函数的表示法教学设计

关键词: 表示法 函数 内容 教学

函数的表示法教学设计(精选8篇)

篇1:函数的表示法教学设计

“函数的表示法”教学设计

南京师大附中 陶维林

一、内容和内容解析

函数的表示法是“函数及其表示”这一节的主要内容之一.

学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的.同时,基于高中阶段所接触的许多函数均可用几种不同的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程.

学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识.在本节中,从引进函数概念开始,就比较注重函数的不同表示方法:解析法、图象法、列表法.函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法.因此,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性.

解析法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段所研究的主要是能够用解析式表示的函数.

图象法的优点是,直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.

列表法的优点是,不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.

在研究函数时,根据问题的特点,往往需要同时借助几种不同的函数表示法研究函数,如同时采用解析法和图象法表示函数,加强数形结合,这是研究函数的常用方法.

分段函数是一类重要的函数.所谓分段函数,就是在同一个定义域的不同子集上对应关系不同的函数.这类似于,同一个国家的不同地区可以实行不同的社会制度.

二、目标和目标解析

1.掌握函数的三种表示方法(图象法、列表法、解析法),会根据不同的需要选择恰当的方法表示函数.

通过具体的实例,在不同的表示法的选择、转化中,逐步学会用恰当的方法表示一个函数,逐步养成用不同方法表示一个函数的习惯,尤其是增强数与形结合的意识.

2.了解简单的分段函数,并能简单的应用.

通过具体实例(如出租车资费、邮件资费等),以及画出含绝对值函数的图象,或者求含绝对值的函数的值域,认识分段函数是一种普遍存在的函数.

3.会用列表、描点、连线的三步作图法画一些简单函数的图象,并能通过几何直观得到函数的有关信息(性质).

三、教学问题诊断分析

1.初中已经接触过函数的三种表示法:解析法、列表法和图象法.高中阶段重点是让学生在了解三种表示法各自优点的基础上,使学生会根据实际情境的需要选择恰当的表示方法.因此,教学中应该多给出一些具体问题,让学生在比较、选择函数模型表示方式的过程中,加深对函数概念的整体理解,而不再误以为函数都是可以写出解析式的.

(2)让学生用借助计算器,列表描点,画出给出解析式的函数的图象,加强各种表示法之间的联系.有条件的,可使用信息技术,利用计算机软件画出图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解函数概念及其表示法.如可补充如下函数:

上述四个函数的图象如图1所示,依次为:

图1

(3)分段函数大量存在,但比较繁琐.一方面,要加强用分段函数模型刻画实际问题的实践,另一方面,可以画含绝对值号的函数的图象,促使学生根据绝对值的意义把函数分段写出来,然后分段画出图象.还可以通过求分段函数的值域,让学生体验到,分段函数的问题应该分段解决,然后再综合.这也为下一步研究分段函数的单调性等性质打下伏笔.

四、教学基本流程

五、教学过程设计

1.用三种表示法表示同一个函数

我们在初中就已经知道函数的三中表示法:解析法,图象法,列表法.

问题1 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})本笔记本需要y元.试用函数的三种表示法表示函数y=f(x).(教科书第19页例3)

设计意图:通过具体例子,让学生用三种不同的表示方法来表示的同一个函数,进一步理解函数概念. 这个函数的图象由一些离散的点组成,与以前学习过的一次函数、二次函数的图象是连续的曲线不同.通过本例,进一步让学生受到,函数概念中的对应关系、定义域、值域是一个整体.函数y=5x不同于函数y=5x(x∈{1,2,3,4,5}),前者的图象是(连续的)直线,而后者是5个离散的点.

由此认识到:“函数图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等.”(教科书例3的边空)

学生体会到三种表示方法各自的优点.为“问题2”(教科书第20页)提供一个具体的事例.

解:这个函数的定义域是{1,2,3,4,5}.(1)用解析法表示为

y=5x,x∈{1,2,3,4,5}.(2)用列表法表示为

(3)用图象法表示,函数y=f(x)的图象如图2所示.

图2

问题2(教科书第20的“思考”)

(1)比较函数的三种表示法,各自的有哪些优、缺点?

(2)所有的函数都能用解析法表示吗?举出一个函数,并分别用三种表示法表示. 设计意图:通过比较,明确各种表示法的优点;通过举例,让学生通过自己的例子说明怎样用适当的表示法来表示某些函数.

不是所有的函数都能用解析法表示,如心电图.

讨论中,还可以问学生“函数图象可以是折线吗”让学生举例说明.(如y=|x|)问题3 图3能表示某个函数的图象吗?为什么?

图3

设计意图:这是例3边空的内容“那么判断一个图形是不是函数图象的依据是什么?”通过讨论,进一步理解函数概念中“对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应”. 组织学生讨论后,归纳出判断方法“平行于y轴的直线(或y轴)与图形至多一个交点”. 2.选择适当方法表示函数,以便分析其特点

问题4(教科书第20页例4)下表是高一(3)班三位同学在高一学6次数学测试的成绩及班级平均分表.

请你对这三位同学在高一学的数学学习情况做一个分析.

设计意图:这里有三个用表格法给出的函数.要“对这三位同学在高一学的数学学习情况做一个分析”不太方便,因此需要改变函数表示的方法,选择图象法比较恰当.

教学中,先不必直接把图象法告诉学生,可以让学生说说自己是如何分析的,选择了什么样的方法来表示这三个函数.通过比较各种不同的分析方法,达成共识:用图象法比较好.培养学生根据实际需要选择恰当的函数表示法的能力.

能够从图象中读出哪些信息也不要直接告诉学生,让学生经过观察、思考获得结论.比如总体水平(王伟成绩好)、变化趋势(赵磊的成绩在逐步提高)、与班级平均分的比较,等等.培养学生的观察能力、获取有用信息的能力.

图4

解:从表中可以知道每位同学在每次测试中的成绩,但不太容易分析每位同学的成绩变化情况(学习情况).如果将“成绩”与“测试序号”之间的关系用函数图象表示出来,如图4,那么就能比较直观地看到成绩变化情况.这对我们进行分析学习情况是有利的.

从图4中可以看到,王伟同学的学习成绩始终高于班级平均水平,学习情况稳定,而且成绩优秀.张城同学的学习成绩不够稳定,总是在班级平均水平上下波动,而且波动幅度也比较大.赵磊同学的学习成绩低于班级平均水平,但是他的成绩呈上升趋势,表明他的成绩在稳步提高.

必须提醒学生,图中的虚线不是函数图象的组成部分,之所以用虚线连接散点,主要是为了区分这三个函数,直观感受三个函数的图象具有整体性,也便于分析学习情况,加以比较. 3.分段函数及其表示

问题5 某市出租车资费规定如下:(1)3公里以内(含3公里)9元;(2)3公里以上,每增加1公里,资费增加2.4元(不足1公里按1公里计算).

