矿井通风与安全(共6篇)
篇1:矿井通风与安全
矿井通风与安全
煤矿井下为什么要进行[1]??不进行通风不行吗?经过实践证明,不进行通风是不行的。因为井下要生产就要有人,人没有氧气就不能生存。其次人们在井下生产过程中不断产生有毒有害气体,如:一氧化碳、二氧化碳、二氧化氮、二氧化硫、硫化氢、沼气等,如果不排除这些气体人们也无法生产。井下由于受地温等因素的影响需要对井下恶劣气候条件进行调节。矿井通风的基本任务是:
(2)、冲淡井下有毒有害气体和粉尘,保证安全生产。
(3)、调节井下气候,创造良好的工作环境。
井下必须进行通风,不通风就不能保证安全和维持生产。故矿井通风是矿井生产环节中最基本的一环,它在矿井建设和生产期间始终占有非常重要的地位。
编辑本段 矿井通风的类型
矿井通风系统由影响矿井安全生产的主要因素所决定。根据相关因素把矿井通风系
矿井通风阻力参数智能检测仪
统划分为不同类型。根据瓦斯、煤层自燃和高温等影响矿井生产安全的主要因素对矿井通风系统的要求,为了便于管理、设计和检查,把矿井通风系统分为一般型、降温型、防火型、排放瓦斯型、防火及降温型、排放瓦斯及降温型、排放瓦斯及防火型、排放瓦斯与防火及降温型几种,依次为1-8八个等级。
编辑本段 空气 地面空气
地面空气是我们居住的地球表面包围着的地面大气,它由干空气和水蒸气组成的混合气体,在正常情况下干空气由下列几种成分组成:
氮(N2)78.13%
氧(O2)20.90%
二氧化碳(CO2)0.03%
氩(Ar)0.93%
其它0.01% 井下空气
地面空气进入井下后,因发生物理和化学两种变化,使其成份和浓度发生改变。
1、物理变化:
气体混入:煤层中含有瓦斯、二氧化碳等气体,矿井在生产过程中这些气体便混
jfy-2矿井通风多参数检测仪 入井下空气中。
固体混入:井下各作业环节所产生的岩、煤尘和其它微小杂尘混入井下空气中。
气象变化:由于井下温度、气压和湿度的变化引起井下空气的体积和浓度变化。
2、化学变化:
井下一切物质的缓慢氧化、爆破工作、火区氧化等这些变化均对井下空气产生影响。
经过上述的物理、化学变化井下空气同地面空气相比较发生了较大变化,成分增多、浓度发生变化、氧浓度相对减少。井下空气的成分种类共有:O2、N2、CH4、CO、CO2、H2S、SO2、H2、NH3、NO2、水蒸气和浮尘十二种。但由于各矿条件不同,各矿的井下空气成分种类和浓度都不相同。
编辑本段 井下空气的主要成分: 氧(O2)
氧气的性质:是一种无色、无味、无臭的气体,它对空气的比重是1.11,其化学性质很活泼,可以和所有的气体相化合,氧能助燃,氧是人和动物新陈代谢不可缺少的物质,没有氧气人就不能生存。氧气对人影响见下表:
氧的浓度%
人体的症状反应
静止状态无影响,工作时引起喘息、呼吸困难、心跳。
10--12
失去知觉、对人的生命有严重威胁。
9以下
在短时间内窒息死亡。
《煤矿安全规程》中规定:在采掘工作面的进风风流中,按体积计算,空气中的于20%。氮(N2)
氮气的性质:是一种无色、无味、无臭的气体,它对空气的比重是0.97,不助燃、不能维持呼吸。在正常情况下,氮对人体无害,当空气中含氮量过多时,就会降低氧气含量,可以因缺氧而使人窒息。
二氧化碳(CO2)
二氧化碳性质:是一种无色、略带酸味的惰性气体,它对空气的比重是1.52,易溶于水、不助燃、不能维持呼吸,略带毒性,对眼、喉咙和鼻的粘膜有刺激作用。
《煤矿安全规程》中规定:在采掘工作面的进风风流中,按体积计算,二氧化碳浓度不得超过0.5%。
四、井下空气的主要有害气体及其防治措施
井下空气由于受矿井生产的物理、化学变化的影响,使井下空气中存在一些有毒有害气体: 主要有害气体:
一)、一氧化碳(CO)
1、性质:
一氧化碳是一种无色、无味、无臭的气体,它对空气的比重为0.97,微溶于水。在一般温度与压力下,一氧化碳的化学性质不活泼,但浓度达到13%--17%时遇火能引起爆炸。
一氧化碳之所以毒性很强是因为它对人体内血红球所含的血色素的亲和力比氧大250--300倍。因此,一氧化碳吸入人体后就阻碍了氧和血色素的正常结合,使人体各部分组织和细胞缺氧,引起窒息和中毒死亡。
2、一氧化碳的浓度与中毒程度的关系:
一氧化碳
0.016
0.048
中毒时间 中毒程度 中毒症状
数小时 无征兆或轻微头痛
1小时以内 轻微中毒 耳鸣、头痛、头晕、心跳
0.128 0。5--1小时 严重中毒 除上述症状外四肢无力、呕吐、感觉
迟盹、丧失行动能力
0.4 短时间内 致命中毒 丧失知觉、痉挛、呼吸停顿、假死
《煤矿安全规程》规定井下空气中一氧化碳的浓度不得超过0.0024%。
3、井下一氧化碳地来源:
(1)、井下火灾;煤层自燃。
(2)、沼气与煤层爆炸。
(3)、爆破工作。二氧化碳见上节。硫化氢气体。
1、性质:
硫化氢气体是一种无色微甜,有臭鸡蛋气味的气体,它对空气的比重为1.19,溶于水,能燃烧,当浓度达4.3%--46%时还具有爆炸性。
3、井下来源:
(1)、坑木析腐烂。
(2)、含硫矿物(如:黄铁矿、石膏等)遇水分解。
(3)、从采空区废旧巷道涌出或煤围岩中放出。
某矿井通风网络
(4)、爆破工作产生。二氧化硫:
1、性质:
二氧化硫是一种无色具有强烈硫黄燃烧味的气体,它对空气的比重为2.2,易溶于水。它对眼睛和呼吸器官有强烈刺激作用。
《煤矿安全规程》规定井下空气中二氧化硫气体浓度不得超过0.0005%。
3、井下来源:
(1)、含硫矿物的自燃或缓慢氧化。
(2)、从煤围岩中放出。
(3)、在硫矿物中爆破生成。二氧化氮(NO2)
1、性质:二氧化氮为红褐色气体,它对空气的比重为1.57,极易溶于水,对眼睛鼻腔、呼吸道及肺部有强烈的刺激作用,二氧化氮与水结合生成硝酸,因此对肺部组织起腐蚀破坏作用,可以引起肺部浮肿。
2、二氧化氮的浓度与中毒程度关系:
《煤矿安全规程》规定井下空气中二氧化氮气体浓度不超过0.00025%。
井下来源:
主要是放炮产生。
六)沼气:沼气的数量约占矿井瓦斯总和的90%以上,重点放在下一章阐述。
二、防止有害气体的措施:
1、加强通风。适当增加风量,把这些有害气体排出或冲淡到《煤矿安全规程》规定的安全浓度以下,是常用也是有效防止井下有害气体危害的最根本的措施。
2、加强检查,用各种瞧骷嗍泳?赂髦钟泻ζ?宓亩??以便及时采取相应的措施。
3、如果某种有害气体的含量较大可采取抽放措施。如瓦斯抽放。
4、井下通风不良的地区或不通风的旧巷道内积聚大量的有害气体。故在这些旧巷口要设栅栏,挂警标,防止他人误入。如果必须进入,需要详细检查各种有害气体方可进入。
5、若有人由于缺氧窒息或呼吸有毒有害气体中毒时立即将中毒者移到有新鲜空气的巷道或地面并进行人工呼吸(NO2、H2S中毒除外)施行急救。
编辑本段 矿井通风设施:
为了使井下风流沿指定路线流动分配,就必须在某些巷道内建筑引导控制风流的构筑物即通风设施,它分为引导风流和隔断风流的设施。引导风流的设施:
1、风峒:风峒是联接扇风机装置和风井的一段巷道。
大煤沟煤矿风峒
风峒多用混凝土、砖石等建材构筑成圆形式矩形巷道,这是由风筒的特点所决定的。
2、风桥:风桥是将两股平面交*的新、污风流隔成立体交*新、污风分开的一种通风设施。
根据结构特点不同风桥可分为三种:
(1)绕道式风桥。(2)、混凝土风桥。(3)、铁筒风桥
3、风窗(卡)
风窗是在巷道内设在墙或门上,在墙或门上留一个可调空间窗口,通过调节空间窗口面积从而达到调节风量的目的。
4、风障:
在巷道内利用木板、苇席、风筒布做布障起到引导风流的作用。常用此方法处理高冒处、落山角等处积聚瓦斯。
5、风筒:
在巷道中利用正压或负压通风动力通过管道把指定的风量送到目的地,这个管道就叫风筒。隔断风流设施:
1、防爆门(帽)
防爆门是装在扇风机筒,为防止井下发生煤尘瓦斯爆炸时产生的冲击波毁坏扇风机的安全设施。当井下发生煤尘、瓦斯爆炸时,防爆门即能被气浪冲开,爆炸波直接冲入大气,从而起到保护扇风机的作用。
2、挡风墙
在不允许风流通过,也不允许行车行人的井巷如采空区、旧巷、火区以及进风与回风大巷之间的联络小眼都必须设置挡风墙,将风流截断。以免造成漏风,风流形成短路使通风系统失去合理稳定性而发生事故。
