,2)
hold off
xlabel(’特征角频率(timespi rad/sample)’)
title(“相频特性曲线 theta(w)(degrees)’);
b)(1)% design1、m b=[1,0];
% 分子系数向量 a=[1,1];
% 分母系数向量 printsys(b,a,”s’)[Hz,w]=freqs(b,a);w=w、/pi;magh=abs(Hz);zerosIndx=find(magh==0); magh(zerosIndx)=1; magh=20*log10(magh);
% 以分贝 magh(zerosIndx)=-inf;angh=angle(Hz);angh=unwrap(angh)*180/pi;
% 角度换算 figure subplot(1,2,1)plot(w,magh);grid on xlabel(’特征角频率(timespi rad/sample)')title(’幅频特性曲线 |H(w)|(dB)’); subplot(1,2,2)plot(w,angh);grid on xlabel(’特征角频率(times\pi rad/sample)’)title(’相频特性曲线 \theta(w)
(degrees)’);
(2)
% design1、m b=[0,1,0];
% 分子系数向量 a=[1,3,2];
% 分母系数向量 printsys(b,a,’s’)[Hz,w]=freqs(b,a);w=w、/pi; magh=abs(Hz);zerosIndx=find(magh==0); magh(zerosIndx)=1; magh=20*log10(magh);
% 以分贝 magh(zerosIndx)=-inf; angh=angle(Hz);angh=unwrap(angh)*180/pi;
% 角度换算 figure subplot(1,2,1)plot(w,magh);grid on xlabel(“特征角频率(\times\pi rad/sample)')
title(’幅频特性曲线 |H(w)|(dB)’);subplot(1,2,2)plot(w,angh); grid on xlabel(”特征角频率(\times\pi rad/sample)“)title(”相频特性曲线 theta(w)(degrees)’);
(3)
% design1、m b=[1,-1];
% 分子系数向量 a=[1,1];
% 分母系数向量 printsys(b,a,“s”)[Hz,w]=freqs(b,a);w=w、/pi;magh=abs(Hz);zerosIndx=find(magh==0);magh(zerosIndx)=1;magh=20*log10(magh);
% 以分贝 magh(zerosIndx)=-inf;angh=angle(Hz);angh=unwrap(angh)*180/pi;
% 角度换算 figure subplot(1,2,1)
plot(w,magh); grid on xlabel(’特征角频率(timespi rad/sample)“)
title(”幅频特性曲线 |H(w)|(dB)’);subplot(1,2,2)plot(w,angh);grid on xlabel(’特征角频率(times\pi rad/sample)')title(’相频特性曲线 theta(w)
(degrees)“);
实验心得: :虽然之前用公式转换到频域上分析,但就是有时会觉得挺抽象得,不太好理解。根据这些图像结合起来更进一步对信号得了解。同时,这个在编程序时,虽然遇到一些问题,但就是总算解决了。
实验六
离散时间系统得 Z 域分析 一、实验目得 1.学习与掌握离散系统得频率特性及其幅度特性、相位特性得物理意义。
2.深入理解离散系统频率特性与对称性与周期性。
3.认识离散系统频率特性与系统参数之间得系统 4.通过阅读、修改并调试本实验所给源程序,加强计算机编程能力。
二、
实验原理及方法 对于离散时间系统,系统单位冲激响应序列得 Fourier 变换完全反映了系统自身得频率特性,称为离散系统得频率特性,可由系统函数求出,关系式如下:
(6 – 1)由于就是频率得周期函数,所以系统得频率特性也就是频率得周期函数,且周期为,因此研究系统频率特性只要在范围内就可以了. n n nj jn n h j n n h e n h e H)sin()()cos()()()(
(6 – 2)容易证明,其实部就是得偶函数,虚部就是得奇函数,其模得得偶函数,相位就是得奇函数。因此研究系统幅度特性、相位特性,只要在范围内讨论即可。
综上所述,系统频率特性具有周期性与对称性,深入理解这一点就是十分重要得。
当离散系统得系统结构一定,它得频率特性将随参数选择得不同而不同,这表明了系统结构、参数、特性三者之间得关系,即同一结构,参数不同其特性也不同。
例如,下图所示离散系统,其数学模型由线性常系数差分方程描述:
系统函数: 系统函数频率特性:
幅频特性: 相频特性:
容易分析出,当时系统呈低通特性,当时系统呈高通特性;当时系统呈全通特性.同时说明,在系统结构如图所示一定时,其频率特性随参数 a 得变化而变化.三、实验内容 a)。
b)c)a)% design1、m b=[1,0,-1];
% 分子系数向量 a=[1,0,—0、81];
% 分母系数向量 printsys(b,a,”z“)[Hz,w]=freqz(b,a);w=w、/pi;magh=abs(Hz);zerosIndx=find(magh==0);magh(zerosIndx)=1;magh=20*log10(magh);