线路里程为6公里,请根据题意写出资费与里程之间函数的解析表达式,并画出函数的图象.

设计意图:让学生尝试选择适当表达方式来表示实际问题;学习分段函数及其表示.

解:设资费为y元,里程为x公里.由题意,自变量x的取值范围是(0,6.

根据解析式画出的图象如图5所示.

图5

象问题5这样的函数称为分段函数. 所谓分段函数,就是在函数的同一个定义域的不同子集上对应关系不同的函数.类似于大陆、台湾是同一个国家的不同地区,社会制度可以不同.

生活中有许多需要分段表示的函数,请你举出几个分段函数的例子,并画出它的图象.

如分期付款,邮件资费等.再如 y=|x|=

4.课堂练习

教科书第23页,练习,1,2,3.

5.小结

通过本节课的学习,你的主要收获有哪些?

大致有:函数的表示方法有三种,各有优、缺点;应该根据不同的问题、不同的要求选择恰当的方法表示它,以便研究函数某些性质.还学习了什么样的函数是分段函数.

6.课后作业

教科书第24页,习题1.2,7,8.

篇2:函数的表示法教学设计

钱蒙娜

一、教材分析

本节内容为苏教版《数学必修1》中2.1.2“ 函数的表示方法”。在初中学生已经接触过较简单函数的一些不同表示方法,在高中阶段继函数的概念、定义域、值域之后学习函数的表示方法,这部分属于函数三要素之一,即对应关系的表达方式。函数学习要“多次接触、反复体会、螺旋上升,逐步加深对函数概念的理解。”在苏教版《数学必修4》中还会继续学习的三角函数,也是非常重要的一类函数模型。

学习函数的表示法,不仅是研究函数本身和应用函数解决实际问题所必须涉及的问题,也是加深对函数概念理解所必须的。同时,基于高中阶段所接触的许多函数均可用几种不同的方式表示,因而学习函数的表示也是领悟数学思想方法(如数形结合、化归等)、学会根据问题需要选择表示方法的重要过程。

学生在学习用集合与对应的语言刻画函数之前,比较习惯于用解析式表示函数,但这是对函数很不全面的认识。在本节中,从引进函数概念开始,就比较注重函数的不同表示方法:解析法、图象法、列表法。函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念。特别是在信息技术环境下,可以使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。因此,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求思考和表述的精确性。

二、教学目标

根据《普通高中数学课程标准》(实验)和新课改的理念,我从知识与技能、过程与方法和情感态度与价值观三个维度制订教学目标。

知识与技能:掌握函数常用的三种表示方法(列表法、图象法、解析法),了解函数不同表示方法的优缺点并能根据不同需要选择恰当的方式表示函数;掌握分段函数、复合函数的概念;能根据不同情况求出函数的表达式和定义域。过程与方法:通过实例,分析比较函数三种不同的表示方法;通过分段函数改变的形成过程,培养学生观察、归纳和抽象的能力,培养数形结合和分类讨论的数学思想。

情感态度与价值观:通过对函数不同表示方法的学习,从中体会数学的简洁统一美;通过探究函数的表达式,激发学生的学习热情。

三、学情分析

该班学生是江苏省常熟中学重点班学生,数学基础扎实、逻辑思维能力较强并且在之前的学习中对分段函数和复合函数已有初步了解,因此在教学中会加快进程以及更加注重启发学生学生自主回答。若上课进程过快,提前准备一些略有难度的题目作为补充题。

函数这一模块内容最多,比较抽象,学生学习确有许多困难。基于高中阶段所接触的许多函数都可用不同的方式表示,因此教师要通过设置问题去帮助学生积极主动地感受、分析、归纳三种方法的各自优点及不足,逐步过渡到能合理选用和灵活转换函数的各种表示形式,这也是向学生渗透数形结合思想方法的重要过程,同时也为后述内容——函数的性质(单调性、奇偶性、周期性)的学习打下良好的基础。

学生可能在下列三种情形中感到困难:

(一)已知函数是数据较多的表格形式,画函数图象时,有点茫然,没想到是一些离散的点。

(二)已知函数是分段函数,画函数图象时,用不准定义域的分段范围,忙而乱。

(三)学生在做关于换元法的例题时极有可能用平移做或者用配凑法做。

四、教学方法

根据教学内容,结合学生的具体情况,我采用了学生自主探究和教师启发引导相结合的教学方式。在整个教学过程中让学生尽可能地动手、动脑,调动学生积极性,充分地参与学习的全过程。倡导学生主动参与、乐于探究、勤于动手,逐步培养学生能够利用函数来处理信息的能力。

五、教学重点与难点

教学重点:掌握函数常用三种表示方法、掌握分段函数与复合函数的概念以及能根据不同情况求出函数表达式并且求出定义域。

教学难点:根据不同情况能求出函数表达式,并且求出定义域。

六、教学准备

直尺、多媒体设备。

七、教学过程

(一)函数的表示方法引入

同学们,今天我们要讲《函数的表示方法》这一节。在之前函数的学习中,已经见过或者运用过这些表示方法了,我们一起来看屏幕。

例一:这是我们班学号为1-5的同学的身高,为了清楚的表示我已经把它列成了一个表格的形式。这里面的变量是学号和身高。

Q:请问,这是不是表示一个函数呢?(学生回答)

每一个学号对应着唯一的身高,所以当然是函数。根据这张表格只要我们知道该同学的学号就能知道他对应的身高。像这种,用列表来表示两个变量之间函数关系的方法,就叫作列表法。

设计意图:从实际生活中举例,使学生感到亲切,自然引出列表法。

例二:同学们这是一张股市行情图,Q:这个图象是否是函数的图像呢?(学生回答)

自变量是时间,因变量是上证指数,一个时间对应唯一的上证指数所以是函数的图像。接下来这一张是一天的气温变化图象,同理它也是表示函数的图象,自变量是时间,因变量是气温,一个时间对应唯一的气温。

像这一类用图象来表示两个变量之间函数关系的方法,就叫作图象法。设计意图:函数现象大量存在于生活中,使学生受到数学在生活中的重要性,引出图象法。

例三:屏幕上这几个函数是大家所熟知的,它都是以y=x的式子的形式给出。像这种,用等式来表示两个变量之间函数关系的方法,就叫作解析法。而这个等式就是我们常见的解析式。

Q:用解析法表示函数的时候,要注意函数的三要素,分别是?(学生回答)设计意图:学生对于解析法已有认识,强调解析式必须跟上定义域。

衔接)那函数的表示方法就是以上学习的三种:分别是列表法、图象法和解析法。

接下来我们来看几个相关的问题,请同学讨论一下。

Q:问题1:图象法中函数的图象一定是连续曲线吗? 如果不是 举个例子。Q:问题2:列表法、图象法和解析法各自的优缺点是什么 ?