挡风墙分为:临时挡风墙、永久挡风墙。
1)临时挡风墙:一般是在立柱上钉木板,木板上抹黄泥建成临时挡风墙。
使用条件:服务年限不长,巷道围岩压力小,漏风率要求不不严时使用。
2)永久挡风墙:一般使用料石、砖土、水泥、混凝土建筑。
使用条件:服务年限长,巷道围岩压力大,漏风率要求严时使用。
3、风门:
在不允许风流通过,但需行人或行车的巷道内,必须设置风门。
按结构分:普通风门和自运风门。
4、通风设施管理规定:
(1)、通风部门做好系统的调整,尽量减少风卡以自然分配风量为主。
(2)、爱护通风设施做到:风门严禁同时打开或用车撞风门、风门损坏及时汇报通风调度,如果影响系统风量受影响区域停电、撤人修复后再生产,安监调度组织分析处理。
(3)、通风设施由通风部门管理,其他单位无权移动、拆除等权力,如需要拆除、移动需要提前和通风部门联系。
(4)、严禁跨入栏杆、拆除栏杆、闭墙、风卡等通风设施。
编辑本段 风量的测定:
矿井通风的主要参数之一就是风量,即:单位时间内通过井巷空气的体积。测风站要求
1、必须设在直线巷道中。
2、测风站长度不少于4m。
3、测风站前后10m内没有拐弯和其它障碍。
4、测风站应挂有记录牌,注明编号、地点、断面积、平均风速、风量、测风日期、测风点。
5、测风站应设在没有漏风、支架齐全、断面变化不大的巷道内。测风方法
测风采用定点法、九点法和线路法,求出平均风速。
在同一断面测风次数不少于三次,每次测量结果的误差不应超过5%,然后取三次的平均值。测得平均风速后通过测风站的断面积计算出巷道风量。
《煤矿安全规程》规定,至少每10天要进行一次全面风量测定。
4、通风设施管理规定:
(1)、通风部门做好系统的调整,尽量减少风卡以自然分配风量为主。
(2)、爱护通风设施做到:风门严禁同时打开或用车撞风门、风门损坏及时汇报通风调度,如果影响系统风量受影响区域停电、撤人修复后再生产,安监调度组织分析处理。
(3)、通风设施由通风部门管理,其他单位无权移动、拆除等权力,如需要拆除、移动需要提前和通风部门联系。
(4)、严禁跨入栏杆、拆除栏杆、闭墙、风卡等通风设施。风量的测定
矿井通风的主要参数之一就是风量,即:单位时间内通过井巷空气的体积。
一)、测风站要求:
1、必须设在直线巷道中。
2、测风站长度不少于4m。
3、测风站前后10m内没有拐弯和其它障碍。
4、测风站应挂有记录牌,注明编号、地点、断面积、平均风速、风量、测风日期、测风点。
5、测风站应设在没有漏风、支架齐全、断面变化不大的巷道内。
二)、测风方法:
测风采用定点法、九点法和线路法,求出平均风速。
在同一断面测风次数不少于三次,每次测量结果的误差不应超过5%,然后取三次的平均值。测得平均风速后通过测风站的断面积计算出巷道风量。
《煤矿安全规程》规定,至少每10天要进行一次全面风量测定。
编辑本段 掘进通风
在掘进巷道时,为了供给人员呼吸,排除稀释掘进工作面瓦斯或爆破后产生的有害、有害气体和矿尘要进行通风。掘进巷道的通风叫掘进通风。掘进通风方法分全负压通风、引射器通风和局扇通风。由于我集团公司主要采用局扇通风,故主要讲局扇通风。局扇通风
局扇通风是我国矿井广泛采用的一种掘进通风方法,它是利用局扇和风筒把新鲜风流送入掘进工作面的。
一)、局扇通风方式:
压入式;抽出式;混合式
1、压入式:就是利用局扇将新鲜空气经风筒压入工作面,而泛风则由巷道排出。
压入式通风局扇安装在新鲜风流中,泛风不经过局扇,因而局扇一旦发生电火花,不易引起瓦斯、煤尘爆炸,故安全性好,可用硬质风筒也可用柔性风筒,适应性较强。其缺点是:工作面泛风沿独头巷道排往回风巷,不利于巷道中作业人员呼吸。放炮后炮烟由巷道排出的速度慢,时间较长,影响掘进速度。
2、抽出式通风:
抽出式通风与压入式通风相反,新鲜空气由巷道进入工作面,泛风经风筒由局扇排出。
抽出式通风由于污风经风筒排出,保持巷道为新鲜空气故劳动卫生条件较好,放炮后所需要排烟的速度快,有利于提高掘进速度。但由于风筒末端的有效吸程比较短,放炮时易崩坏风筒,如吸程长则通风效果不好,污风经过局扇安全性差,抽出式通风必须使用硬性风筒,适应性差。
3、混合式:
混合式通风把上述两通风方式同时混合使用。虽然克服了上述的一些缺点,但由于设备多,电耗大,管理复杂,未被推广使用。压入式通风由于安全性好,设备简单适应性好,效果好而被广泛应用。局部通风管理
1、局扇:
1)、指定专人负责管理(挂牌管理),不准任意停开局扇,保持正常运转。
2)、局扇安装必须上双风机双电源且安装开停监测装置。
3)、局扇安设在进风巷中。距回风流不得少于10m,不许发生循环风。
4)、局扇安装与掘进工作面的电器设备必须有延时风电闭锁装置。
5)、局扇因故停运,必须撤人钉栅栏,按有关规定进行排放瓦斯。
2、风筒:
1)、推广使用Φ700mm软质阻燃风筒,提高局扇出风率。
2)、提高接头质量,减少接头漏风,坚持使用反边式双边接头。
3)、风筒要吊挂平直,拉紧吊稳,逢环必吊,提高局扇供风量。
5)、经常及时接风筒,保证风筒出口到煤头不超距。
编辑本段 矿井瓦斯
煤层瓦斯的主要成分一般是沼气和其它有害气体等,这些气体统称为瓦斯。由于瓦斯的危害主要是沼气,所以从狭义上讲矿井瓦斯就专指沼气而言。矿井瓦斯的生成:
煤矿井下的瓦斯来自煤层和煤系地层。瓦斯是在成煤和煤的变质过程中所伴生的气体。古代植物在成煤的初期,经厌氧菌的作用,植物纤维质分解成大量瓦斯。以后在上覆岩层的高温高压作用下泥炭褐煤发生物理和化学变化,逐渐转变成烟煤、无烟煤,煤在这种变质过程中挥发分减少,;固定炭增加。挥发分转变成沼气。这部分瓦斯由于埋藏在地层深处,不易跑掉得以保存。但在漫长的地质年代里由于受到诸多因素的影响,大部分瓦斯已放散出去,仅有一小部分至令还保存在煤层或岩层中,煤层或岩层中所含的瓦斯主要就是这部分瓦斯。瓦斯的性质:
甲烷是无色、无味、无臭可以燃烧和爆炸的气体,不能供人呼吸,能造成人员窒息,它易于扩散,扩散速度是空气的1.34倍,瓦斯的渗透能力是空气的1.6倍,甲烷对空气的比重为0.544,因此容易积存在巷道顶板冒落的顶板空峒内。瓦斯的化学性质极不活泼,几乎不与其它物质化合,难溶于水。瓦斯与空气适量混合后具有燃烧爆炸性。这是瓦斯所以成为矿内主要灾害的原因所在。瓦斯爆炸条件:
1、瓦斯浓度:
在标准状况下瓦斯按体积百分比浓度为5—16%时遇到高温火源后就会发生瓦斯爆炸。浓度在9.1—9.5%时爆炸威力最大。
瓦斯爆炸界限不是固定不变的,它受温度、压力以及煤层其它可燃气体、惰性气体的混入等因素的影响。
2、引燃温度:瓦斯引燃温度一般在650℃—750℃,但它受到瓦斯浓度及火源性质等的影响1)、瓦斯的引爆延迟性对爆破工作有实际意义。炸药在爆破时瞬间温度可达2000℃,但火焰存在的时间很短,仅为千分之几秒,故不会引起瓦斯爆炸。但若炸药变质,装药炮泥不符合规定,就有可能使火焰存在时间加长甚至引燃药包造成瓦斯燃烧或爆炸事故,所以对井下爆破工作应十分注意。高温火源的存在是引起瓦斯爆炸的必要条件。电气火花、违章放炮、煤炭自燃、明火等都易引起瓦斯爆炸。
3、足够的氧含量:
实验证明,空气中的氧气浓度降低时,瓦斯的爆炸界限缩小,当氧气浓度减少到12%以下时,瓦斯就不会爆炸。
煤矿安全新技术:第一章 概述
矿井通风是矿井安全生产的基本保障。矿井通风指借助于机械或自然风压,向井下各用风点连续输送适量的新鲜空气,供给人员呼吸,稀释并排出各种有害气体和浮尘,以降低环境温度,创造良好的气候条件,并在发生灾变时能够根据撤人救灾的需要调节和控制风流流动路线的作业。
20世纪80年代以来,随着煤矿机械化水平的提高,采煤方法、巷道布置及支护的改革,电子和计算机技术的发展,我国矿井通风技术有了长足的进步,通风管理日益规范化、系列化、制度化,通风新技术和新装备愈来愈多地投人应用。以低耗、高效、安全为准则的通风系统优化改造在许多煤矿得以实施,使其能够更好地为高产、高效、安全的集约化生产提供安全保障。
编辑本段
矿井通风系统的优化改造
