高二数学正弦定理

关键词: 余弦定理 定理 三角形 正弦

第一篇:高二数学正弦定理

北师大版高二数学《正弦定理》教案

高中数学辅导网 http:///

第二章 解三角形

课标要求:本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

编写意图与特色

1.数学思想方法的重要性

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

2.注意加强前后知识的联系

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量京翰教育1对1家教 http:///

的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

3.重视加强意识和数学实践能力

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

教学内容及课时安排建议

1.1正弦定理和余弦定理(约3课时)

1.2应用举例(约4课时)1.3实习作业(约1课时)

评价建议

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

1.1正弦定理

(一)教学目标

1.知识与技能:

通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解三角形的两类基本问题。

2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向

量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

教学重点:正弦定理的探索和证明及其基本应用。

教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

abc学法:引导学生首先从直角三角形中揭示边角关系:,接着就sinAsinBsinC

一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。

教学设想

[创设情景]

如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。A 思考:C的大小与它的对边AB

的长度之间有怎样的数量关系?

显然,边AB的长度随着其对角C的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来?[探索研究]图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角

abc三角函数中正弦函数的定义,有sinA,sinB,又sinC1, ccc

A

abc则csinsinsinabc从而在直角三角形ABC中,sinAsinBsinC

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三

ab角函数的定义,有CD=asinBbsinA,则, sinAsinB

C

cb同理可得,sinCsinB

abc从而sinAsinBsinC

AcB

(图1.1-3)

思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A作jAC,

由向量的加法可得ABACCB 

则jABj(ACCB)AB

∴jABjACjCBj

ac jABcos900A0jCBcos900C∴csinAasinC,即bc同理,过点C作jBC,可得从而a

sinAb

sinBc

sinC

类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

abc sinAsinBsinC

[理解定理]:(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使aksinA,bksinB,cksinC;

abcabcbac(2)等价于,, sinAsinBsinCsinAsinBsinCsinBsinAsinC

从而知正弦定理的基本作用为: bsinA①已知三角形的任意两角及其一边可以求其他边,如a; sinB

②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]:

例1.在ABC中,已知A32.00,B81.80,a42.9cm,解三角形。

解:根据三角形内角和定理,C1800(AB)1800(32.0081.80) 66.20; asinB42.9sin81.80

80.1(cm); 根据正弦定理,bsin32.0asinC42.9sin66.20

74.1(cm). 根据正弦定理,csin32.0评述:对于解三角形中的复杂运算可使用计算器。

例2.在ABC中,已知a20cm,b28cm,A400,解三角形(角度精确到10,边长精确到1cm)。 bsinA28sin400解:根据正弦定理,sinB0.8999. 因为00

30(cm). ⑴ 当B64时,C180(AB)180(4064)76,csin40000000

asinC20sin240

13(cm). ⑵ 当B116时,C180(AB)180(40116)24,csin40000000

评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。

[随堂练习]第47页练习

1、2题。

abc sinAsinBsinC

abc分析:可通过设一参数k(k>0)使k, sinAsinBsinC

abcabc证明出 sinAsinBsinsinsinsinabc解:设k(k>o)则有aksinA,bksinB,cksinC sinsinsinabcksinAksinBksinC从而==k sinAsinBsinCsinAsinBsinC

aabc2k又,所以=2 sinA

sinAsinBsinC

abcabc评述: ABC中,等式 kk0恒成立。sinAsinBsinCsinAsinBsinC

[补充练习]已知ABC中,sinA:sinB:sinC1:2:3,求a:b:c(答案:1:2:3)

[课堂小结](由学生归纳总结)

abcabc(1)定理的表示形式:kk0; sinsinsinsinsinsin例3.已知ABC中,A

600,a求

或aksinA,bksinB,cksinC(k0)

(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;

②已知两边和其中一边对角,求另一边的对角。

abc

(五):①课后思考题:在ABC中,k(k>o),这个k与ABCsinAsinBsinC

有什么关系?