% 以分贝 magh(zerosIndx)=-inf; angh=angle(Hz); angh=unwrap(angh)*180/pi;
% 角度换算 figure subplot(1,2,1)
plot(w,magh);grid on xlabel(’特征角频率(timespi rad/sample)')title(’幅频特性曲线 |H(w)|(dB)”);subplot(1,2,2)plot(w,angh);grid on xlabel(“特征角频率(times\pi rad/sample)”)title('相频特性曲线 theta(w)(degrees)“);
带通
b)% design1、m b=[0、1,—0、3,0、3,-0、1];
% 分子系数向量 a=[1,0、6,0、4,0、1];
% 分母系数向量 printsys(b,a,’z”)[Hz,w]=freqz(b,a);w=w、/pi; magh=abs(Hz); zerosIndx=find(magh==0);magh(zerosIndx)=1;magh=20*log10(magh);
% 以分贝 magh(zerosIndx)=-inf;angh=angle(Hz);angh=unwrap(angh)*180/pi;
% 角度换算 figure subplot(1,2,1)plot(w,magh);grid on xlabel(’特征角频率(timespi rad/sample)’)
title(“幅频特性曲线 |H(w)|(dB)”);subplot(1,2,2)plot(w,angh);grid on
xlabel(“特征角频率(\timespi rad/sample)’)title(”相频特性曲线 theta(w)
(degrees)’);
高通
c)% design1、m b=[1,—1,0];
% 分子系数向量 a=[1,0,0、81];
% 分母系数向量 printsys(b,a,“z’)[Hz,w]=freqz(b,a);w=w、/pi; magh=abs(Hz); zerosIndx=find(magh==0);magh(zerosIndx)=1;magh=20*log10(magh);
% 以分贝 magh(zerosIndx)=—inf;angh=angle(Hz); angh=unwrap(angh)*180/pi;
% 角度换算 figure subplot(1,2,1)plot(w,magh);grid on xlabel(”特征角频率(\times\pi rad/sample)')title(“幅频特性曲线 |H(w)|(dB)”);subplot(1,2,2)
plot(w,angh);
grid on xlabel(’特征角频率(\timespi rad/sample)")title(’相频特性曲线 theta(w)
(degrees)’);
带通
实验心得: :本来理论知识不就是很强得,虽然已经编出程序得到相关图形,但就是不会辨别相关通带,这让我深刻地反省。
篇2:信号与系统标准实验报告-参考
信号与系统试验报告
姓名:
学号:
专业班级:自动化
实验一
基本信号得生成1.实验目得
学会使用 MATLAB 产生各种常见得连续时间信号与离散时间信号; 通过MATLAB 中得绘图工具对产生得信号进行观察,加深对常用信号得理解; 熟悉 MATLAB 得基本操作,以及一些基本函数得使用,为以后得实验奠定基础。2。
实验内容
⑴ 运行以上九个例子程序,掌握一些常用基本信号得特点及其MATLAB 实现方法;改变有关参数,进一步观察信号波形得变化.⑵ 在范围内产生并画出以下信号: a)
;b); c); d).源程序: k= — 10 0 :1 1 0;;
f1k=[ze r os(1,10), , 1 ,zer os(1 1,1 1 0)];;
subplot(2 2,2,1)
stem(k, , f 1k)
title(' f1[k ] ’)
f2k=[zer os s(1 ,8), 1,z z er r os s(1 1,12)];;
su b plot(2,2,2)
s te m(k k,f2k)
titl e(“f2 [k] ’)
f3k = [zeros(1 ,14), , 1,zer os s(1 1,6 6)];;
su bplot t(2 2,2 2,3)
st e m(k,f 3 k)
ti t le(”f3[k]“)
f 4k= 2*f2k k--f3 k;
su bpl ot(2,2 2,4)
s s t em(k,f4k)
t t i tle('f 4[k]”)
⑶ 在 范围内产生并画出以下信号: a);b);c)。
请问这三个信号得基波周期分别就是多少? 源程序: k= = 0:
;
f1 1 k= = sin(pi /4* k))、* cos(pi /4*k);;
subp lo t(3,1, 1))
st em(k,f1 1 k))
t itle(' f1[k ]“ ”)
f2 k=(cos(pi/4*k))、^ ^ 2;;
subp l ot(3, 1 ,2)
st t em m(k,f2 k))
ti i tl e('f2 [k ]“ ”)
f3 k =s in n(pi /4*k)、*cos s(p i/8 *k k);;
sub p lot(3,1 1,3)
st em m(k ,f3k)
tit le e(’f3 [k k ] ’)
其中f1[k]得基波周期就是4, f2[k]得基波周期就是4, f3[k]得基波周期就是 16. 实验 二
信号得基本运算1。
实验目得