矿井通风系统是向矿井各用风点供给新鲜空气、排出污风的通风方式(进\回风井布置的方式一中央式、对角式、混合式)、通风方法(抽出式、压人式、抽压混合式)、通风网络(由风流流经的巷道及相关设施组成)和通风控制设施(通风构筑物)的总称。
近年来,为适应综合机械化采煤的要求,原煤炭工业部在总结建设经验,借鉴国外先进技术的基础上于1984颁发了《关于改革矿井开拓部署的若干技术规定》,作为新井建设、生产矿井技术改造和开拓延深的依据。为适应生产集约化,开采深度增加、瓦斯涌出量大的情况,以“针对现实、着眼长远、因地制宜、对症下药、综合治理、节能增风”为指导思想,对数百对国有煤矿进行了通风系统优化改造,配合生产矿井井田合并、开采范围扩大和储量增多等改扩建工作。这类通风系统优化改造主要有以下几个方面内容。通风方式的改革
根据矿井的特点和需要,把中央式通风演变为中央一对角式混合通风系统。为适应综采集约化生产,工作面单产超过1Mt/a的要求,对矿井采用分区域开拓。因此,形成区域式通风系统,即每个区域均有一组进、回风井,各个区域采用相对独立的通风技术。它具有通风线路短、风阻小、区域间干扰小、安全性好,便于选择主要通风机,使其实现高效节能的特点,提高了矿井的通风能力和抗灾能力,适用于特大型矿井或因地质条件须把井田划为若干独立生产区域的矿井。总之,新建大型矿井通风系统以对角式、分区式为主,改扩建的生产矿井以混合式为主,主要通风机的经济运行能力的提高
离心式风机
为提高主要通风机的经济运行能力,主要开展了以下工作。
(1)为适应通风系统的变化和生产集约化的要求,20世纪80年代以来,我国相继出现2K60系列和GAF系列的轴流式风机和G4-73与K4-73系列的离心式风机。20世纪90年代,依托于国家“八五”关项目,研制出FD型的对旋式风机。该系列风机具有能耗低、效率高的特点,因而迅速在我国煤矿推广。在原煤炭部“九五”攻关项目中,无驼峰式轴流风机的研制成功增大了通风机的稳定工作区域。
(2)研制出离心式风机的调速装置,如可控硅调速、液力偶合器和变频调速装置。
(3)加强了通风机及其附属装置管理,减少风硐、风机内部以及扩散塔的阻力损失和漏风,提高了通风机运行效率。在生产矿井进行老、旧机的运行状态改造中,主要查明了通风机特性与通风网络风阻特性匹配差,主要通风机选型偏大,风机转速偏高,电机容量偏大,使风机长期处于低效区运行等问题,提出一整套风机经济运行的办法,对老、旧风机进行多种方法的技术改造,如采取更换机芯、改造叶轮和叶片等办法提高风机运行效率。采区通风系统优化布置
优化采区和工作面的通风布置,能有效提高通风能力和排出瓦斯的效果。随着集约化生产和矿井向深部发展,采区和采煤工作面的绝对瓦斯涌出量剧增,要求采区和采煤工作面的通风能力迅速增大。在采区的通风系统布置方面,出现了3条上山的布置方式,采区内有了独立的进风和回风上山,利于采区内采煤工作面和掘进工作面的独立通风,提高了采区的通风能力和风流的稳定性,也为保证采区的局部反风和作业人员的安全脱险提供了有利条件。在采煤工作面的通风布置方面,在常规的U型通风布置的基础上,提出了U+L型方式(或称尾巷布置方式),改变了采空区的流场分布,较有效地防止了采煤工作面隅角瓦斯积聚,促进了采空区瓦斯的排放。为了防止专用瓦斯排放巷瓦斯超限,又提出和采用了Y型的通风布置方式,单独供应新鲜风流直接稀释采空区涌出的瓦斯。此外,还采用了W型和Z型等布置方式,在适宜条件下均取得了较理想的通风效果,大大地改善了采煤工作面的通风条件,保证了安全回采。新型通风设施的使用
为适应矿井灾变时期风流控制的需要,研制出能在地面利用矿井环境监控系统或远程控制系统操纵井下主要风门的自动系统,解决了灾变时期,当矿工和救护人员难以到达灾区和烟流入侵区域而按救灾要求必须开启或关闭风门的难题。
篇2:矿井通风与安全
矿井空气流动的基本理论
本章主要研究内容:
1、空气的物理参数----T、P、Φ、μ、ρ;
2、风流的能量与点压力----静压,静压能;动压、动能;位能;全压;抽出式和压入式相对静压、相对全压与动压的关系
3、能量方程
连续性方程;单位质量能量方程、单位体积能量方程
4、能量方程在矿井中的应用----边界条件、压力坡度图 本章的难点: 点压力之间的关系
能量方程及其在矿井中的应用
第一节
空气的主要物理参数
一、温度
温度是描述物体冷热状态的物理量。矿井表示气候条件的主要参数之一。热力学绝对温标的单位K,摄氏温标:T=273.15+t
二、压力(压强)
空气的压力也称为空气的静压,用符号P表示。压强在矿井通风中习惯称为压力。它是空气分子热运动对器壁碰撞的宏观表现。
P=2/3n(1/2mv2)
矿井常用压强单位:Pa
Mpa mmHg mmH20 mmbar bar atm 等。
换算关系:
(见P396)
三、湿度
表示空气中所含水蒸汽量的多少或潮湿程度。
表示空气湿度的方法:绝对湿度、相对温度和含湿量三种。1.绝对湿度
每立方米空气中所含水蒸汽的质量叫空气的绝对温度。其单位与密度单位相同(Kg/ m3),其值等于水蒸汽在其分压力与温度下的密度。
v=Mv/V 饱和空气:在一定的温度和压力下,单位体积空气所能容纳水蒸汽量是有极限的,超过这一极限值,多余的水蒸汽就会凝结出来。这种含有极限值水蒸汽的湿空气叫饱和空气,这时水蒸气分压力叫饱和水蒸分压力,PS,其所含的水蒸汽量叫饱和湿度s。2.相对湿度
单位体积空气中实际含有的水蒸汽量(V)与其同温度下的饱和水蒸汽含量(S)之比称为空气的相对湿度。
φ= V/ S 反映空气中所含水蒸汽量接近饱和的程度。
Φ愈小
空气愈干爆,φ=0为干空气;
φ愈大
空气愈潮湿,φ=1为饱和空气。
温度下降,其相对湿度增大,冷却到φ=1时的温度称为露点
露点:将不饱和空气冷却时,随着温度逐渐下降,相对湿度逐渐增大,当达到100%时,此时的温度称为露点。
上例甲地、乙地的露点分别为多少? 3.含湿量
含有1kg干空气的湿空气中所含水蒸汽的质量(kg)称为空气的含湿量。
d= V/ d,V= φPs/461T
d=(P-φPs)/287T
d=0.622 φPs/(P-φPs)
四、焓
焓是一个复合的状态参数,它是内能u和压力功PV之和,焓也称热焓。
i=id+d•iV=1.0045t+d(2501+1.85t)实际应用焓-湿图(I-d):
五、粘性
流体抵抗剪切力的性质。
当流体层间发生相对运动时,在流体内部两个流体层的接触面上,便产生粘性阻力(内摩擦力)以阻止相对运动,流体具有的这一性质,称作流体的粘性。其大小主要取决于温度。
根据牛顿内摩擦定律有:
FSdvdy运动粘度为:
式中:μ--比例系数,代表空气粘性,称为动力粘性或绝对粘度。其国际单位:帕.秒,写作:Pa.S。
温度是影响流体粘性主要因素,气体,随温度升高而增大,液体而降低
六、密度
单位体积空气所具有的质量称为空气的密度,与P、t、湿度等有关。湿空气密度为干空气密度和水蒸汽密度之和,即:
d.av
根据气体状态方程,可推出空气密度计算公式:
0.003484PT(10.378PsatP)
kg/m3式中:P为大气压,Psat为饱和水蒸汽压,单位:Pa;
φ为相对湿度;
T为空气绝对温度,T= t + 273 , K。
第二节
风流的能量与压力
能量与压力是通风工程中两个重要的基本概念,压力可以理解为:单位体积空气所具有的能够对外作功的机械能。
一、风流的能量与压力 1.静压能-静压
(1)静压能与静压的概念
空气的分子无时无刻不在作无秩序的热运动。这种由分子热运动产生的分子动能 的一部分转化的能够对外作功的机械能叫静压能。
在矿井通风中,压力的概念与物理学中的压强相同,即单位面积上受到的垂直作用力。静压也可称为是静压能。(2)静压特点
a.无论静止的空气还是流动的空气都具有静压力;
b.风流中任一点的静压各向同值,且垂直于作用面;
c.风流静压的大小(可以用仪表测量)反映了单位体积风流所具有的能够对外作功的静压能的多少。如说风流的压力为Pa,则指风流1m3具有101332J的静压能。(3)压力的两种测算基准(表示方法)
根据压力的测算基准不同,压力可分为:绝对压力和相对压力。
A、绝对压力:
以真空为测算零点(比较基准)而测得的压力称之为绝对压力,用 P 表示。
B、相对压力:
以当地当时同标高的大气压力为测算基准(零点)测得的压力称之为相对压力,即通常所说的表压力,用 h 表示。
风流的绝对压力(Pi)、相对压力(h)和与其对应的大气压(P0)三者之间的关系如下式所示:
hi = Pi -
P0
aP0ha(+)bP0Pahb(-)Pb真空
Pi与hi比较:
I、绝对静压总是为正,而相对静压有正负之分;
II、同一断面上各点风流的绝对静压随高度的变化而变化,而相对静压与高度无关。
III、Pi 可能大于、等于或小于与该点同标高的大气压(P0i)。2.重力位能
(1)重力位能的概念
物体在地球重力场中因地球引力的作用,由于位置的不同而具有的一种能量叫重力位能,简称位能,用 EPO 表示。
如果把质量为M(kg)的物体从某一基准面提高Z(m),就要对物体克服重力作功M.g.Z(J),物体因而获得同样数量(M.g.Z)的重力位能。即:
EPO=M.g.Z 重力位能是一种潜在的能量,它只有通过计算得其大小,而且是一个相对值。实际工作中一般计算位能差。(2)位能计算
重力位能的计算应有一个参照基准面。如下图 1-2两断面之间的位能差:
Ep012=∫ i gdzi
(3)位能与静压的关系
11dzi2020 当空气静止时(v=0),由空气静力学可知:各断面的机械能相等。设以2-2断面为基准面:
1-1断面的总机械能
E1=EPO1+P2-2断面的总机械能
E2=EPO2+P由E1=E2得: EPO1+P1=EPO2+P2
由于EPO2=0(2-2断面为基准面),EPO1=12.g.Z12,所以:P2=EPO1+P1=12.g.Z12+P1
说明:I、位能与静压能之间可以互相转化。
II、在矿井通风中把某点的静压和位能之和称之为势能。(4)位能的特点 a.位能是相对某一基准面而具有的能量,它随所选基准面的变化而变化。但位能差为定值。
b.位能是一种潜在的能量,它在本处对外无力的效应,即不呈现压力,故不能象静压那样用仪表进行直接测量。
c.位能和静压可以相互转化,在进行能量转化时遵循能量守恒定律。
3.动能-动压
(1)动能与动压的概念
当空气流动时,除了位能和静压能外,还有空气定向运动的动能,用Ev表示,J/m3;其动能所转化显现的压力叫动压或称速压,用符号hv表示,单位Pa。(2)动压的计算
单位体积空气所具有的动能为:
Evi = i×v2×0.5 式中: i --I点的空气密度,Kg/m3;
v--I点的空气流速,m/s。
Evi对外所呈现的动压hvi,其值相同。(3)动压的特点
a.只有作定向流动的空气才具有动压,因此动压具有方向性。
b.动压总是大于零。垂直流动方向的作用面所承受的动压最大(即流动方向上的动压真值);当作用面与流动方向有夹角时,其感受到的动压值将小于动压真值。
c.在同一流动断面上,由于风速分布的不均匀性,各点的风速不相等,所以其动压值不等。
d.某断面动压即为该断面平均风速计算值。(4)全压
风道中任一点风流,在其流动方向上同时存在静压和动压,两者之和称之为该点风流的全压,即:
全压=静压+动压。
由于静压有绝对和相对之分,故全压也有绝对和相对之分。A、绝对全压(Pti)
Pti=Pi+hvi B、相对全压(hti)
hti=hi+hvi=Pti-Poi 说明:`A、相对全压有正负之分;
B、无论正压通还是负压通风,Pti>Pi,hti> hi。
二、风流的点压力之间相互关系
风流的点压力是指测点的单位体积(1m3)空气所具有的压力。通风管道中流动的风流的点压力可分为:静压、动压和全压。
风流中任一点i的动压、绝对静压和绝对全压的关系为:
hvi=Pti-Pi
hvi、hI和hti三者之间的关系为:hti = hi + hvi。
压入式通风(正压通风):风流中任一点的相对全压恒为正。
∵
Pti and Pi > Po i
∴
hi>0,hti>0且 hti>hi
压入式通风的实质是使风机出口风流的能量增加,即出口风流的绝对压力大于风机进口的压力。
抽出式通风(负压通风):风流中任一点的相对全压恒为负,对于抽出式通风由于hti和hi为负,实际计算时取其绝对值进行计算。
∵Pti and Pi<Poi
hti <0且hti>hi,但|hti |<| hi | 实际应用中,因为负通风风流的相对全压和相对静压均为负值,故在计算过程中取其绝对值进行计算。即:|hti | =|hi |-hvi
抽出式通风的实质是使风机出口风流的能量降低,即出口风流的绝对压力小于风
a压入式通风P0b抽出式通风hvPatP0Pa hat(+)hbt(-)hvPbt真空ha(+)hb(-)Pb压入式通风抽出式通风机进口的压力。
风流点压力间的关系
例题2-2-
1如图压入式通风风筒中某点i的hi=1000Pa,hvi=150Pa,风筒外与i点同标高的P0i=101332Pa,求:
(1)i点的绝对静压Pi;
(2)i点的相对全压hti;
(3)i点的绝对静压Pti。
解:(1)Pi=P0i+hi=101332+1000=102332Pa
(2)hti=hi+hvi=1000+150=1150Pa
(3)Pti=P0i+hti=Pi+hvi=101332.32+1150=Pa 例题2-2-
2如图抽出式通风风筒中某点i的hi=1000Pa,hvi=150Pa,风筒外与i点同标高的P0i=101332Pa,求:
(1)i点的绝对静压Pi;
(2)i点的相对全压hti;
(3)i点的绝对静压Pti。
解:(1)Pi=P0i+hi=101332.5-1000=100332Pa
(2)|hti | =|hi|-hvi =1000-150=850Pa
hti =-850 Pa
(3)Pti=P0i+hti=101332.5-850=100482Pa
三、风流点压力的测定 1.矿井主要压力测定仪器仪表
(1)绝对压力测量:空盒气压计、精密气压计、水银气压计等。(介绍实物)(2)压差及相对压力测量:恒温气压计、“U”水柱计、补偿式微压计、倾斜单管压差计。
(3)感压仪器:皮托管,承受和传递压力,+-测压。2.压力测定(1)绝对压力
直接测量读数。
(2)相对静压(以如图正压通风为例)(注意连接 方法):
推导如图
h = hi
? 以水柱计的等压面0 ’ -0’ 为基准面,设: i点至基准面的高度为 Z,胶皮管内的空气平均密度为ρm,胶皮管外的空气平均密度为ρm’;与i点同标高的大气压P0i。
则水柱计等压面0 ’-0’两侧的受力分别为:
水柱计左边等压面上受到的力:
P左= P0+ ρ水gh =P0i + ρm’g(z-h)+ ρ水gh 水柱计右边等压面上受到的力:
P右= P0i+ρmgz
由等压面的定义有:P左= P右,即:
P0i+ρm’g(z-h)+ρ水gh= P0i+ρmgz
若ρm= ρm’有:
h0+-zP0 ih
∵ ρ水
>> ρm
pip0i水mg0 hpip0i水g(pip0i)ghighi
对于负压通风的情况请自行推导(注意连接方法): 说明:
(I)水柱计上下移动时,hi 保持不变;
(II)在风筒同一断面上、下移动皮托管,水柱计读数不变,说明同一断面上hi相同。
(3)相对全压、动压测量
测定连接如图(说明连接方法及水柱高度变化)
(以上关系,实验室验证)
第三节
矿井通风中的能量方程
当空气在井巷中流动时,将会受到通风阻力的作用,消耗其能量;为保证空气连续不断地流动,就必需有通风动力对空气作功,使得通风阻力和通风动力相平衡。
一、空气流动连续性方程
在矿井巷道中流动的风流是连续不断的介质,充满它所流经的空间。在无点源或点汇存在12 时,根据质量守恒定律:对于稳定流,流入某空间的流体质量必然等于流出其的流体质量。
如图井巷中风流从1断面流向2断面,作定常流动时,有:
ρ1 V1 S1= ρ2 V2 S2
Mi=const 式中 ρ1、ρ2 --
1、2断面上空气的平均密度,kg/m3 ;
V1,,V2--
1、2 断面上空气的平均流速,m/s;
S1、S2 --
1、2断面面积,m2。
两种特例:
(I)若 S1=S2,则ρ1 V1=ρ2V2;