作业:第52页[习题2.1]A组第

7、4题。

第二篇:高一数学《正弦定理的应用》教案

湖南省长沙市第一中学 数学教案 高一(下) 第五章 平面向量

正弦定理的应用

教学目标

(一) 知识与技能目标

会利用正弦定理求解简单的斜三角形边角问题.

(二) 过程与能力目标

(1)通过用向量的方法证明正弦定理,体现向量的工具性,加深对向量知识应用的认识.

(2)通过启发、诱导学生发现和证明正弦定理的过程,培养学生观察与分析、归纳与猜想、抽象与概括等逻辑思维能力.

(三) 情感与态度目标

通过三角函数、正弦定理、向量数量积等知识间的联系来体现事物之间的普遍联系与辩证统一. 教学重点

正弦定理的应用. 教学难点

正弦定理在解三角形时的应用思路. 教学过程

一、复习

正弦定理: abc2R sinAsinBsinC变 式

(1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c;

(3) S ABC111absinCbcsinA acsinB 222正弦定理可以解决三角形问题:

1. 两角和任意一边,求其它两边和一角;

2. 两边和其中一边对角,求另一边的对角,进而可求其它的边和角.

二、应用

例 1. 在ABC中,已知a20,b28,A40, 求B(精确到1)和c(保留两个有效数字).例 2. 在ABC中,已知a60,b50,A38, 求B(精确到1)和c(保留两个有效数字).湖南省长沙市第一中学 数学教案 高一(下) 第五章 平面向量

归纳:在△ABC中,已知a, b和A时解三角形的各种情况: 1. 当A为锐角时:

Ca

b

AB

a

CbAaBCbAB2aaB1CbAab一解aBa=bsinA一解bsinA

CabAab无解BCbAaBa > b一解练习

在ABC中,已知A30,b4,试分别讨论下列情况的解的个数 (1)a1, (2)a1, (3)a3,(4)a4, (5)a5.例 3. 在ABC中, 若a2tanBb2tanA, 试判断这个三角形的形状.

例 4. 在ABC中,若B30,AB23,AC2,求ABC的面积 .

课堂小结:

已知三角形的两边及其中一边的对角,其解的6种情况. 作业:

1.阅读教材139页至 144 页; 2.教材第144页习题5.9第3题; 3 . 《优化设计》第113~115页.

第三篇:2016江西教师招聘面试高中数学说课稿:正弦定理

易公教育 江西教师考试培训第一品牌

2016江西教师招聘面试高中数学说课稿:正弦定理

---易公教育资料平台

一、教材地位与作用本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

二、学情分析

作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。 根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标

教学目标分析:

知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形

能力目标:探索正弦定理的证明过程,用归纳法得出结论。

情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

三、教法学法分析

教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际

为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

四、教学过程

(一)创设情境,布疑激趣

“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

江西教师招聘面试说课稿

易公教育 江西教师考试培训第一品牌

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。

(四)归纳总结,简单应用

1.让学生文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形

2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形

(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

2.在△ABC中,已知下列条件,解三角形

(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

江西教师招聘面试说课稿

第四篇:高中数学《1.1.1 正弦定理》教案 新人教A版必修5 (2)(大全)

1.1.1 正弦定理

●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点

正弦定理的探索和证明及其基本应用。 ●教学难点

已知两边和其中一边的对角解三角形时判断解的个数。

教学过程:

一、复习准备:

1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办?