学会使用MATLAB完成信号得一些基本运算; 了解复杂信号由基本信号通过尺度变换、翻转、平移、相加、相乘、差分、求与、微分及积分等运算来表达得方法; 进一步熟悉 MATLAB 得基本操作与编程,掌握其在信号分析中得运用特点与使用方式. 2。
实验内容
⑴ 运行以上三个例题程序,掌握信号基本运算得MATLAB实现方法;改变有关参数,考察相应信号运算结果得变化特点与规律。
⑵ 已知信号如下图所示:
a)用 MATLAB 编程复现上图;%作业题2
a: t=-6:0、001 :6;ft1=t rip uls(t, 6,0、5);sub plot(2,1,1)
plot(t,ft1)t tit le(’f(t)’)
b)画出得波形;%b t= -6:0、00 1:6;f ft 1= tripuls(2 *(1 —t),6,0、5); %s ubp lot(1,1,1)
pl ot(t,ft 1)t it le(’f(2*(1-t)“)-4-3-2-1 0 1 2 3 400.20.40.60.811.21.41.61.82tf(t)给 定 信 号 f(t)
c)画出得波形;
%c h=0、00 1;t= —6: h:6;yt= tri pu ls(t,6,0、5); y 1= diff(yt)*1/h;plot(t(1:lengt h(t)—1),y1)
tit le(’df(t)/ dt ’)
d)画出得波形。
%d t=—6:0、1:6;for x=1:length(t)
y2(x)=quad(’tripuls(t,6,0、5)’,-3,t(x));
end plot(t,y2)
title(”integral of f(t)“)
实验 三
系统得时域分析1。
实验目得
学习并掌握连续时间系统得零状态响应、冲激响应与阶跃响应得 MATLAB求解方法; 学习并掌握离散时间系统得零状态响应、冲激响应与阶跃响应得 MATLAB 求解方法; 进一步深刻理解连续时间系统与离散时间系统得系统函数零极点对系统特性得影响;学习并掌握卷积得 MATLAB 计算方法。
2.实验内容
⑴ 运行以上五个例题程序,掌握求解系统响应得 MATLAB分析方法;改变模型参数,考察系统响应得变化特点与规律。
⑵ 设离散系统可由下列差分方程表示:
计算时得系统冲激响应。
源程序:
k= — 20:100 ;
a= [1 1
--1 0、9] ;
b=[1];
h= i mpz(b b,a a,k k);;
stem(k, h);;
xla b el(’Ti me(sec)’)
y y lab el(’y(t)”)
⑶ 设,输入,求系统输出。
(取)
源程序: k=--1 1 0 :50 ;
u u k= = [z z e ro s(1,1 0), o nes(1, 51))];;
u 1k=[ z er o s(1,20),o o n es(1, , 41)];;
h k=0、9 9、^k、*uk;
fk=u k--u1k;
yk=co o nv v(hk,f k));
stem(0:length(yk)--1,yk);;
⑷ 已知滤波器得传递函数:
输入信号为为随机信号。试绘出滤波器得输出信号波形.(取)源程序: R=101 ;
d=rand(1 ,R)
—0 0、5;;
t=0:100 ;
s=2 * si n(0、05*pi*t);
f=s +d d ;
su bp lo t(2,1,1);
plot(t,d ,’ g--、',t t,s,’b--— “,t,f,”r--');
xl l ab b el l(“ ” Ti i m e in d ex t’);;
legend(“d [t t ] ”,“ s[ [ t]” “,”f[t ] ’);
tit t le e(“ ” 处理前得波形'))
b=[0、22 0 ];a=[ 1
-0 0、8];
y=fi lt er(b,a,f));
su bp p l ot(2 2,1,2);
pl ot t(t ,s,“b —--” “,t t,y,’r--’);
xl ab b e l(’ Ti i m e i nd ex t”);
leg e nd(“s [t t ] ’,’ y [t ]');;
title(” “ 滤波器输出波形’))
实验 四
周期信号得频域分析
1..实验目得
掌握周期信号傅立叶级数分解与合成得计算公式 掌握利用 MATLAB实现周期信号傅立叶级数分解与综合方法 理解并掌握周期信号频谱特点
2、实验内容 1、仿照例程,实现下述周期信号得傅立叶级数分解与合成:
要求:
(a)首先,推导出求解,,得公式,计算出前 10 次系数;
(b)利用MATLAB 求解,,得值,其中,求解前 10 次系数,并给出利用这些系数合成得信号波形。
(a)设周期信号得周期为,角频率,且满足狄里赫利条件,则该周期信号可以展开成傅立叶级数。
(1)三角形式傅立叶级数
dt t n t fTbdt t n t fTadt t fTat n b t n a at b t a t b t a t b t a a t fTT nTT nTTnnnnn n n n ***1 02 2 2 2 1 1 1 1 0111111sin)(2cos)(2)(1)sin()cos(...sin cos...sin cos sin cos)(
(2)指数形式傅立叶级数
(b)求解,及合成信号波形所用程序: function [A_sym,B_sym]=CTFShchsym % 采用符号计算求一个周期内连续时间函数 f 得三角级数展开系数,再用这些 %
展开系数合成连续时间函数f、傅立叶级数 % 量值数是就都出输入输得数函ﻩ%
数阶得波谐 6=fNﻩ% Nn
数位确准得据数出输ﻩ% 数系开展项 soc 波谐次、、、3,2,1是就次依素元后其,项流直是就素元 1 第ﻩmys_Aﻩ% B_sym 第 2,3,4,、、、元素依次就是 1,2,3、、、次谐波 sin项展开系数 %