(II)若ρ1= ρ2,则V1 S1= V2 S2。对于不可压缩流体,通过任一断面的体积流量相等,即Q=viSi=const
二、可压缩流体的能量方程
能量方程表达了空气在流动过程中的压能、动能和位能的变化规律,是能量守恒和转换定律在矿井通风中的应用。
(一)单位质量(1kg)流量的能量方程
在井巷通风中,风流的能量由机械能(静压能、动压能、位能)和内能组成,常用1kg空气或1m3空气所具有的能量表示。机械能:静压能、动压能和位能之和。
内能:风流内部所具有的分子内动能与分子位能之和。空气的内能是空气状态参数的函数,即:u = f(T,P)。能量分析
q1z10LRqRz202p2、v2、u2p1、v1、u1
任一断面风流总机械能:压能+动能+位能 任一断面风流总能量:压能+动能+位能+内能 所以,对单位质量流体有:
22断面总能量11断面总能量:P11:v122g.Z1u1P22v222g.Z2u2假设:1kg空气由1 断面流至2 断面的过程中,LR(J/kg):克服流动阻力消耗的能量;
qR(J/kg):LR部分转化的热量(这部分被消耗的能量将转化成热能仍存在于空气中);
q(J/kg):外界传递给风流的热量(岩石、机电设备等)。
根据能量守恒定律:
P1v1g.ZuqqP2v2g.Zu112
2212R222+ LR11 根据热力学第一定律,传给空气的热量(qR+q),一部分用于增加空气的内能,一部分使空气膨胀对外作功,即:
2qRq=u2u1Pdv1
P2P12222 1P2v2P1v1dPv11PdvvdP1式中:v为空气的比容,m3/kg。又因为:
112vdP=21dP
上述三式整理得:
2LR122v1v2vdP22gZ1Z2即为:单位质量可压缩空气在无压源的井巷中流动时能量方程的一般形式。过程 式中
称为伯努力积分项,它反映了风流从1断面流至2断面的 过 程中的静压能变化,它与空气流动过程的状态密切相关。对于不同的状态过程,其积分结果是不同的。
对于多变过程,过程指数为n,对伯努利积分进行积分计算,可得到:单位质量可压缩空气在无压源的井巷中流动时能量方程可写成如下一般形式。
LRP1P2n112n22v1v222gZ1Z2其中,过程指数n按下式计算:
n=
dlnPdlnvlnPlnvlnP1lnP2lnv2lnv112
lnP1lnP2ln1ln2有压源 Lt 在时,单位质量可压缩空气井巷中流动时能量方程可写成如下一般形式。
P1P2n121n22v1v222gZ1Z2LtLR 令:
P1P2n121nP1P2m式中,m表示1,2断面间按状态过程考虑的空气平均密度,得
P1P2P1P2n121nP1P2lnlnP1P2P1P221mP1/1P2/2
则单位质量流量的能量方程式又可写为:
LRP1P2mP1P222v1v222gZ1Z2LtLR
m22v1v222gZ1Z2Lt
(二)单位体积(1m3)流量的能量方程
我国矿井通风中习惯使用单位体积(1m3)流体的能量方程。在考虑空气的可压缩性时,那么1m3 空气流动过程中的能量损失(hR,J/m3(Pa),即通风阻力)可由1kg空气流动过程中的能量损失(LR J/Kg)乘以按流动过程状态考虑计算的空气密度m,即:hR=LR.m;则单位体积(1m3)流量的能量方程的书写形式为:
22v1v2P1P222mgmZ1Z2hR
几点说明:
1.1m3空气在流动过程中的能量损失(通风阻力)等于两断面间的机械能差。2.gm(Z1-Z2)是1、2断面的位能差。当1、2断面的标高差较大的情况下,该项数值在方程中往往占有很大的比重,必须准确测算。其中,关键是m的计算,及基准面的选取。
m的测算原则:将1-2测段分为若干段,计算各测定断面的空气密度(测定 P、t、φ),求其几何平均值。基准面选取:
取测段之间的最低标高作为基准面。例如:如图所示的通风系统,如要求1、2断面的位能差,基准面可选在2的位置。其位能差为:
而要求1、3两断面的位能差,其基准面应选在0-0位置。其位能差为:
113200 Epo1212gdZm12gZ1230Epo133gdZm10gZ10m30gZ1、2两断面上的动能差
A.在矿井通风中,因其动能差较小,故在实际应用时,式中可分别用各自断面hv122v121v2222上的密度代替计算其动能差。即上式写成:
22v1v222m
其中: ρ1、ρ2分别为1、2断面风流的平均气密度。
B.动能系数:是断面实际总动能与用断面平均风速计算出的总动能的比。即:
Kvsu222v2udsvSsu3dsv3S因为能量方程式中的v1、v2分别为1、2断面上的平均风速。由于井巷断面上风速分布的不均匀性,用断面平均风速计算出来的断面总动能与断面实际总动能不等。需用动能系数Kv加以修正。在矿井条件下,Kv一般为1.02~1.05。由于动能差项很小,在应用能量方程时,可取Kv为1。
因此,在进行了上述两项简化处理后,单位体积流体的能量方程可近似的写成:
hR22v1v2gm1Z1gm2Z2P1P22212J/m3
hR22v1v2gm1Z1gm2Z2+HtP1P22212J/m3
(三)关于能量方程使用的几点说明
1.能量方程的意义是,表示1kg(或1m3)空气由1断面流向2断面的过程中所消耗的能量(通风阻力),等于流经1、2断面间空气总机械能(静压能、动压能和位能)的变化量。
2.风流流动必须是稳定流,即断面上的参数不随时间的变化而变化;所研究的始、末断面要选在缓变流场上。
3.风流总是从总能量(机械能)大的地方流向总能量小的地方。在判断风流方向时,应用始末两断面上的总能量来进行,而不能只看其中的某一项。如不知风流方向,列能量方程时,应先假设风流方向,如果计算出的能量损失(通风阻力)为正,说明风流方向假设正确;如果为负,则风流方与假设相反。
4.正确选择求位能时的基准面。
5.在始、末断面间有压源时,压源的作用方向与风流的方向一致,压源为正,说明压源对风流做功;如果两者方向相反,压源为负,则压源成为通风阻力。
6.应用能量方程时要注意各项单位的一致性。7.对于流动过程中流量发生变化,则按总能量守恒与转换定律列方程
22v1v2Q1ZgPQZgP1122m2221m1222v3Q2hR12Q3hR13Q3ZgP333m32
例1 在某一通风井巷中,测得1、2两断面的绝对静压分别为101324.7 Pa和101858 Pa,若S1=S2,两断面间的高差Z1-Z2=100米,巷道中m12=1.2kg/m3,求:
1、2两断面间的通风阻力,并判断风流方向。
解:假设风流方向12,列能量方程:
hR1222v1v2Z1Z2gm12P1P22212
=(101324.7-101858)+0+100×9.81×1.2= 643.9 J/m3。
由于阻力值为正,所以原假设风流方向正确,12。
例2 在进风上山中测得1、2两断面的有关参数,绝对静压P1=106657.6Pa,P2=101324.72Pa;标高差Z1-Z2=-400m;气温t1=15℃,t2=20℃;空气的相对湿度1=70%,2=80%;断面平均风速v1=5.5m/s,v2=5m/s;求通风阻力LR、hR。解:查饱和蒸汽表得;t1=15℃时,PS1=1704Pa;t2=20℃时,PS2=2337Pa;
106657.60.3780.71704311.2841kg/m288.15106657.60.3780.82337311.1958kg/m101324.72-ln101324.720.7210.00348420.003484101324.72293.15n=lnP1lnP2ln1ln2ln106657.6ln1.2841ln1.1958LR22P1P2v1v2gZ1Z2n11222n22106657.6101324.725.550.7211.28411.195820.729.81400
= 382.26 J/kg 又∵
mP1P2P1P2n121nlnlnP1P2P1P1P221P2P1/1P2/2ln106657.6101324.72106657.6106657.6101324.72101324.72106657.6/1.28411.28411.1958ln101324.72/1.1958