2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理

二、讲授新课:

1. 教学正弦定理的推导:

ab①特殊情况:直角三角形中的正弦定理: sinA= sinB= sinC=1 即

ccc=abc. sinAsinBsinC② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)

当ABC是锐角三角形时,设边AB上的高是CD,根据三角函数的定义,有CDasinBbsinA,则

abac. 同理, sinAsinBsinAsinC121212③*其它证法:

证明一:(等积法)在任意△ABC当中S△ABC=absinCacsinBbcsinA. 两边同除以abc即得:12cab==. sinAsinBsinCaaCD2R, sinAsinDCabAOBD证明二:(外接圆法)如图所示,∠A=∠D,∴

ccb同理 =2R,=2R. sinCsinB证明三;过点A作单位向量jAC, C 由向量的加法可得 ABACCB

则 jABj(ACCB) A B ∴jABjACjCB

jABcos900A0jCBcos900Cac∴csinAasinC,即sinAsinC

bc同理,过点C作jBC,可得 sinBsinC

a从而 sinAsinBsinC

类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)

④ 正弦定理内容:

bccab===2R sinAsinBsinC简单变形; 基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值. 2. 教学例题:

① 例1:在ABC中,已知A450,B600, a=10cm,解三角形.

② 例2:ABC中,c6,A450,a2,求b和B,C.

讨论:已知两边和其中一边的对角解三角形时,如何判断解的数量?思考后见(P8-P9 ) 3. 小结:正弦定理的探索过程;正弦定理的两类应用;已知两边及一边对角的讨论.

第五篇:正弦定理余弦定理[推荐]

正弦定理 余弦定理

一、知识概述

主要学习了正弦定理、余弦定理的推导及其应用,正弦定理是指在一个三角形中,各边和它所对角的正弦的比相等.即余弦定理是指三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍,即a2=b2+c2-2bccosA,b2=c2+a2-2cacosB, c2=a2+b2-2abcosC.通过两定理的学习,掌握正弦定理和余弦定理,并能利用这两个定理去解斜三角形,学会用计算器解决解斜三角形的计算问题,熟悉两定理各自解决不同类型的解三角形的问题.认识在三角形中,已知两边和其中一边的对角解三角形,产生多解的原因,并能准确判断解的情况.

二、重点知识讲解

1、三角形中的边角关系

在△ABC中,设角A、B、C的对边分别为a、b、c,则有

(1)角与角之间的关系:A+B+C=180°;

(2)边与角之间的关系

正弦定理:

余弦定理:a2=b2+c2-2bccosA

b2=c2+a2-2accosB

c2=a2+b2-2abcosC

射影定理:a=bcosC+ccosB

b=ccosA+acosC c=acosB+

bcosA

2、正弦定理的另三种表示形式:

3、余弦定理的另一种表示形式:

4、正弦定理的另一种推导方法——面积推导法

在△ABC中,易证明再在上式各边同时除

以在此方法推导过程中,要注意对

面积公式的应用.

1、在△ABC中,ab=60, sinB=cosB.面积S=15,求△ABC的三个内角. 分析:

在正弦定理中,由

进而可以利用三角函数之间的关系进行解题. 解:

可以把面积进行转化,

公式

∴C=30°或150°

又sinA=cosB∴A+B=90°或A-B=90°显然A+B=90°不可能成立

当C=30°时,由A+B=150°,A-B=90°得A=120°B=30°

当C=150°时,由A-B=90°得B为负值,不合题意故所求解为A=120°,B=30°,C=30°.例

2、在△ABC中,a、b、c分别是内角A、B、C的外边,若b=2a,B=A+60°,求A的值. 分析:

把题中的边的关系b=2a利用正弦定理化为角的关系,2RsinB=4RsinA,即sinB=2sinA. 解:

∵B=A+60°

∴sinB=sin(A+60°)=sinAcos60°+cosAsin60°

=

又∵b=2a

∴2RsinB=4RsinA,∴sinB=2sinA

3、在△ABC中,若tanA︰tanB=a2︰b2,试判断△ABC的形状. 分析:

三角形分类是按边或角进行的,所以判定三角形形状时一般要把条件转化为边之间关系或角之间关系式,从而得到诸如a+b=c,a+b>c(锐角三角形),a+b三角形)或sin(a-b)=0,sina=sinb,sinc=1或cosc=0等一些等式,进而判定其形状,但在选择转化为边或是角的关系上,要进行探索.< p=""> 三角形)或sin(a-b)=0,sina=sinb,sinc=1或cosc=0等一些等式,进而判定其形状,但在选择转化为边或是角的关系上,要进行探索.<>

解法一:由同角三角函数关系及正弦定理可推得,∵A、B为三角形的内角,∴sinA≠0,sinB≠0.