tao=1
tao/T=0、2 syms t n k x
T=4;tao=T/4;a=-1、5;if nargin<4
Nf=10; end if nargin<5
Nn=32;end
1-3-4 5 4 1 O
x=time_fun_x(t);A0=int(x,t,a,T+a)/T;
%求出三角函数展开系数A0 As=2/T*int(x*cos(2*pi*n*t/T),t,a,T+a);
%求出三角函数展开系数 As Bs=2/T*int(x*sin(2*pi*n*t/T),t,a,T+a);
%求出三角函数展开系数 Bs A_sym(1)=double(vpa(A0,Nn));
%获取串数组 A0 所对应得 ASC2码数值数组 for k=1:Nf A_sym(k+1)=double(vpa(subs(As,n,k),Nn));
%获取串数组A所对应得 ASC2码数值数组 B_sym(k+1)=double(vpa(subs(Bs,n,k),Nn));
%获取串数组B所对应得 ASC2 码数值数组 end;
if nargout==0
c=A_sym;disp(c);
%输出 c 为三角级数展开系数:第 1 元素就是直流项,其后元素依次就是 1,2,3、、、次谐波cos 项展开系数 d=B_sym;disp(d);
%输出 d 为三角级数展开系数:
第 2,3,4,、、、元素依次就是 1,2,3、、、次谐波sin 项展开系数
t=—3*T:0、01:3*T;
f 0= c(1);
%直流
f 1 = c(2)、* co s(2* p i* 1 * t /T)+ d(2)、* s i n(2 * pi* 1 * t /T);
% 基波
f 2= c(3)、* c o s(2*pi * 2 * t/T)+d(3)、*sin(2 * pi * 2* t /T);
% 2 次谐波
f3=c(4)、*cos(2*pi*3*t/T)+d(4)、*sin(2*pi*3*t/T);
% 3次谐波
f4=c(5)、*cos(2*pi*4*t/T)+d(5)、*sin(2*pi*4*t/T);
% 4次谐波
f5=c(6)、*cos(2*pi*5*t/T)+d(6)、*sin(2*pi*5*t/T);
% 5次谐波
f6=c(7)、*cos(2*pi*6*t/T)+d(7)、*sin(2*pi*6*t/T);
% 6 次谐波
f 7=c(8)、*cos(2*p i * 7 *t/T)
+d(8)、* sin(2 * p i * 7 *t/T);
% 7 次谐波
f8=c(9)、*cos(2*pi*8*t/T)+d(9)、*sin(2*pi*8*t/T);
% 8次谐波
f9 = c(1 0)、* c o s(2 * p i*9 * t /T)+d(10)、* s in(2 * p i * 9 *t/T);
% 9 次谐波
f 1 0=c(11)、*co s(2 * pi*10*t/T)
+d(1 1)、*s i n(2*pi * 1 0 *t/T);
% 10次谐波
f11=f0+f1+f2;
% 直流+基波+2 次谐波
f12=f11+f3;
% 直流+基波+2 次谐波+3 次谐波
f13=f12+f4+f5+f6;
% 直流+基波+2 次谐波+3次谐波+4次谐波+5 次谐波+6 次
谐波
f14=f13+f7+f8+f9+f10;
%0~10 次
subplot(2,2,1)
plot(t,f0+f1),hold on
y=time_fun_e(t);
%调用连续时间函数-周期矩形脉冲
plot(t,y,”r:“)
title(”直流+基波’)
axis([-8,8,-0、5,1、5])
subplot(2,2,2)
plot(t,f12),hold on
y=time_fun_e(t);
plot(t,y,’r:’)
title(“1—3 次谐波+直流”)
axis([—8,8,-0、5,1、5])
subplot(2,2,3)
plot(t,f13),hold on
y=time_fun_e(t);
plot(t,y,’r:’)
title(“1—6 次谐波+直流')
axis([-8,8,-0、5,1、5])
subplot(2,2,4)
plot(t,f14),hold on
y=time_fun_e(t);
plot(t,y,”r:’)
title(’1—10 次谐波+直流“)
axis([-8,8,-0、5,1、5])
hold off end function y=time_fun_e(t)% 该函数就是 CTFShchsym、m 得子函它由符号函数与表达式写成 a=1、5; T=4; h=1; tao=T/4;t=—3*T:0、01:3*T;e1=1/2+1/2、*sign(t—0、5+tao/2); e2=1/2+1/2、*sign(t—0、5—tao/2); y=h、*(e1—e2);
%连续时间函数—周期矩形脉冲 function x=time_fun_x(t)
% 该函数就是 CTFShchsym、m得子函数。它由符号变量与表达式写成.h=1;
x1=sym(”Heaviside(t)“)*h;x=x1-sym(’Heaviside(t-1)’)*h;