Q:问题3:根据优缺点和以往的经验,我们最常用来表示函数的方法是哪一种?最不常用的呢?

先由学生讨论与表述,后由师生归纳三种表示方法的优缺点。

列表法,优点是不是可以直接从表格中看出自变量对应的函数值,很直观,Q:缺点呢?请同学回答。列表法的缺点是只能表示自变量取值有限的时候,而我们往往遇到的题目中函数自变量取值是无限的,所以列表法很少会用到。

图象法的优点显然就是形象、直观,缺点就是根据函数图象只能近似求出自变量对应函数值。

解析法是我们最常用来表示函数的,那它肯定有很大的优点。解析法全面的概括出了变量间关系,我们可以通过计算求出任意自变量对应的函数值。一个事物是有两面性的,和另外两种方法比较,解析法的缺点是不够形象直观,而且不是所有函数都能用解析法表示的。设计意图:让学生体会总结三种表示法各自的优缺点。这对培养学生观察、总结、表达能力是非常好的机会,教师千万不可代替。

衔接)函数三种表达方式的优缺点已经明了,那我们在做题中,根据上述优缺点可知最常用的应该是解析法,图象法作辅助。函数表达方式到这里就结束了。

Q:接下来,我们看一下屏幕上的函数,这是一个什么函数?定义域是多少?能不能用图象法表示?请同学口头回答。

像这个分段函数,在第一段定义域内,函数解析式是y=x,在第二段定义域内,函数解析式就是y=-x。我们把在定义域内不同部分上,有不同解析表达式的函数称为分段函数。

设计意图:让学生进一步体会数形结合在理解函数概念中的重要性。引出分段函数的特征。

例题讲解:下面我们来看一道分段函数的例题。

(二)函数解析式的求法引入

衔接)在刚刚所学的三种表示方法中我们讲过,函数表达方式中最常用的是?解析式(大家一起回答),那接下来的重点就是来探究求函数解析式的方法。

(1)由例题引入待定系数法

先看例题,请同学们尝试做题。(在等待同学做题时,不断提醒同学:这是一个二次函数。那二次函数是什么样的形式呢?)

先请同学回答,详细解答过程板书呈现。写完之后,根据板书内容解释待定系数法的名称和总结此方法做法:

首先,这个函数的类型我们已经知道,那顺势我们可以设出这个函数的形式,这个形式中有等待被确定的系数;进而,根据给出的条件,我们可以求出这个形式中等待被确定的系数。所以,我们称这个方法为:待定系数法。

Q:请问,求函数解析式时用待定系数法的前提是什么? A:已知函数类型。

Q:那么我们学过的哪些函数可以用待定系数法? A:一次函数、二次函数和反比例函数。

Q:接着这道题,请问,二次函数除了设成顶点式,(如果一开始同学回答的是一般形式,那这里的顶点式和下面的一般形式互换)我们一般还可以设为什么形式?

A:可以设成一般形式。(板书呈现具体形式)(若有同学回答出两点式给予表扬)

Q:若我们已知二次函数的两个交点,我们还可以设为什么形式? A:两点式。(板书呈现具体形式)

接下来请同学们继续做第二题。我请一位同学上黑板完成。

根据同学的板书解答,指出做题过程中出现的格式问题。详细解答通过ppt呈现。

设计意图:待定系数法是学生们最能接受的一种求函数表达式的方法,通过旁敲侧击引导学生自己做题,感受待定系数法的过程。通过例题引入待定系数法,再马上通过一道习题巩固此方法。并以板书形式呈现给学生,规范学生写作。最后通过师生互动共同总结该方法,提高学生总结与表达能力。

(2)由例题引入换元法 继续看例题,请同学回答。

<1>若同学回答用平移法做,先肯定这种解答。进而引出本质相同的换元法。<2>若同学回答用配凑法做,先肯定这种解答,进而提问第二小题用这种方法可以做吗?试试看。等同学尝试完后会发现第二题用配方法有问题,进而引出普适性更强的换元法。

解释换元法的名称:将括号中整体换成一个新的元,所以就称为换元法。Q:请同学总结换元法的步骤。

A:将括号中看作整体,令为t,接着用t表示x,代入原函数,成为关于t的函数。

教师补充:由于我们习惯将自变量写为x,所以最后还要加一步:将t用x代换。

Q:有没有其它同学要补充?

(若没有,那么请做第二题,之后再来补充;若有,就及时补充)请同学口头陈述过程,ppt一步步呈现过程。Q:请问,函数的三要素是指什么? A:定义域,对应法则,值域。

Q:那求函数解析式同学们漏掉了最重要的什么? A:定义域。

Q:那再来考虑一下,为何第一道题目不需要写定义域呢? A:因为x可以取到一切实数。

Q:很好,那这道题目里面的定义域为多少?

(若有同学回答是原始x的定义域,就指出这是换元法的易错点,也是重点)(若同学回答正确,继续追问他此处x的范围就是什么的范围?和同学解释清楚其中的关系,强调换元法的定义域是重点)

并且在此特别强调:求函数解析式,无论是大题还是填空题,都必须写出定义域,否则就是错的,会扣分。

设计意图:通过例题1引入换元法的时候,学生极有可能用平移法或者配凑法做,这时候先对同学会用以前学过的方法做题进行表扬,接着一定要通过例题2让学生自己意识到那两种方法的局限性,此时教师才引入学生已接触过的整体代换思想的换元法。并且,强调换元法的注意点以及考试易错点是定义域。

(3)通过例题引入解方程组法

Q:这个例题,同学们想想还能不能用上面两种方法作答? A:不能

教师引导:遇到这种既不知道函数类型,也不知道一些函数相关形式的题目,我们不妨试一试把x看作整体,所有的x都用1/x替代,同学们动手做做看。

解释方法名称:通过题目解答过程,我们会发现这是利用解方程组的方法求函数解析式。所以把这种方法称为解方程组法。

Q:请问同学们,这种方法适用于什么情况呢?让学生总结。ppt上强调这种方法的适用范围:

设计意图:解方程组法对高一学生来说是一种新解题思路,若完全让学生自我探索是很难做到的,所以尽可能地引导学生去充分理解此方法,并且由学生总结适用情况,增强学生对此方法的认识与应用。

(3)课堂小结

今天这节课我们主要学习了两个内容:函数的三种表示方法和求函数解析式的三种方法。那么请问同学们:

1.函数的表示方法是哪些?

2.函数解析式的求法有哪些?注意点分别是什么?