.

∴2A=2B或2A=π-2B,∴A=B或A+B=所以△ABC为等腰三角形或直角三角形.解法二:由已知和正弦定理可得:

整理得a-ac+bc-b=0,即(a-b)(a+b-c)=0,

于是a=b或a+b-c=0,∴a=b或a+b=c.∴△ABC是等腰三角形或直角三角形.

5、利用正弦定理和余弦定理判定三角形形状,此类问题主要考查边角互化、要么同时化边为角,要么同时化角为边,然后再找出它们之间的关系,注意解答问题要周密、严谨.

4、若acosA=bcosB,试判断△ABC的形状. 分析:

本题既可以利用正弦定理化边为角,也可以利用余弦定理化角为边. 解:

解法一:由正弦定理得:2RsinAcosA=2RsinBcosB∴sin2A=sin2B

∴2A=2B或2A+2B=180°∴A=B或A+B=90°

故△ABC为等腰三角形或直角三角形解法二:由余弦定理得

∴a(b+c-a)=b(a+c-b)∴(a-b)(a+b-c)=0∴a=b或a+b=c

故△ABC为等腰三角形或直角三角形.

6、正弦定理,余弦定理与函数之间的相结合,注意运用方程的思想.

5、如图,设P是正方形ABCD的一点,点P到顶点A、B、C的距离分别是

1,2,3,求正方形的边长.

分析:

本题运用方程的思想,列方程求未知数. 解:

设边长为x(1

,在△ABP中

设x=t,则1

-5)=16t

三、难点剖析

1、已知两边和其中一边的对角,解三角形时,将出现无解、一解和两解的情况,应分情况予以讨论.

下图即是表示在△ABC中,已知a、b和A时解三角形的各种情况.

(1)当A为锐角时(如下图),

(2)当A为直角或钝角时(如下图),

也可利用正弦定理进行讨论.

如果sinB>1,则问题无解; 如果sinB=1,则问题有一解;

如果求出sinB<1,则可得B的两个值,但要通过“三角形内角和定理”或“大边对大角”等三角形有关性质进行判断.

2、用方程的思想理解和运用余弦定理:当等式a2=b2+c2-2bccosA中含有未知数时,等式便成为方程.式中有四个量,知道任意三个,便可以解出另一个,运用此式可以求a或b或c或cosA.

3、向量方法证明三角形中的射影定理

在△ABC中,设三内角A、B、C的对边分别是a、b、c.

4、正弦定理解三角形可解决的类型: (1)已知两角和任一边解三角形;

(2)已知两边和一边的对角解三角形.

5、余弦定理解三角形可解决的类型: (1)已知三边解三角形;

(2)已知两边和夹角解三角形.

6、三角形面积公式

6、不解三角形,判断三角形的个数. ①a=5,b=4,A=120° ②a=30,b=30,A=50° ③a=7,b=14,A=30° ④a=9,b=10,A=60° ⑤a=6,b=9,A=45° ⑥c=50,b=72,C=135° 解析:

①a>b,A=120°,∴△ABC有一解.②a=b,A=50°<90°,∴△ABC有一解.

③a

④a

∴△ABC有两解(A为锐角和钝角). 方法二:a2=b2+c2-2bccosA, ∴92=102+c2-2×10×ccos60°, 即c2-10c+19=0 ∵△=102-4×19=24>0 ∴△ABC有两解.

⑤b>c,C=45°,

∴△ABC无解(不存在).⑥b>c,C=135°>90°,又由b>c知∠B>∠C=135°,这样B+C>180°,∴△ABC无解.

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:高二数学难点 下一篇:宾馆监控规章制度