2、已知周期为T=4 得三角波,在第一周期(-2 function [A_sym,B_sym]=CTFSshbpsym(T,Nf)% 采用符号计算求[0,T]内时间函数得三角级数展开系数。 % ﻩ 函数得输入输出都就是数值量 % Nn 输出数据得准确位数 % mys_Aﻩ 第1元素就是直流项,其后元素依次就是1,2,3、、、次谐波 cos项展开系数 % B_sym 数系开展项 nis 波谐次、、、3,2,1 是就次依素元、、、,4,3,2 第ﻩ% T T=m*tao, 信号周期 % ﻩ fNﻩ 谐波得阶数 % m(m=T/tao)周期与脉冲宽度之比,如 m=4,8,16,100等 % tao 脉宽:tao=T/m syms t n y if nargin<3 Nf=input(’please Input 所需展开得最高谐波次数:Nf=’);end T=input(’please Input 信号得周期 T=”);if nargin〈5 Nn=32;end y=time_fun_s(t); A0=2/T*int(y,t,0,T/2);As=2/T*int(y*cos(2*pi*n*t/T),t,0,T/2); Bs=2/T*int(y*sin(2*pi*n*t/T),t,0,T/2);A_sym(1)=double(vpa(A0,Nn));for k=1:Nf A_sym(k+1)=double(vpa(subs(As,n,k),Nn)); B_sym(k+1)=double(vpa(subs(Bs,n,k),Nn)); end if nargout==0 An=fliplr(A_sym); %对 A_sym 阵左右对称交换 An(1,k+1)=A_sym(1); %A_sym 得 1*k 阵扩展为 1*(k+1)阵 An=fliplr(An); %对扩展后得 S1阵左右对称交换回原位置 Bn=fliplr(B_sym); %对 B_sym 阵左右对称交换 Bn(1,k+1)=0; %B_sym得 1*k 阵扩展为1*(k+1)阵 Bn=fliplr(Bn); %对扩展后得 S3阵左右对称交换回原位置 FnR=An/2—i*Bn/2; % 用三角函数展开系数 A、B值合成付里叶指数系数 FnL=fliplr(FnR); N=Nf*2*pi/T; k2=—N:2*pi/T:N; Fn=[FnL,FnR(2:end)]; %subplot(3,3,3) %x=time_fun_e(t); % 调用连续时间函数-周期矩形脉冲 subplot(2,1,1) stem(k2,abs(Fn)); %画出周期矩形脉冲得频谱(T=M*tao) title('连续时间函数周期三角波脉冲得双边幅度谱’) axis([-80,80,0,0、12]) line([-80,80],[0,0],'color“,’r”) line([0,0],[0,0、12],’color’,'r“) end function x=time_fun_e(t)% 该函数就是CTFSshbpsym、m得子函数。它由符号变量与表达式写成。 % t 组数间时是就ﻩ% T 2、0=T/oat=ytud 期周是就ﻩﻩT=5;t=—2*T:0、01:2*T; tao=T/5;x=rectpuls(t,tao); %产生一个宽度 tao=1 得矩形脉冲 subplot(2,2,2) plot(t,x) hold on x=rectpuls(t—5,tao); %产生一个宽度tao=1 得矩形脉,中心位置在t=5处 plot(t,x) hold on x=rectpuls(t+5,tao); %产生一个宽度tao=1得矩形脉,中心位置在 t=—5处 plot(t,x) title(”周期为 T=5,脉宽 tao=1得矩形脉冲')axis([-10,10,0,1、2])function y=time_fun_s(t) 关键词:信号与系统,Matlab,实验仿真教学,Simulink 0 引 言 信号与系统的基本概念、基本理论与分析方法在不同学科、专业之间有着广泛应用和交叉渗透[1]。“信号与系统”课程[2,3]作为电气信息类专业的学科基础课程[4],在专业教育中有着非常重要的地位。由于该课程自身的特点[5,6],决定了其是一门数学方法、专业理论、分析方法和工程应用密切相结合的课程,不仅要求学生能灵活地应用多种数学方法解决专业理论问题,而且还强调工程上的应用与实践,因此对理论教学和实验[7]都提出了很高的要求。 目前,信号与系统课程实验的实验方法和手段大都还局限在硬件实验上,实验内容、实验方法和手段上均不够深入和灵活,难以满足对理论教学上的支持和工程实践上的要求。为了使学生能更好地理解信号与系统的基本概念、基本理论与分析方法及其应用,克服硬件实验的限制以及实验条件投入的不足,有必要对“信号与系统”实验教学进行改革研究,建立软件仿真实验系统,拓展实验教学的内容和灵活性,使学生有能力进行软件仿真实验,突出学生实践能力和创新能力的培养。 1 系统开发工具简介 Matlab是美国MathWorks公司推出的优秀的科技应用软件。Matlab功能强大,可以进行数值计算和符号计算,编程界面友好,语言自然,开放性强,而且有众多的工具箱可以使用。将Matlab软件用于工程应用和解决实际问题[8],可以不必关心复杂的理论,具有编程快捷方便的特点。 Simulink是Matlab软件的扩展,是对系统进行建模、模拟和分析的软件。Simulink以模块为单元,通过模块之间的连接和属性的设置,进行系统模拟和仿真分析[9]。它的模块库包括连续模块、离散模块、信号和系统模块、数学模块以及信号源模块等。而且模型具有层次性,可以通过底层的子模块构建复杂的上层模块。 该实验系统开发工具采用Matlab和Simulink完成仿真系统的设计与开发。 2 仿真系统设计 2.1 系统设计思路 在系统设计方面采用自上而下的设计方法,对实验内容进行分类,层层推进。该系统采用模块的方式,将实验内容分为3大类、14个子类,围绕基础型、综合提高型和研究创新型3个层次,设计实验内容。