(4)课后作业

1.预先准备好的三道练习题,若有时间则课堂讲解;若无时间,则作为课后作业;

2.《功到自然成》函数的表示方法这一节作业; 3.课时训练函数的表示方法这一节作业。

八、板书设计

篇3:函数的表示法教学设计

关键词:机器人,螺旋坐标,最优化,数学模型

参见图1, 若在刚体经受扭矩Τ=q˙L^作用的同时给其施加一弯矩Τr=ρL^r, 则这两种螺旋的虚功可表示为[1]

δW=ρq˙[s (sr0×sr+λrsr) +sr (s0×s+λs) ] (5)

(5) 式中, 扭转螺旋的角速度和扭矩之积s (srsr+λrsr) 是扭转螺旋的外力在扭转变形上的虚功, 弯曲螺旋的力和线速度之积sr (ss+λs) 是弯曲螺旋外力在弯曲变形上的虚功。

根据图1几何关系, 式 (5) 又可表示为

δW=ρq˙[ (λ+λr) cosβ-dsinβ] (6)

(6) 式中, d是两种螺旋轴线间的距离, β是两种螺旋轴线间的夹角 (用弧度表示) 。

δW=0时, 弯曲螺旋外力不做功, 刚体只经历一个无穷小扭转。由于式 (6) 中的λλr是对称的, 所以, 将扭转和弯曲这两种螺旋作用互换, 不会影响互易功。在纯扭转和纯力系作用的情况下, 即当λ=λr=0时, 两螺旋表示两条有限长直线, δW=-dsinβ。在纯弯曲和纯平移的情况下, 即当λ=λr=∞时, 两螺旋就表示两条永远相交的无穷大直线。

3机器人最优设计目标函数的螺旋坐标表示法

为不失一般性, 以图2所示典型的Stewart-Gough构件为依托进行分析。

参见图2, 构件上的力和扭矩的平衡条件为

i=16fis^i-Fe=0 (7)

i=16 (Rr^i+fis^i) -Μe=0 (8)

式中, s^i表示在机器人第i个肢体圆柱结点处沿滑动方向的单位矢量, fi表示沿第i个肢体圆柱结点上的外力 (标量) , Fe, Me分别表示作用于第i个构件上的外力和外扭矩, r^i表示从构件坐标系原点至第i个肢体球结点中心的半径矢量, R表示从构件坐标系到全局坐标系的变换矩阵的旋转子矩阵。

从构件坐标系到全局坐标系的变换矩阵为[3]

wRp=[RpΤ0] (9)

(9) 式中, p= (pxpypz) 是构件相对于全局坐标系的平移矢量, R是旋转矩阵。

假设构件相对于全局坐标系中的方向矢量n= (n1n2n3) 旋转了β弧度, 则旋转矩R具有如下形式[3]

R=eβ[0-n3n2n30-n1n2n10]

于是, 式 (7) , 式 (8) 可表示为如下矩阵形式

[s^1s^6wRpr^1×s^1wRpr^6×s^6][f1f6]=[FeΜe]

(10a)

简记为

JTf=Pe (10b)

(10b) 式中,

J=[s^1s^6wRpr^1×s^1wRpr^6×s^6]

为机器人的Jacobian矩阵, 与机器人的几何参数和位姿 (即位置和方向) 有关,

Ρe=[FeΜe]

为外螺旋力 (外力和外扭矩) 。

另一方面, 运动构件的扭转变形可用螺旋坐标来表示。由式 (3) 可得

χ= (xx¯) =[s^s0×s^+λs^] (11)

(11) 式中, x代表以lt为单位的扭转变形坐标, x¯表示以lt为单位的平移变形坐标, 其中的l是在时间t内的平移距离。

再将机器人的Jacobian矩阵表示成行向量坐标, 即有

J=[L1L1]=[F1F¯1F6F¯6]

(12)

(12) 式中, Li (i=1, 2, …, 6) 表示J中的第i行, Fi是由J中第i行的前3个元素构成的行向量, 表示广义外力, F¯i是由J中第i行的后3个元素构成的行向量, 表示广义外扭矩。

机器人最优设计计算所追求的目标通常是能量消耗最小化, 因此, 最优设计的目标函数可取由式 (11) 确定的变形向量与式 (12) 确定的广义外力向量Li两者互易积的平方和, 即

W=16 (Liχ) 2= (Fix¯+F¯ix) 2 (13)

(13) 式中, W表示机器人做的广义功。

在实际计算时, 上式中的几何参数和 (或) 位姿参数是未知的。这些未知参数包含于机器人的Jacobian矩阵之中, 可作为设计变量通过最小化目标函数的迭代计算来确定。

参考文献

[1]Hunt K H.Kinematic geometry of mechanisms.Victoria, Australia;Monash University, 1978

[2]Klein F.Ueber Liniengeometrie und metrische geometrie.Mathema-tische Annalen, 2001; (1871) :257—303

篇4:函数的表示法教学设计

一、教材分析

教材从引进函数概念开始,就比较注重函数的不同表示方法。在本节中,教材仍以引进函数概念时所用的三个问题为背景,引入函数的表示方法,体现知识情境呈现的一致性。解析法表示函数关系时,函数关系简明、清楚,便于用解析式来研究函数性质,体现了透过现象看本质的哲学思想。列表法简洁明了,动态的变量采用静态的数据表示,“输入值”与“输出值”一目了然,体现出“动与静”的辩证关系。图象法能直观形象地表示出函数值随着自变量的变化而变化的趋势,表示出数学的美学意义和数形结合的数学思想。在教学中除了书中的例子外,还应引导学生多举社会生活或其他学科中的例子,如银行里的利息表、列车时刻表、公共汽车上的票价表、邮资、出租车费,股市走向图等等,拉近与学生的距离,使学生受到函数就在身边,感到亲切、自然,加深对函数表示法的理解。教材还通过例子介绍了分段函数的特点及应用,要注意让学生尝试用数学表达式去表达实际问题。

二、教学目标

①明确函数的三种表示方法,在了解函数三种表示方法各自优点、特征的基础上,会根据不同实际情境选择合适的方法表示函数。

②通过具体实际,了解简单的分段函数,并能进行简单的应用,培养学生将实际问题抽象转化成数学问题,再去求解数学问题的能力。

③渗透数形结合思想方法,重视知识的形成发展过程,培养学生观察、分析、归纳、总结、表达能力与辩证唯物主义观点,进一步激发学生学习数学的兴趣。

三、学情分析与重、难点

学生在初中已经接触过函数的三种表示方法,但是对于各自的优点和不足,以及根据不同的实际情境来选择恰当的表示函数方法等方面,认识还不够深入、具体、清晰,有些地方甚至有错误认识,如用图像法时盲目地连点连线,以为函数都是可以写出解析式的等等。同时由于学生刚从初中进入高中学习,思维较为单一,注意不够持久,并且高中数学比较抽象,学生学习普遍感到困难,因此教师要通过设置问题、创设一些知识情境来帮助学生积极主动地感受、分析和归纳三种方法的各自优缺点,由感性认识上升到理性认识,真正吃透教材,最终能根据不同的实例选择恰当的方法表示函数。这也是向学生渗透数形结合思想方法的重要过程。