= 1.23877
kg/m
3∴
hR22v1v2P1P222mgmZ1Z25.5252106657.6101324.72221.238779.811.23877400 = 475.19 J/m3
或
hR=LR×m=382.26×1.23877= 473.53 J/m3。
第四节
能量方程在矿井通风中的应用
一、水平风道的通风能量(压力)坡度线
(一)能量(压力)坡度线的作法
意义:掌握压力沿程变化情况;有利于通风管理。
扩散器0压力Pa12345678910hR78H tP0hR12流程 如图所示的通风机-水平风道系统,绘制能量(压力)坡度线。1.风流的边界条件
入口断面处:风流入口断面处的绝对全压等于大气压(可用能量方程加以证明,对入口断面的内外侧列能量方程并忽略极小的入口流动损失),即:
Ptin=P0,所以,htin=0,hin=—hvin;
出口断面:风流出口断面处的绝对静压等于大气压(可用能量方程加以证明,对出口断面的内外侧列能量方程并忽略极小的出口流动损失),即:
Pex=P0,所以,hex=0,htex=hvex; 2.作图步骤
1)以纵坐标为压力(相对压力或绝对压力),横坐标为风流流程。
2)根据边界条件确定起始点位置。
3)将各测点的相对静压和相对全压与其流程的关系描绘在坐标图中。
4)最后将图上的同名参数点用直线或曲线连接起来,就得到所要绘制的能量(压力)坡度线。
(二)能量(压力)坡度线的分析 1.通风阻力与能量(压力)坡度线的关系
由于风道是水平的,故各断面间无位能差,且大气压相等。由能量方程知,任意两断面间的通风阻力就等于两断面的全压差:
hRi~jPiPjhvihvjPtiPtjhtihtj(∵
P0i
=
P0j)a.抽出段
求入口断面至i断面的通风阻力,由上式得:
hR0~i = ht0-hti = - h ti
(ht0=0)
即:入口至任意断面i的通风阻力(hR0~i)就等于该断面的相对全压(hti)的绝对值。
求负压段任意两断面(i、j)的通风阻力:
hRi~j=Pti-Ptj
∵ hti = Pti-P0i 又∵| hti | = |hi|-hvi
代入上式得:Pti =P0i-|hi|-hvi
同理:Ptj = P0i-|hj|-hvj
∴ hRi~j =(P0i-| hi|-hvi)-(P0i-| hj|-hvj)
=| hj |-| hi | + hvi-hvj
=| htj |-| hti |
若hvi= hvj,hRi~j = | hj |- | hi | b.压入段
求任意断面i至出口的通风阻力,由上式得:
hRi~10 = hti-ht10 =hti-hv10(h10=0)
即:压入段任意断面i至出口的通风阻力(hRi~10)等于该断面的相对全压(hti)减去出口断面的动压(hv10)。
求正压段任意两断面(i、j)的通风阻力: 同理可推导两断面之间的通风阻力为:
hRi~j =
hti -
htj 2.能量(压力)坡度线直观明了地表达了风流流动过程中的能量变化
绝对全压(相对全压)沿程是逐渐减小的;
绝对静压(相对静压)沿程分布是随动压的大小变化而变化。3.扩散器回收动能(相对静压为负值)
所谓扩散器回收动能,就是在风流出口加设一段断面逐渐扩大的风道,使得出口风速变小,从而达到减小流入大气的风流动能。扩散器安设的是否合理,可用回收的 动能值(hv)与扩散器自身的通风阻力(hRd)相比较来确定,即:
hv= hvex-hvex’ hRd
合理
hv= hvex-hvex’< hRd
不合理
在压入段出现相对静压为负值的现象分析,如上图,对9 ~10 段列能量方程:
hR9~10 =(P9+hv9)-(P10+ hv10)=P9+hv9-P0-hv10
= h9+hv9-hv10
∴h9 = hR9~10-(hv9-hv10)
如果:hv9-hv10 > hR9~10,则,h9<0(为负值)
因此,测定扩散器中的相对静值就可判断扩散器的安装是否合理,相对静压的负值越大,其扩散器回收动能的效果越好。
(三)通风机全压(Ht)1.通风机全压的概念
通风机的作用:就是将电能转换为风流的机械能,促使风流流动。通风机的全压Ht等于通风机出口全压与入口全压之差:
Ht = Pt6-Pt5
2.通风机全压Ht与风道通风阻力、出口动能损失的关系
由能量方程和能量(压力)坡度线可以看出: hR6~10 = Pt6-Pt10
∴Pt6 = hR6~10+Pt10,hR0~5 = Pt 0-Pt∴Pt5 = Pt 0-hR0~5,Ht = Pt6-Pt5 = hR6~10+Pt10-(Pt 0-hR0~5)
=hR6~10+P0+hv10-(P0-hR0~5)
=hR6~10+hv10+hR0~5
Ht= hR0~10+hv10
通风机全压是用以克服风道通风阻力和出口动能损失。
通风机用于克服风道阻力的那一部分能量叫通风机的静压Hs。
Hs = hR0~10,Ht= Hs +hv10
两个特例:
a)无正压通风段(6断面直接通大气)通风机全压仍为:Ht = Pt6-Pt5
∵Pt5=Pt0-hR0~5;Pt6= P0+hv6
∴Ht=hR0~5+hv6
b)无负压通风段(5断面直接通大气)
∵Pt6=hR6~10+Pt10,Pt10=P0+hv10;Pt5=P0
∴Ht=hR6~10+hv10 无论通风机作何种工作方式,通风机的全压都是用于克服风道的通风阻力和出口动能损失;其中通风机静压用于克服风道的通风阻力。
二、通风系统风流能量(压力)坡度线
(一)通风系统风流能量(压力)坡度线
绘制矿井通风系统的能量(压力)坡度线(一般用绝对压力)的方法:是沿风流流程布设若干测点,测出各点的绝对静压、风速、温度、湿度、标高等参数,计算出各点的动压、位能和总能量;然后在压力(纵坐标)- -
风流流程(横坐标)坐标图上描出各测点,将同名参数点用折线连接起来,即是所要绘制的通风系统风流能量(压力)坡度线。
以下图所示简化通风系统为例,说明矿井通风系统中有高度变化的风流路线上能量(压力)坡度线的画法。作图步骤:
1.确定基准面。一般地,以最低水平(如2-3)为基准面。
2.测算出各断面的总压能(包括静压、动压和相对基准面的位能)。
3.选择坐标系和适当的比例。以压能为
抽出式通风方式压入式通风方式 1423 纵坐标,风流流程为横坐标,把各断面的静压、动压和位能描在坐标系中,即得1、2、3、4断面的总能量。
4.把各断面的同名参数点用折线连接起来,即得1-2-3-4流程上的压力坡度线。
(二)矿井通风系统能量(压力)坡度线的分析
1.能量(压力)坡度线(a-b-c-d)清楚地反映了风流在流动过程中,沿程各断面上全能量与通风阻力hR之间的关系。
全能量沿程逐渐下降,从入风口至某断面的通风阻力就等于该断面上全能量的下降值(如b0b),任意两断面间的通风阻力等于这两个断面全能量下降值的差。
2. 绝对全压和绝对静压坡度线的坡度线变化有起伏(如1~2段风流由上向下流动,位能逐渐减小,静压逐渐增大;在3~4段其压力坡度线变化正好相反,静压逐渐减小,位能逐渐增大)。说明,静压和位能之间可以相互转化。
3.1、4断面的位能差(EP01-EP04)叫做自然风压(HN)。HN和通风机全压(Ht)共同克服矿井通风阻力和出口动能损失。
HN+Ht(d2~e)=(d0~d)+(d1~d2)4.能量(压力)坡度线可以清楚的看到风流沿程各种能量的变化情况。特别是在复杂通风网络中,利用能量(压力)坡度线可以直观地比较任意两点间的能量大小,判断风流方向。这对分析研究局部系统的均压防灭火和控制瓦斯涌出是有力的工具。例2 如图2-4-4所示的同采工作面简化系统,风流从进风上山经绕道1
Ⅰ压力436Ⅱ2150流程Ⅰ152流程01234压能P0PaEP01a1a2a0(a)b0b2b(b1)c2c0c(c1)ed0dEP04HNd1Htd2 分为二路;一路流经1-2-3-4(2-3为工作面Ⅰ);另一路流经1-5-6-4(5-6为工作面Ⅱ)。两路风流在回风巷汇合后进入回风上
Ⅱ364 山。如果某一工作面或其采空区出现有害气体是否会影响另一工作面?