每个模块均有开发扩展接口,便于二次开发。同时,充分考虑了教师的教学规律和学生的认知规律,具有引导性和启发性,而且实验内容与理论课程教学内容同步,便于学生理解。 该实验系统采用灵活的软件实验来代替硬件实验的方式,弥补了硬件实验的不足之处。在实验仿真系统中给出了大量的图形,并辅以文字说明,做到图文并茂,使得理论课程的教学内容在实验中进行时变得直观、清晰,易于理解。 2.2 实验内容设计 在实验内容方面,从基础型实验、提高型实验和创新研究型实验三个层次,结合工程应用进行设计。注重学生能力的培养和素质的提高。实验内容涵盖实验课程的全部内容,包括连续系统的时域、频域、复频域分析和离散系统的时域、Z域分析以及综合实验部分即系统分析与仿真。实验系统不仅介绍理论内容的实验仿真,而且真正做到理论联系实际,部分实验内容(如通信系统仿真、信号频谱搬移等)与现实生活紧密结合,贴近生活,具有丰富的时代气息,从而使学生学会用信号与系统的观点和方法来解决实际问题,真正做到学以致用,从各方面培养学生的创新能力和实践能力。 实验内容详细设计说明如下: (1) 连续系统的时域分析包括信号的时域运算和二阶系统时域分析(见图1)。该部分属于基础性实验内容,可以通过选择不同类型的信号进行时域运算。在系统时域分析方面,以二阶系统为例,要求掌握系统响应的时域求解方法。 (2) 频域分析包括常用信号的傅里叶变换以及傅里叶变换的性质,作为频域分析的重要应用,抽样与恢复部分包括信号的抽样与重构。该部分实验属于综合提高型,是通信系统仿真的基础。 (3) 信号分析以方波的合成与分解为例,重点讨论信号的合成、分解方法,一步一步完成,每一步都有具体的图形与信号合成(分解)的效果,步骤清晰,便于学习。信号分析中的双边带信号频谱,以通信系统为例,介绍频谱搬移的过程,同时联系生活实际。该实验与工程应用紧密结合,讨论信号频谱的搬移过程和方法,只需鼠标点击和拖曳即可完成实验,操作简单,图形直观,形象生动。 (4) 复频域分析包括系统的零极点分析、稳定性分析以及系统响应。该部分属于提高型实验,从S域分析系统,并与工程应用中实际系统的稳定性相结合; (5) 离散系统时域部分包括离散信号的时域运算如信号的加、减、乘。 (6) 离散系统的时域分析包括差分方程的求解,并重点讨论序列卷积的计算及说明,如图2(a)所示; (7) 离散系统Z域分析包括零极点求解、频率特性、序列的响应和稳定性分析等,如图2(b)所示; (8) 信号与系统的综合分析包括系统分析和系统仿真,采用Matlab软件的Simulink仿真完成,以系统框图的形式完成实验,功能强大,操作方便。时域分析部分内容包括一阶、二阶系统的时域特性仿真分析(见图3);频域仿真分析属于研究创新型实验,采用系统仿真的方式,以频谱搬移过程的系统仿真为例进行,但对复杂的通信系统进行仿真,可以查看各个框图、部件的时域波形、频域的频率特性,对信号与系统的实际应用有充分的了解和认识。具体实验内容及安排见表1。 2.3 系统界面设计 实验仿真教学系统界面设计中,避免繁琐,崇尚简洁,亲切自然,因而界面直观、清晰,导航方便,具有良好的人机交互页面,能够非常容易的找到需要的实验内容;同时色彩搭配柔和,给人朴实、安静而又进取的感觉,有利于集中精力进行教学和学习。实验内容部分页面和系统分析与仿真页面如图4所示。 3 系统特点 “信号与系统”实验仿真教学系统内容全面,包含“信号与系统”课程实验的全部主要内容和知识点,教师与学生可以用软件来完成实验内容的教学和学习,有助于学生加强对课程基本概念和重点、难点的理解和掌握,而且不受时间和空间的限制,便于实验教学工作的开展。 该系统具有二次开发功能。该系统在使用中可以结合实际情况,给教师和学生提供程序源代码,教师和学生可以进一步补充和完善实验内容,也可以添加新的实验内容由学生来完成。因而,学生具有更多的发挥空间,更有利于发挥主观能动性。 4 结 语 “信号与系统”实验仿真教学系统,内容全面、翔实,是集计算机技术和现代教育技术手段于一体的多媒体实验教学系统,便于教师进行课堂实验教学和学生软件实验的学习。 通过近三年的实验教学使用,采用该实验仿真系统,避免了硬件实验过程中的不确定性因素的影响,实验灵活方便,有利于拓展学生的思维能力和想象空间,为信号与系统课程的实验教学工作提供有力保障。 参考文献 [1]金波.信号与系统课程教学改革初探[J].电气电子教学学报,2007,29(4):7-8,11. [2]奥本海姆.信号与系统(英文版)[M].2版.北京:电子工业出版社,2009. [3]吴大正.信号与线性系统分析[M].4版.北京:高等教育出版社,2005. [4]中华人民共和国教育部高等教育司.普通高等学校本科专业目录和专业介绍[M].北京:高等教育出版社,1998. [5]郑君里.教与写的记忆:信号与系统评注[M].北京:高等教育出版社,2005. [6]徐守时.信号与系统理论、方法和应用[M].合肥:中国科学技术大学出版社,2008. [7]刘锋,段红,熊庆旭,等.信号与系统实验教学改革[J].实验技术与管理,2008,25(3):118-120. [8]王洁丽,贾素梅,薛芳.Matlab软件在信号与系统辅助教学中的应用[J].现代电子技术,2007,30(6):123-125. 【关键词】优质课程 信号与系统 实验教学 体系 【中图分类号】G642 【文献标识码】A 【文章编号】1006-9682(2012)10-0010-02 高等教育“十一五”规划纲要中明确指出,21世纪的高等教育要以质量工程建设为核心。在高等教育质量工程建设中,优质课程及精品课程的建设占有极其重要的地位。“信号与系统”是工科院校开设的一门重要专业基础课,在许多高校都列为重点建设课程。