本节重点内容是函数的三种表示方法,难点是根据不同的需要选择恰当的方法来表示函数,分段函数的表示及其图像的作法。另外,图像从“图形”方面刻画函数的变化规律,是研究函数性质的重要依据,涉及到数形结合这一重要思想方法,学生理解它需要一个较长且比较具体的过程,因而也构成本节教学的一大难点。

四、教学方法和手段

学生是教学活动的主体,教师的教学活动不仅要使学生学会,更重要的是使学生会学。作为新课程的实施者,在教学方式和引导学生的学习方式等方面应该有所转变,教学过程中应尊重学生学习过程的自主性,更多地给学生自主支配的机会。从“教是为了不教”、“授人以鱼不如授人以渔”等教学理念出发,在教学方法上主要采用启发发现、启发讲解法,避免知识从天而降和咀嚼填鸭式,让学生自然而然地接受新的知识。由于多媒体可以显著增大教学容量、直观性和形象化,实现教学方式多样化,所以有条件的可以借助现代教学手段多媒体进行教学。

五、教学过程

(一)创设情境,引出课题

问题1:同学们已开始了高中物理知识的学习,知道在物理学中的许多公式都是物理学家通过大量的实验获得的。在伽利略时代,物理学家通过大量的实验、观察、归纳和推理后得到,物体在作初速度为零的自由落体运动时,物体下落的距离s随所用的时间t的变化规律。那么,这个规律是怎样的呢?

问题2:观看如下两张图,图1是著名的“遗忘曲线”,图2是某天中,气温随着时间变化的函数图象,请问它们能否表示两个变量之间的关系?若能,是否可以用解析式表示?

图1

图2

问题3:下面是某班A、B、C同学在某一学年度几次数学测试的成绩及班级平均分,请就表格给定数据对三位同学的学习情况做一个学情分析。

表1 三位同学成绩表

教师从实际情境与认识背景出发,创设内含问题的知识情境,开门见山,在极短时间内指明本节的学习内容,同时,它作为引出知识的载体,能有效地引发学生的思考和内心冲突,激发学习动机,有利于学生的自主学习。

(二)活动探究,形成新知

教师要给以学生自主、合作、创新的时间和机会,充分发挥其主观能动性和学习积极性,让学生自己观察、分析、比较、抽象和概括,突破认知,经历并体验知识的发生发展过程。

问题1中,公式s=■gt2揭示了随所用的时间的变化规律,s与t的函数关系用解析法最合适,其简明、全面地概括了变量间的关系。表格和图像虽然也能表示出关系,但我们还是要从中“抽象”出式子才能方便对其他问题的研究,一个最好的例子是,大家解有关物理题就要直接用到这个公式,而不是使用表格和图像去解答问题。

问题2中,一个图形是否为函数图象只要看它是否满足函数的定义,显然它们都是函数图象,但是,函数值随自变量的变化没有发生有规律的变化,这样的函数关系不能写出解析式,也就是解析式不存在。

问题3中,把成绩看成测试序号的函数,显然表格区分三位同学的成绩高低不直观,为此我们借助excel,把它们的函数关系用图像来表示出来,见图3,需要说明的是,本例将离散的点用虚线连接,是便于研究成绩的变化特点。由图像可看到A同学成绩稳定,学习优秀,B同学成绩波动起伏,较不稳定,C同学成绩呈上升趋势,学有潜力。显然,用图像法比表格更能直观反映函数值的变化趋势。

图3 三同学成绩情况

学生形成一定的认识后,教师介绍函数的三种表示方法,即解析法、列表法、图像法就水到渠成了。但是对于三种表示法的各自缺点与不足,仍需要让学生自己去观察、分析、归纳、总结,教师不可越俎代庖。可以设计如下一个表格,让学生在小组讨论、合作交流的基础上自己填空。

表2 函数三种表示方法比较

(三)应用示例,深化知识

知识一旦获得如不及时加以巩固,它就会混淆或遗忘,为此可联系学生的生活实际,从学生已有的生活经验出发,设计如下两个例题,让学生加深对函数表示方法的理解,达到掌握方法、提高能力的目的。

例题1:某种圆珠笔每支2元,买x∈{1,2,3,4,5,6}支笔的钱数记为y元,试用三种表示法表示函数y=f(x)。

例题2:某市出租车资费规定如下:

(1)3公里以内(含3公里)5元;

(2)3公里以上,每增加1公里,资费增加1.2元(不足1公里按1公里计算)。

线路里程为5公里,请根据题意写出资费与里程之间函数的解析表达式,并列出表格,画出函数的图象。

例2解答后,教师应及时告诉学生在定义域内不同部分上具有不同的解析表达式,像这样的函数通常叫做分段函数。分段函数是一个函数,而不是几个函数。该图象呈阶梯状,定义域分段时学生容易有误解,教师可以通过点评、互评、辨析的方式让学生克服画图中的难点。

在本环节中,学生自己交流讨论,在教师的引导、帮助下,得出y与x的函数三种表示方式。这样的教学方式强化了学生的亲身体验,使知识结构在其头脑中得以完善。

(四)归纳总结,回顾反思

函数三种常用的表示方法,解析法简明、全面地概括了变量间的关系,便于运用解析式研究和应用函数的性质,如创设情境中的问题1。但是有些实际问题中的函数关系很难用解析式表示或者根本不存在解析式,如创设情境中的问题2。列表法不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了,成绩表、价格表、银行利息表,采用的就是这种表示方法,但是它只能表示有限个元素时的函数关系且元素较多时也不方便,如创设情境中的问题3。图像法能直观形象地表示函数值随自变量变化的变化趋势,可通过图像来研究函数的某些性质,这也是数形结合的好处,但是它有时也存在感性观察不够准确,画面局限性大的缺点。让学生自己归纳总结,回顾反思,将知识点串联起来,完成对该部分内容的完整认识和意义建构。这对学生在实际情境中根据不同需要选择恰当的方法表示函数,发展与深化思维能力是大有裨益的。最后教师应指出解析法、列表法、图象法都很重要,在实际生产与生活中都有着广泛的应用,虽然中学阶段研究的主要是用解析法表示的函数,但不能有所偏颇,像列表法、图象法在今后代数、统计领域的学习中经常用到,同样值得重视。生活中有很多可以用分段函数的实际问题,要善于从中抽象出数学问题,明确分段函数含义,注意考虑其实际意义。相信通过这样的教学设计,学生基本上能很好地理解了函数的表示方法,达到了课程标准的要求,体现了课改的教学理念。

(责任编辑:张华伟)

篇5:函数的表示法(一)教案

(一)课

型:新授课 课时: 1课时 教学目标:

(1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点;

(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用。教学重点:会根据不同的需要选择恰当的方法表示函数。教学难点:分段函数的表示及其图象。教学过程:

一、复习准备:

1.提问:函数的概念?函数的三要素?