篇3:煤矿矿井通风与安全
一、矿井中的空气
矿井空气主要来自地面。地面空气是由下列气体组成的混合物:氧气为20.96%;氮气为78.13%;二氧化碳为0.04%;其他气体为0.87%。此外还有少量蒸汽、微生物和灰尘等。
地面空气输入矿井后, 成分发生了一系列变化, 空气中混入各种有害气体和粉尘, 氧气浓度减少;温度、湿度、压力也发生了变化。这种进入矿井发生了变化的空气叫作矿井空气, 主要成分仍然是氧气、氮气等。其中变化不大的叫作新鲜空气, 如井下进风道中的风流;变化程度较大的叫污浊空气, 如井下回风道中的风流。
二、矿井空气中的主要有害气体
矿空气中的有害气体可分为三大类:爆炸性气体 (如沼气) 、刺激性气体 (如二氧化硫) 、窒息性气体。其中窒息性气体又可分为单纯窒息性气体 (如氮气) 和化学性窒息性气体 (如一氧化碳) 。这些有毒有害气体总称为矿井瓦斯。
三、矿井通风压力和阻力
空气在井巷中流动就形成进巷风流。只有压力存在的时候空气才会产生流动, 而且都是由压力高的地方往压力低的地方流动。井巷中, 这种空气借以流动的压力就称为矿井通风压力。矿井通风压力是由通风机械和自然风压产生的, 其共同作用的结果使进风井口的压力高于回风井口, 即在进、回风井口间产生一个压力差, 促使空气流动。
风流在井巷流动时, 井巷的四壁、支架和各种堆积物以及井巷断面参数的突然变化、转弯等, 都有阻止空气流动的作用。这种空气在井巷内流动中受致到干扰和阻滞作用, 称为矿井通风阻力。通风阻力消耗通风能量, 使通风压力降低, 造成通风压力损失。
为了使风流按预定要求在井巷中流动, 就必须以通风压力来克服矿井阻力。二者是作用力和反作用力的关系, 数值相等, 方向相反。因此, 只要计算出通同风阻力值, 就知道通风所需要的压力值, 并根据该值和矿井所需风量合理地选择矿井通风动力设备。
四、矿井通风系统
矿井通风系统是一个总称, 矿井通风系统在煤矿开采作业中具有十分重要的作用, 该系统通常包括了地下矿井的通风方法、通风的方式以及通风的网络等等。矿井通风系统对保障矿井正常上产及矿井中作业人员的生命安全具有至关重要的作用。
1、矿井通风方法
矿井通风方法有很多, 主要根据矿井通风机的工作机制得以划分, 主要可以分为压入式、抽出式、联合式三种矿井通风方法。
2、矿井通风方式
矿井通风方式根据回风巷在矿井中的位置来区分, 当前我国矿井通风方式主要有中央式、对角式、分区式和混合式。
中央式可以分为并列式和中央分列式, 顾名思义是指进、回风井在矿井中沿倾斜方向的相对位置不同而进行区分的。
对角式可以分为两翼对角式和分区对角式两种。他们的区分方是如果进风井在整个井田的中央, 而回风井则位于井田两翼 (沿倾斜方向的浅部) , 则这种方式叫作两翼对角式;如果是进、回风井分别处在井田的两翼则为单翼对角式;分区对角式顾名思义是指进风井位于井田走向的中央, 在各采区开掘一个不深的小回风井, 没有总回风巷。
分区域式是指井田中每个生产区域都设有进、回风井的情况, 分别构成各自独立的通风系统。
混合式则为由上述诸种方式混合组成。两种不同的矿井通风方式混合使用就变成了混合组成方式。
3、通风网络
矿井中风流经过矿井巷间的连接形式称通风网络。分为串联、并联、角联和复杂联。
4、通风构筑物
通风构筑物有:风门、调节风窗、风墙和风桥。通风构筑物用来保证风流按拟定的路线流动, 对风流进行控制调节。它是矿井中通风系统的关键构成部分, 它直接影响到矿井通风情况。所以通风构筑物的管理是矿井通风的重要工作。
5、矿井风量调节
(1) 局部风量调节。局部风量调节方法有增阻法、减阻法和辅助通风机法。
(2) 矿井总风量调节。当用局部风量调节法不能满足生产的需要时, 就必须对扩井总风量进行调节。即通过改变主要通风机的工作点实现矿井总风量的增减。
6、矿井漏风
进入井巷的风流, 在未到达用风地点之前就漏出的现象称为矿井漏风。漏风使有效风量减少, 威胁安全生产, 它是衡量地下煤矿开采中通风管理工作的质量标准。
五、瓦斯管理
瓦斯管理主要包括地下矿井中瓦斯的分级管理、矿井瓦斯的分源治理和矿井瓦斯的综合管理措施。
1. 矿井瓦斯的一般管理措施:
组织措施;瓦斯检查制度;建立与健全瓦斯报表、瓦斯台账和瓦斯记录制度。
2. 矿井瓦斯的特殊管理措施。
1) 加强通风管理。2) 局部瓦斯积聚处理的安全技术组织措施。3) 排放瓦斯要实行分级管理。4) 局部积聚瓦斯的处理与排放。5) 盲巷管理及瓦斯排放。
六、井下调改风工作
1、井下调改风工作需要专业性强的人员来操作, 必须有专门的措施。
比如巷道贯通、通风系统调整、初采初放、过地质构造等特殊性的工作需要制定与之相对应的《通风安全技术措施》, 除此之外还必须有专业的通风部门干部现场协调指挥。
2、执行调改风任务单审批制度, 调改风工作需要各相关部门协调配合, 因此需要提前通知调度室及各个有关部门。
对于巷道贯通、改变盘区通风系统、影响采掘工作面正常生产等大型调改风, 必须停止盘区内的一切作业。调改风过程必须由通风部、队干部现场指挥, 保证作业安全。每次调改风必须对整个盘区通风系统进行一次全面测定, 测定结果报矿总工程师、通风部及有关单位。
3、
通风部门必须按季度绘制通风系统图, 每月进行完善补充修改, 矿井通风系统图必须标明巷道的风流、风向、风量及通风设施。
4、
通风部门每三年进行一次通风 阻力测定, 每五年进行一次通风机性能测试, 新安装的主要通风机投运前必须进行性能测 试工作。
5、机电队加强主要通风机的日常管理、维护工作, 确保主要通风机的正常运转。
出现异常时备用主要通风机必须在10min内启动。
摘要:矿井通风的就是把地面新鲜的空气输入到井下来排除各种有毒有害气体和灰尘。矿井通风系统是否合理, 对矿井的通风状况好坏、保障矿井安全生产和经济效益的提高起着重要的作用。
篇4:矿井通风与安全
关键词:矿井;安全;瓦斯;教学
随着矿山开采深度增加和采掘机械化程度的提高,矿山通风与安全技术对于矿井建设和生产起着越来越重要的作用。因此,对于一名合格的煤矿技术人员和管理者,将通风安全学好是必需的,而如何融会贯通并将通风与安全这课程的作用最大限度地发挥出来,并提高学生的学习主动性是摆在我们教学工作者面前的一个重要课题。
根据我10余年的教学实践经验,现从以下几个方面对该课程的教学与实践进行进一步地探索。
一、緊扣教学大纲,精选教学内容
《矿井通风与安全》这门课程的主要内容系统阐述了矿井通风与安全的基础理论和技术,并通过典型案例分析讨论了灾害发生原因及其防治措施。
矿井通风防止瓦斯突出与爆炸是其中关键的内容,因此,作为教师就要很好地了解课程有关这方面的内容特点、教学目标,并利用较多的学时进行讲授,达到较好的学习效果。
比如,在讲授瓦斯突出的原理与机理方面时,要把教学重点放在瓦斯突出的防治方面,例如,区域性防突和局部防突的原理及技术措施等,而且在讲授理论的同时,尽可能结合实际经验,给出具体生动的安全措施,分析哪些情况下适合用保护层开采防治瓦斯突出,哪些情况下适合用预抽采煤层防治瓦斯突出等。
通过这样理论结合实践经验的教学,可以使学生深刻理解国家安全生产方针,熟悉煤矿井下灾害的发生机理及防治技术,逐步掌握防灾基础手段——矿井通风的基础理论和技术方法,使学生初步具有矿井通风技术管理、设计和制定防灾专项技术措施的能力。此外,在教学过程中教师要紧扣教学大纲,培养面向煤矿从事矿井通风及瓦斯、粉尘、火灾等检测、防治类安全工作的岗位群。
案例教学法起源于哈佛大学的情景案例教学,此后迅速成为全球培训业公认的最行之有效的培训方式之一。哈佛案例分析法就是一种把实际工作中出现的问题作为案例交给学员研究分析,培养学员的分析能力、解决问题及执行业务能力的培训方法,大多用于工商管理及市场营销。
本文所说的案例教学与此略有区别,既有共同性,又有独特性,我们用于课堂教学的案例教学方法是:通过已发生的案例,在进行事故分析的基础上,让学员从事故中汲取教训,学习相关的法律、法规,知识与技能和管理经验,并积累一定的事故应急处理方法,从而达到以后工作中杜绝和减轻事故危害的目的。
运用案例教学法,组织矿井通风与安全类课程的教学活动,并用案例分析来考核和评价学生对安全系统的熟知程度,对不安全因素的识别与判定,对可能出现的初始的、直接引起事故的危险加深认识。