[1~2]我学院针对两个一级学科(仪器科学与技术、光学工程)开设“信号与系统”课程,不仅要求充分讲授该课程的经典内容,还必须兼顾学科及专业需求,进行有特色的理论教学及实验教学。作为校级优质课程,仪器专业“信号与系统”课程长期以来持续建设,已经形成了理论教学扎实、实验教学强化的特点。但由于目前本科培养计划中学时数的限制,无法兼顾本课程理论及实验多方面的要求,往往只能采用软件仿真作为实验教学的主要内容。考虑到我校的办学定位及仪器专业应用型人才培养的需求,我们在原有理论及实验教学的基础上,开展全方位实验教学体系建设,进一步提高本课程的教学效果。 一、“信号与系统”教学内容及实验内容的演变 1.教学内容的演变 信号是信息学科研究的基本内容,信号与系统是两个用得极为广泛且密切相关的基本概念。在许多实际应用中,尤其是在信号提取、信号恢复、信号增强、语音识别等信号处理的问题中,以及在大规模集成电路的整体设计中,信号、系统、处理往往是有机结合在一起的。因此,教学内容从单纯讲信号、系统演变为信号、系统与数字信号处理融合,以信号分析为基础,以系统分析为桥梁,以处理技术为手段,形成新的教学体系,适应新的科技条件下对专业基础课的教学要求。[3~4]因此,仪器专业“信号与系统”课程的教学内容主要包括:信号与系统的基本概念、采样定理、连续及离散线性时不变系统的时域分析、连续及离散信号的频域分析(含离散傅里叶变换、快速傅里叶变换)、连续及离散信号与系统的复频域分析、数字滤波器设计等。 2.实验内容的演变 实验教学始终是为理论教学服务的,其最终的目的是为了强化理论学习,全面提高教学质量。早期“信号与系统”的实验以硬件为主,尤其是以电路实验为主。随着信息技术的不断发展和信息技术应用领域的不断扩展,这门课程已从电子信息工程类专业的专业基础课演变为众多工科专业(如计算机技术、自动控制、测控技术及仪器、生物医学工程等)的专业基础课,其实验领域也获得拓展。特别是伴随着计算机软硬件技术的快速发展,本课程实验由早期的硬件实验演变为软件仿真实验。[5]由于本课程仍然是一门实践性很强的课程,无论技术如何发展演变,信号也脱离不了实际应用中的物理系统,因此现在又强调从软件仿真实验 演变为软硬件实验结合。[6] 二、“信号与系统”实验教学计算机软硬件应用方案 “信号与系统”课程理论性强,实践性强,实验对于理论具有巩固和强化的作用。由于学时的限制,课内实验具有较大的局限性。一方面是实验数量受到局限,只能开设最基本、最重要的实验,无法进行多个理论的验证,而本课程又是一门逻辑性很强的课程,基本概念环环紧扣,实验数量少非常妨碍学生对课程基本内容的理解和掌握,从而使学生的知识面受到局限;另一方面,在实验方法上也受到局限,不能尝试多种解决问题的方法,只能用常规方法去做,这样限制了学生的思维,不利于学生综合能力的培养。目前很多学校以软件仿真实验为主,由于学时的限制以及软件仿真实验的内容十分丰富且复杂的,所以就舍弃了硬件实验。无论软件仿真怎样逼近实际,毕竟与实际物理系统存在差异。如果没有硬件实验,学生便不知道其结果应该怎样去应用,在什么情况下采用软件计算的结果为好,在什么情况下用硬件实现较好。从课程教学质量和应用型人才培养要求来看,这是一个亟待解决的严重问题。因此,计算机软硬件实验对于“信号与系统”实验体系都是不可缺少的,要两条腿走路,其关键是要完成硬件实验和软件实验的全方位比较,才能深入理解信号与系统的理论实质。 为了更好地完成辅助理论教学的任务,我们需要对本课程的实验教学体系进行精心的设计。实验教学体系的建立要从整个课程教学体系来考虑,在课堂讲授内容、学生作业内容、教学目标等方面综合权衡。在一个典型的数字信号处理系统中,输入通道中的传感器输出信号需要进行调理,属于物理系统部分,硬件实现比较好;数字信号处理部分可以采用单片机、数字信号处理器、计算机等硬件设备,同时利用硬件平台上的软件来完成数字信号处理任务,这部分以软件仿真实验为好,而在输出通道需要进行必要的信号变换并输出模拟信号,还是硬件实验较好。本课程采用的实验教学体系,见图1。 在课内实验安排方面:实验内容强调经典、重要、基本,少而精,始终抓住信号产生→获取→处理→使用这条主线,不仅有利于教学安排,而且保证学生基础牢固,知识更系统,理解更全面。课内实验以软件仿真为核心,其编程软件采用公认的优秀软件,即MATLAB。MATLAB是优秀的科学计算和仿真软件,研究设计单位和工业部门同样公认它的重要价值。如美国NI公司的信号测量与分析软件LabVIEW、Cadence公司的信号和通信分析设计软件、TI公司的DSP等都和MATLAB具有良好的接口。现在的计算机硬件(PC机)配置很高,计算精度很高,用于进行数字信号处理和数字图像处理十分理想,结果显示也很直观。 野外获得的重力数据要作进一步处理和解释才能解决所提出的地质任务﹐主要分3个阶段﹕野外观测数据的处理﹐并绘制各种重力异常图﹔重力异常的分解(应用平均法﹑场的变换﹑频率滤波等方法)﹐即从叠加的异常中分出那些用来解决具体地质问题的异常﹔确定异常体的性质﹑形状﹑产状及其他特征参数。解释 解释分为定性的和定量的两个内容﹐定性解释是根据重力图并与地质资料对比﹐初步查明重力异常性质和获得有关异常源的信息。除某些构造外﹐对一般地质体重力异常的解释可遵循以下的一些原则﹕极大的正异常说明与围岩比较存在剩馀质量﹔反之﹐极小异常是由质量亏损引起的。靠近质量重心﹐在地表投影处将观测到最大异常。最大的水平梯度异常相应于激发体的边界。延伸异常相应于延伸的异常体﹐而等轴异常相应于等轴物体在地表的投影。对称异常曲线说明质量相对于通过极值点的垂直平面是对称分布的﹔反之﹐非对称曲线是由于质量非对称分布引起的。在平面上出现几个极值的复杂异常轮廓﹐表明存在几个非常接近的激发体。定量解释是根据异常场求激发体的产状要素建立重力模型。