2.讨论:初中所学习的函数三种表示方法?试举出日常生活中的例子说明.二、讲授新课:

(一)函数的三种表示方法:

结合课本P15 给出的三个实例,说明三种表示方法的适用范围及其优点: 解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1);

优点:简明扼要;给自变量求函数值。

图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2);

优点:直观形象,反映两个变量的变化趋势。

列表法:就是列出表格来表示两个变量之间的对应关系,如1.2.1的实例(3);

优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等。例1.(课本P19 例3)某种笔记本的单价是2元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x).

例2:(课本P20 例4)下表是某校高一(1)班三位同学在高一学六次数学测试的成绩及班级平均分表:

第一次 第二次 第三次 第四次 第五次 第六次

87 91 92 88 95 甲

76 88 75 86 80 乙

65 73 72 75 82 丙

班平均88.2 78.3 85.4 80.3 75.7 82.6 分

请你对这三们同学在高一学的数学学习情况做一个分析.

(二)分段函数的教学: 分段函数的定义:

在函数的定义域内,对于自变量x的不同取值范围,有着不同的对应法则,这样的函数通常叫做分段函数,如以下的例3的函数就是分段函数。说明:(1).分段函数是一个函数而不是几个函数,处理分段函数问题时,首先要确定自变量的数值属于哪个区间段,从而选取相应的对应法则;画分段函数图象时,应根据不同定义域上的不同解析式分别作出;(2).分段函数只是一个函数,只不过x的取值范围不同时,对应法则不相同。例3:(课本P21 例6)某市“招手即停”公共汽车的票价按下列规则制定:

(1)5公里以内(含5公里),票价2元;

(2)5公里以上,每增加5公里,票价增加1元(不足5公里的俺公里计算)。

如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象。

2x3,x(,0)例4.已知f(x)=2,求f(0)、f[f(-1)]的值

2x1,x[0,)

(三)课堂练习:

1.课本P23 练习1,2;

2.作业本每本0.3元,买x个作业本的钱数y(元)。试用三种方法表示此实例中的函数。

3.某水果批发店,100kg内单价1元/kg,500kg内、100kg及以上0.8元/kg,500kg及以上0.6元/kg。试用三种方法表示批发x千克与应付的钱数y(元)之间的函数y=f(x)。归纳小结:

本节课归纳了函数的三种表示方法及优点;讲述了分段函数概念;了解了函数的图象可以是一些离散的点、线段、曲线或射线。作业布置:

篇6:备课资料(函数的表示法)

[备选例题]

【例1】2006第十七届“希望杯”全国数学邀请赛(高一)第一试,8区间[0,m]在映射f:x→2x+m所得的象集区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度大5,则m等于()

A.5B.10C.2.5D.1

分析:函数f(x)=2x+m在区间[0,m]上的值域是[m,3m],则有[m,3m]=[a,b],则a=m,b=3m,又区间[a,b]的长度比区间[0,m]的长度大5,则有b-a=(m-0)+5,即b-a=m+5,所以3m-m=m+5,解得m=5.答案:A

【例2】2005湖南数学竞赛,11设x∈R,对于函数f(x)满足条件f(x2+1)=x4+5x2-3,那么对所有的x∈R,f(x2-1)=_________.分析:(换元法)设x2+1=t,则x2=t-1,则f(t)=(t-1)2+5(t-1)-3=f(t)=t2+3t-7,即f(x)=x2+3x-7.所以f(x2-1)=(x2-1)2+3(x2-1)-7=x4+x2-9.答案:x4+x2-9

[知识总结]

1.函数与映射的知识记忆口诀:

函数新概念,记准要素三;定义域值域,关系式相连;

函数表示法,记住也不难;图象和列表,解析最常见;

对应变映射,只是变唯一;映射变函数,集合变数集.2.映射到底是什么?怎样理解映射的概念?

剖析:对于映射这个概念,可以从以下几点来理解:(1)映射中的两个集合A和B可以是数集、点集或由图形组成的集合等;(2)映射是有方向的,A到B的映射与B到A的映射往往是不一样的;(3)映射要求对集合A中的每一个元素在集合B中都有元素与之对应,而这个与之对应的元素是唯一的,这样集合A中元素的任意性和在集合B中对应的元素的唯一性构成了映射的核心;(4)映射允许集合B中存在元素在A中没有元素与其对应;(5)映射允许集合A中不同的元素在集合B中有相同的对应元素,即映射只能是“多对一”或“一对一”,不能是“一对多”;(6)映射是特殊的对应,函数是特殊的映射.3.函数与映射的关系

篇7:函数的表示法教案_h

一、教学目标: 知识与技能

(1)明确函数的三种表示方法;

(2)会根据不同实际情境选择合适的方法表示函数;(3)通过具体实例,了解简单的分段函数及应用. 过程与方法

通过引导学生回答问题,培养学生的自主学习能力;通过画图像,培养学生的动手操作能力; 情感态度与价值观

通过一些实际生活应用题,让学生受到学习函数表示的必要性,并体会数学源于生活用于生活的价值;通过函数的解析式与图像的结合,渗透数形结合思想方法。

二、教学重难点:

重点:函数的三种表示方法,分段函数的概念.

难点:根据题目的已知条件,写出函数的解析式并画出图像

三、教学过程:

(一)、复习引入:

1.函数的定义,函数的三要素(函数相同的条件). 集合A集合B 当对应关系符合下面的条件之一时,则称f:A→B为从集合A到集合B的一个函数(1)11(集合A和B一一对应)

(2)2或者更多1(集合A多个对B一个)误区:12或者更多

× 构成函数的三要素: 定义域、对应关系和值域 函数相同:当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

2.函数图象的基本方法画法(列表、描点、作图.)本节将进一步学习函数的表示法和函数图象的作法

(二)、讲解新课: 函数的三种表示方法:

老师:同学们,回忆一下在初中时,我们学习过什么函数? 一次函数: 二次函数: 反比例函数:

教师引导学生归纳函数解析法的特点。

(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。

说明:①解析式法的优点是:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质;

②中学里研究的主要是用解析式表示的函数。

以下是我国1992年-1998年的国内生产总值(单位:亿元)年份 1992 1993 1994 1995 1996 1997 1998

生产总值 26651.9 34560.5 4670.0 57494.9 66850.5 73142.7 76967.1

老师:根据我们学习的函数的概念,我们知道年份与生产总值之间构成了函数。而我们仅仅是通过一个图表就知道生产总值与年份之间的关系,像这种函数的表示法,我们称为列表法。(2)列表法:列出表格来表示两个变量的函数关系式。例如:数学用表中的平方表、平方根表、三角函数表,以及银行里常用的“利息表”。

说明:列表法的优点是:不必通过计算就知道当自变量取某些值时函数的对应值。老师:另外,在初中我们还学习了一次函数,二次函数,反比例函数的图像。

老师:像这种用图像来表示函数的方法叫做图像法。

(3)图象法:用函数图象表示两个变量之间的关系。例如:气象台应用自动记录器,描绘温度随时间变化的曲线就是用图象法表示函数关系的。(见课本P53页图2-2 我国人口出生变化曲线)

说明:图象法的优点是能直观形象地表示出函数的变化情况。

(三)、例题讲解

1、例3某种笔记本的单价是5元,买个笔记本需要元,试用三种表示法表示函数.(先学生独自做,老师做个别辅导)首先此函数的定义域是数集{1,2,3,4,5},那么由题意可知用解析法可将函数表示为y=5x。通过计算,用列表法可将函数表示为 笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25

在直角坐标系上描出各点可得用图像法将函数表示为

注意:

①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等; ②解析法:必须注明函数的定义域; ③图象法:是否连线;

④列表法:选取的自变量要有代表性,应能反映定义域的特征. 例

2、(课本23页例4)

3、国内投寄信函(外埠),邮资按下列规则计算:

1、信函质量不超过100g时,每20g付邮资80分,即信函质量不超过20g付邮资80分,信函质量超过20g,但不超过40g付邮资160分,依次类推;

2、信函质量大于100g且不超过200g时,付邮资(A+200)分(A为质量等于100g的信函的邮资),信函质量超过200g,但不超过300g付邮资(A+400)分,依此类推.设一封x g(0

解:这个函数的定义域集合是,函数的解析式为

它的图象是6条线段(不包括左端点),都平行于x轴,如图所示.新概念教学:在上例中,函数对于自变量x的不同取值范围,对应法则也不同,这样的函数通常称为分段函数。

注意:分段函数是一个函数,而不是几个函数.例

3、课本24页例5 例

4、作出分段函数的图像

解:根据“零点分段法”去掉绝对值符号,即:

=

作出图像如右图 作函数的图象.解:∵

∴ 这个函数的图象是抛物线 介于之间的一段弧(如图).(四)、课堂练习:

2、一个面积为100cm2的等腰梯形,上底长为xcm,下底长为上底长的3倍,则把它的高表示成x的函数为

例1:1)设f(x)是一次函数,且f[f(x)]=4x+3,求f(x)

k=4,kb+b=3

k=2,b=1或k=-2,b=-3

f(x)=2x+1或f(x)=-2x-3

(五)、小结

函数的三种表示方法及图像的作法,以及如何求函数解析式

(六)、课后作业:课本第28习题1.2:A组习题4,6,7,12,13 补充:

1、作出函数的函数图像 解: 步骤:(1)作出函数y=(2x(3的图象

(2)将上述图象x轴下方部分以x轴为对称轴向上翻折(上方部分不变),即得y=|(2x(3|的图象

f(x+1)=x+2(x+1)=x+2x+2

篇8:函数的表示法教学设计

一、帮助学生理解三种函数表示法的优缺点

通过对正比例函数、反比例函数的回顾,让学生知道表示函数有解析法、列表法、图像法等三种常用方法。教师运用Hi-teach挑人功能,随机选择学生进行互动问答,展开对有关实例的分析,让学生知道这三种函数表示法的优缺点,并运用Hi-teach抢权功能,让学生自主发言,完成三种表示法的优缺点的梳理。由于Hi-teach系统的挑人功能具有随机性,既可以满足教育的公平性原则,还可以保证学生专注凝神地学习。而抢权功则能使抢到答题机会并且答对题的学生所取得的分值计入后台统计,激发了学生学习的积极性。抢权后回答正确的学生在该轮抢权的活动中不可再抢权,为其他学生保留了答题机会,从而全面发展与提升学生的思维水平。

[案例1]根据研究,体内血乳酸浓度升高是运动后感觉疲劳的重要原因。运动员未运动时,体内血乳酸浓度水平通常在40mg/L以下;如果血乳酸浓度降到50mg/L以下,运动员就基本消除了疲劳。体育科研工作者根据实验数据,绘制了一幅图像,如图1所示。它反映了运动员进行高强度运动后,体内血乳酸浓度随时间变化而变化的函数关系

问题1:平时剧烈运动后采用哪种方式休息?学生集体回答:“采用慢跑的方式休息。”(显然学生从图像中直观地看出,实线所表示的慢跑方式,在20分钟后使得人体内血乳酸浓度大幅度下降,从而错误揣测了教师设计问题的意图,做出了有违事实的回答。)教师提问:“真的吗?想想你们体育课跑了800米、1000米后,是怎么休息的?”学生回答:“我们用静坐方式休息。”教师接着提问:“想知道为什么吗?我们来看问题2。”

问题2:前20分钟血乳酸浓度变化情况如何?从图像中如何来看?教师请学生电子白板前用三角尺演示如何在图像上画一画,过横坐标t=20作t轴垂线。学生可以观察到在0~20分钟的图像中,实线和虚线都在纵坐标150mg/L上方,并且实线在虚线上方,这表明短时间内两种休息方式都无法消除疲劳感,而慢跑等活动方式会进一步加剧疲劳感受,因此我们平时一般会选择采用静坐方式休息。

问题3:血乳酸浓度到什么情况下,基本消除疲劳?图像中如何来看?请学生电子白板前用三角尺演示如何在图像上画一画,过纵坐标值为50作纵坐标轴垂线,该垂线与实线交点横坐标读数约为30分钟,与虚线交点横坐标读数约为70分钟,可以了解到采用慢跑等活动方式放松时血乳酸浓度先下降到50mg/L以下。因此,运动员进行完剧烈运动,为了更快达到消除疲劳的效果,应该采用慢跑等活动方式来放松。