一种常用的反演方法是选择法﹐即选择重力模型使计算的重力异常与观测重力异常间的偏差小于要求的误差。 由于重力反演存在多解性﹐因此﹐必须依靠研究地区的地质﹑钻井﹑岩石密度和其他物探资料来减少反演的多解性。应用运用领域 在区域地质调查﹑矿产普查和勘探的各个阶段都可应用重力勘探﹐要根据具体的地质任务设计相应的野外工作方法。应用条件 应用重力勘探的条件是﹕被探测的地质体与围岩的密度存在一定的差别﹔被探测的地质体有足够大的体积和有利的埋藏条件﹔干扰水平低。意义 重力勘探解决以下任务﹕ 1、研究地壳深部构造﹔研究区域地质构造﹐划分成矿远景区﹔ 2、掩盖区的地质填图﹐包括圈定断裂﹑断块构造﹑侵入体等﹔ 3、广泛用于普查与勘探可燃性矿床(石油﹑天然气﹑煤)﹐ 4、查明区域构造﹐确定基底起伏﹐发现盐丘﹑背斜等局部构造﹔ 5、普查与勘探金属矿床(铁﹑铬﹑铜﹑多金属及其他)﹐主要用于查明与成矿有关的构造和岩体﹐进行间接找矿﹔ 学院 专业 电子信息工程 班级 姓名 学号 时间 实验一 时域离散信号与系统分析 一、实验目的 1、熟悉连续信号经理想采样后的频谱变化关系,加深对时域采样定理的理解。 2、熟悉时域离散系统的时域特性,利用卷积方法观察分析系统的时域特性。 3、学会离散信号及系统响应的频域分析。 4、学会时域离散信号的MATLAB编程和绘图。 5、学会利用MATLAB进行时域离散系统的频率特性分析。 二、实验内容 1、序列的产生(用Matlab编程实现下列序列(数组),并用stem语句绘出杆图。(要求标注横轴、纵轴和标题) (1).单位脉冲序列x(n)=δ(n) (2).矩形序列x(n)=RN(n),N=10 201321111053 陈闽焜10.90.80.70.60.50.40.30.20.10-30-20-100n102030RN(n)10.90.80.70.60.50.40.30.20.10-50510***11053 陈闽焜 图1.1 单位脉冲序列 图1.2 矩形序列 nδ(n) (3).x(n)=e(0.8+3j)n ; n取0-15。 ***6420 图1.3 复指数序列的 模 图1.4 复指数序列的 相角 (4).x(n)=3cos(0.25πn+0.3π)+2sin(0.125πn+0.2π)n取0-15。 201321111053 陈闽焜43210-1-2-3-4-502468n10121416-202468n10121416y(n) 05n1015 图1.4 复合正弦实数序列 (5).把 2x *** 陈闽焜10-1-2-3-***820 图1.6 y(n)序列杆图 (7)、编一个用户自定义matlab函数,名为stepshf(n0,n1,n2)实现单位阶跃序列u[n-n1]。其中位移点数n1在起点n0和终点n2之间任意可选。自选3个入口参数产生杆图。 201321111053 陈闽焜10.90.80.70.60.50.40.30.20.***1820 M文件子程序如上所列。图1.7 自定义stepshf函数效果举例 2、采样信号及其频谱分析 (1)绘出时间信号x(t)=cos(50πt)sin(πt),时间范围t取0到2秒。 201321111053 陈闽焜10.80.60.40.2x(t)0-0.2-0.4-0.6-0.8-100.20.40.60.811.2t/second1.41.61.82 图2.1 连续信号x(t)的波形图及频谱图 (2)对于连续信号x(t)=500exp(-200nT)sin(50πnT)u(n),n=0,1,2,…,49; 分别求在T=0.5ms和T=1ms以及T=2ms三种情况下的x(t)的序列图和频谱X的幅频响应.观察是否有频谱混叠现象。 150100500-500510******53 陈闽焜25002000***00510***04550 图2.2-a 以T=0.5ms采样的序列及幅频谱图 150100500-500510******53 陈闽焜***00510***04550 图2.2-b 以T=1ms采样的序列及幅频谱图 150100500-500510******53 陈闽焜60040020000510***04550 图2.2-c 以T=2ms采样的序列及幅频谱图 3、系统的单位脉冲响应 求以下差分方程所描述的系统的单位脉冲响应h(n), 长度 0—49共50点 y(n)+0.2 y(n-1)+0.6y(n-2)=2x(n)-3x(n-1) 8642x 10-3201321111053 陈闽焜 Amplitude0-2-4-6-8051015202530n(samples)354045 图3.1 离散系统单位脉冲响应h(n) 4、计算离散线性卷积 序列x=[1,-1, 2, 3]与 201321111053 陈闽焜***053 陈闽焜403020010-10-2-10-3-4-2000.511.522.533.500.511.522.533.5 图5.1 系统幅频特性 图5.2系统相频特性 三、回答思考题内容 (1)、在分析理想采样序列时,当选择不同采样频率获取数据,其DFT的数字频率是否一样?它们的值所对应的模拟频率是否相同?为什么? 相关文章:
中职数学教学方法改革的思考论文02-04
中职数学中的概念教学02-04
中职数学的感悟教学02-04
中职数学教学存在的问题02-04
中职数学教学的思考02-04
硬件工程师之信号系统篇02-04
信号与系统实验思考题02-04
信号与系统教学大纲02-04
农村中职的数学与德育02-04
中职数学教育02-04
篇3:信号与系统标准实验报告-参考
篇4:信号与系统标准实验报告-参考
篇5:信号与系统实验报告1
篇6:信号与系统标准实验报告-参考