[分析与思考]在课堂中,教师请学生上来用三角尺比画了画线的方法,如果借助Hi-teach的电子白板中数学工具标准作图并截屏保存,或者让学生在自己的操作单上画一画,并用Hi-teach的实物提示机展示,效果能更加理想。运用Hi-teach系统中的抢权功能,能使学生在课堂上充分展示、交流,让任何一个学生在教学活动中都有机会被倾听、被关注;更重要的是,运用该系统,能让师生在互动课堂教学模式中,形成清晰化和结构化的认识,形成相对完整、丰富和更高水平的概括、解决问题的能力。教师可以将案例目标达成后的结论留作板书,也可以通过Hiteach的实物提示机制保存,以便之后系统性小结时参考。这样可以实现通过师生的交互作用,丰富学生对知识、经验内涵的认识和体验,进而更有利于发展和提升学生的思维水平,形成结构化的思维方式。

二、使学生掌握三种函数表示法的选择或综合运用能力

学生经历建立函数关系的过程后,能从中体会函数是描述事物运动变化规律的工具;能适当选用函数表示法或综合运用集中表示法,来表达简单实际问题中的函数关系。在例题学习前,教师可以先利用Hi-teach软件,统计全班学生做一道关于理解函数的数形结合的选择题的答题情况,并且在完成例题学习后,做出第二次选择并进入统计,运用Hi-teach的反馈系统呈现两组相关统计图,引导学生比较统计图所呈现的信息,组织学生讨论,由其自行推进教学进程,从而达成教育目标。

[案例2]一个紧口瓶中盛有一些水,乌鸦想喝,但是够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水。但是,它还没解渴,瓶中水面就下降到了够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝饱了水。

问题1:设衔入瓶中石子的体积为x,瓶中水面的高度为y,图2中能大致表示故事情节的图像是()。全班学生每人手持一个Hi-teach反馈装置,当学生根据教师的问题按下按键时,教师就可以即时统计学生的回答情况,绘制统计图表,以此决定后续教学内容、教学进度,以及教学方式等。

问题2:受到这个故事的启发,利用量筒和若干个体积相同的小球进行如下操作,请根据图3中所给出的信息,解答下列5小题。

(1)填表。

②通过描点,将上表中的数据转化成平面直角坐标系中的图像,见图4。③每入一个小球,量筒中的水面升高______cm。④量筒中至少放入______个小球时有水溢出。⑤有水溢出前,量筒中水面高度y(cm)与小球的个数x(个)之间的函数解析式______,定义域______。

例题由学生先在各自的操作单上独立完成。教师在巡查过程中发现,学生在完成函数解析式的填写过程中,出现了几个正比例函数的解析式y=2x的答案,这与前摄抑制有关,因为前两节课主要系统学习的是正比例函数与反比例函数,部分学生容易产生混淆,而不能集中注意到当前的学习中来。因此,在课堂教学中,教师临时提供了y=2x与y=2x+30这两个答案,让学生通过Hi-teach反馈装置呈现出数据统计结果(不展示学生的对错情况),让学生自己分析两个解析式的异同,以及相同的x前的2的实际意义、常数项0或30的实际意义。

完成例题分析后,学生用手中的Hi-teach的反馈装置,进行第二次对乌鸦喝水这道选择题的答复,教师展示两次选择题各个选项的数据统计图(不呈现各个学生的对错情况),公布正确答案后,组织学生就出现错误选项的原因展开讨论,体会函数描述事物运动变化规律的三种表达形式各种利弊,学会综合分析各种表达式进行互相补充与完善。

[分析与思考]

在讲解例题前后,用Hi-teach来对选择题选择情况呈现数据统计图进行对比,可以直接观察课堂效果,统计方便且明显。每个学生的每次作答情况都会进入后台统计系统,并可以通过赋分予以实现,上传到云端还可以实现教学系统化。课堂中不呈现学生对错结果,就是基于新课程标准的要求,实现注重学习过程而并非只注重学习结果,给学生更多的空间去履行自我完善。教师的作用不仅是简单运用反馈系统呈现相关统计图,做出简单解释性质的讲解,更是引导学生比较统计图所呈现的信息,组织全班讨论,实施生生合作,使学生对教学内容形成新的感受和体悟,经历认识和理解的过程,使教学真正成为师生共同参与和互动的动态生成的过程。

三、使学生初步学会运用函数的思想方法解决简单的实际问题

数学的产生源于生活,数学问题又将生活实际进行理想化概括,显得比较抽象,因此,学生可以通过参照生活中的实例来理解数学问题,实现化复杂为简单。

[案例3]A、B两地相距25千米,甲于某日12时30分骑自行车从A地出发前往B地,乙也于同日下午骑摩托车从A地出发前往B地。图5中的折线PQR和线段MN分别反映了甲和乙所行驶的路程s与该日下午的时间t的函数关系

(1)甲______从A地出发,乙______从A地出发,甲出发______小时后乙出发;(2)乙行驶______分钟后追上甲,这时两人离A地_km,离B地还有______km;(3)甲______到达B地,乙______到达B地,______先到;(4)______出发后的速度保持不变;(5)甲从下午12时半到1时的速度是______km/h,甲从下午1时到2时半的速度是______km/h。

此题可以让学生进一步分析得出函数y=kx+b(k≠0)中k与实际生活的联系,该题中的k就是速度,而k的大小和直线与x轴正方向的夹角有关。

练习:甲、乙两队举行赛龙舟比赛,两队在比赛时的路程y(米)与时间t(分钟)之间的函数关系图像如图6所示,请你根据图像判断,下列说法错误的有()。A.甲队率先到达终点;B.甲队比乙队多走了200米路程;C.乙队比甲队少用0.2分钟;D.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快。

在研究函数时,可以充分发挥图像的直观性,函数在数形结合中得到充分的体现,学生可以从图像中获取有效信息,解决一些与实际息息相关的数学问题;而教师则可以通过Hi-teach掌握学生学习情况,了解每一个学生学习的即时反馈,从而激发并强化学生的学习成效。

[分析与思考]

对于初二年级学生而言,分析图像信息存在一定的困难,利用Hi-teach的即时反馈系统,既可以提高学生学习兴趣,也便于教师发现问题及时调整。尤其是到了课堂的最后十分钟,学生往往注意力涣散,而引入的Hi-teach的挑人功能和限时回答功能,让学生一下子有了积极性,学习参与度随之提高。通过Hi-teach产生的学生学习情况分析图,教师可以很快地了解学生的学习情况,并以此为依据,对大多数学生掌握不好的知识,及时地进行巩固,从而提高了数学课堂教学的效率。

以学生为本的课堂,欢迎学生不断出现生成性问题并以此为教学契机,而Hi-teach互动教学系统的应用更是可以将这些生成性问题暴露无遗。尽管Hi-teach操作系统很便捷,但是学生的参与度越高,问题自然也生成越多,需要教师组织处理花费的时间也越多,因而,对于课堂教学内容完整性而言,相对会有一定的影响

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:爱护学校公物,共建美好校园 下一篇:财富管理中心