近几年,多次发生的特别重大事故中大部分都与瓦斯突出有关。而这些事故的发生,直接给我们的授课提供了活生生的数据,教师要将这些典型案例分析给学生,做到理论与实践相结合,使学生不仅仅被动地接受教材上的死知识,而要学会能对实际发生的案例进行分析,从中吸取经验教训,增加知识,加深对课程内容的理解,掌握事故分析方法。
运用案例教学应注意几点:一是设计具有亲和力的环境,如改变座位,便于学员交流;二是具有时间概念,对不同时段的教学任务做到心中有数,及时引导,控制进度;三是鼓励广大学员参与,并发表各自的看法;四是协助学员理清思路,把学员的意见综合在一起;五是把总结放在讨论的最后,案例中突出的知识点、应对措施、安全理念教育要条理清晰,简明扼要。
从教学实践中得出,案例教学由于其自身的优点,必将在教学中发挥它应有的作用。
师生关系不应该仅仅是单向传递的关系,而应该是双向交流的。即教师不但要把知识传授给学生,能回答学生的问题,而且要对学生有所了解,与学生进行深入的交往,与学生有良好的交流。这些都要求教师要及时了解本学科知识的更新、发展,了解到国内外瓦斯防治的最新动态、理论发展和技术革新。教师的知识结构应成为开放性结构,即对一切有用的新知识开放;通过对新知识的不断接纳和吸收,使自己的知识结构不断得到改造和更新。这样才能跟得上时代,及时解答学生进一步的问题,解决学生在学业中的困惑。
此外,教师要注意将学科内的最新研究成果、进展、动态融入到教学过程中,使学生可以及时掌握最新知识,拓展学生视野。
四、运用多媒体技术,使课程内容直观生动
多媒体教学是随着计算机技术的发展而发展起来的教学方法,由于多媒体形象生动的特点,可以使煤矿安全培训中的课堂教学活动变得活泼、生动有趣,富有启发性、真实性,不但可以从根本上改变传统的、单调的教学模式,而且还能活跃学员的思维,激发学员的学习兴趣,从而提高教学效果。
我在多媒体教学手段的运用中,多以多媒体制作为重点。一个好的课件,能够反映出教学过程中先进的教学思想,能够体现教学内容上的独特意境,能够适应学员对知识探求的要求。而在《矿井通风与安全》课程中,其课件的制作有多种便利条件。比如,在课件中,教师可以列举大量现场的生产实例,以便学生理论结合实践,达到学以致用,可以很好地提高学员兴趣。此外,教师还可以在课件中插入丰富的图片、原汁原味的工作视频、有趣味的动画等,如在掘进通风部分,课件采用了通俗形象的漫画进行描述,通俗易懂、幽默风趣,使学员留下深刻的印象,学习效率明显提高。
体验式教学是指根据学生的认知特点和规律,通过创造实际的或重复经历的情境和机会,呈现或再现、还原教学内容,使学生在亲历的过程中理解并建构知识、发展能力、产生情感、生成意义的教学观和教学形式。
在教学过程中运用体验式教学方法,既强调教师的主导作用、学生的主体地位,还能充分发挥学生的主观能动性、积极参与性,调动学生的创新思维。在教学过程中,教师扮演的是“导演”与“教练”的角色,起到引导的作用。教师要根据教学大纲和本节课的教学目的设置问题,让学员参与角色扮演、模拟实验、实际操作和讨论解答,并对每个学员发言及演练进行记录,从中发现每个学员的“短板”,然后进行有针对性地讲解。学生通过自行解答问题和动手演示操作,知道自己的不足,在同学之间讨论和教师讲解的过程中,能够更好地学到自己真正需要的知识。
在我从以上几个方面入手讲授课程时,提高了学生学习的积极性和主动性,使学生既学习到了理论知识,又增强了现场实践经验,为学生以后的职业生涯打下了良好的基础。而这些,也正是我们所想要达到的目的,我要在这些理论经验上不断探索,争取在教学中更好地提高教学质量。
(作者简介:张慧婷,平顶山天安煤业股份有限公司四矿职教中心副主任,安全工程专业本科学历,工学学士,助理讲师。)
参考文献:
1.《叩问红与黑》,人民日报出版社,2004
2.刘玉洲、张玉华,《2003年1月-2005年6月煤矿瓦斯事故的统计分析》,《河南理工大学学报》
3.黄国庆、崔晓立,《采掘安全技术》[M],化学工业出版社,2006
4.刘强,《多媒体技术在安全培训教学中的应用》[j],《淮南职业技术学院学报》,2005
【责编 齐秋爽】
篇5:矿井通风与安全课程设计
时光飞逝,岁月如梭,眨眼间已经毕业十年了。在这十年多的时间里,我不仅加深了对原来学习知识的理解,而且对以前书本中没有接触或接触不深的知识有了进一步的认识。
2006年8月我被招聘到开元公司地测部测量员一职,主要负责(井巷中腰线标定、巷道贯通测量、地面测量、放样等)测量相关工作。为了更好地完成领导安排的工作任务,我积极翻阅相关资料、书籍,向专业人士和同事请教不明白之处及工作中存在的种种问题。同时为了能让自身掌握更多的专业技能知识,也积极参加了单位内部的一些相关职业技能培训。我能在日常工作中树立正确的工作态度,不断总结工作经验,努力做好本职工作的同时积极主动帮助他人,做到安于平凡敢于吃苦,一切以工作为首要原则!
一、思想方面:
我重视加强理论和业务知识学习,在工作中,坚持一边工作一边学习,不断提高自身综合素质水平。
一是认真学习“三个代表”重要思想,深刻领会“三个代表”重要思想的科学内涵,增强自己实践“三个代表”重要思想的自觉性和坚定性,认真学习党的十八大报告及十八届三中、四中全会精神。自觉坚持以党的十八大为指导,为进一步加快完善社会主义市场经济体制,全面建设小康社会作出自己的努力。
二是认真学习工作业务知识,重点学习公文写作及公文处理和电脑知识。在学习方法上做到在重点中找重点,抓住重点,并结合自己在公文写作及公文处理、电脑知识方面存在哪些不足之处,有 针对性地进行学习,不断提高自己的办公室业务工作能力。
三是认真学习法律知识,结合自己工作实际特点,利用闲余时间,选择性地开展学习,通过学习,进一步增强法制意识和法制观念。
二、工作方面:
量工程是每个工程前期要先进行的事项,确保工程盾构推进能沿着设计轴线推进及全线贯通,主要取决于控制测量、联系测量和地下控制测量。测量是工程的眼睛,作为测量人员,我们本着实际求实、一切以数据说话的原则从事测量工作。
1、控制测量:地面控制测量误差对地下横向贯通误差的影响较为复杂,主要控制其测量终点横向点位误差即终点的横向位移。这是盾构机能否顺利进洞的关键因素之一。终点的横向点误差是由测角误差和边长误差的共同影响所产生。开工前由业主提供地面控制网。我们严格按照要求对控制点进行3个月一次的复测,保证其点位的稳定。
2、联系测量:巷道施工中为了保证巷道正确贯通,就必须将地面控制网中的坐标、方向及高程,经由地面传递到地下。这个传递工作称为联系测量,是联系测量中常用地一种。坐标与方向地传递又称为定向测量,通过定向测量,使地下平面控制网与地面上有统一地坐标系统。而高程传递则使地下高程系统获得与地面统一地起算数据。提高测量精度及分析测量误差通常我们可采用附和或闭合路线来完成这项工作。
3.地下控制测量:地下控制测量包括导线及高程测量。地下导 线测量的目的是以必要的精度,按照与地面控制测量统一的坐标系统。建立足以确保盾构顺利进洞的井下控制系统,为盾够姿态的测定提供依据。由于巷道内没有足够的空间无法随意布设导线,只能以支导线形式向前延伸。然而支导线精度较差,势必造成较大的误差,所以我们采用工作量较大的双导线测量,以提高精度,是保证巷道的贯通的较佳方法。通过现场的工作经历,我深刻认识到自己的不足之处,专业知识欠缺、社会经验不足、工作能力欠佳等多方面问题。这些不足已成为我努力学习、强化专业知识、积累工作经验的动力源泉,争取以较强的工作能力,丰富的社会经验和更加饱满的热情投入工作中!
三、学习和生活方面:
通过在领导和同事们的耐心帮助与鼓励下,自身的不断努力,个人素质有较明显提高,在工作上取得了一定的成绩,但也存在诸多不足。我总结了上班以来学到的东西,得到了至深的锻炼。现将切实工作总结如下:
1、严谨科学、认真求证
在施工测量之前,认真审图,对图上有误、有疑义的地方及时向领导及前辈们请教、咨询、学习。在测量放线之前,利用CAD算出坐标,反复查看,确保万无一失。对各种原始数据注意保存和及时整理,因为“经验,是从众多的数据中总结出来的”!测量放线后应认真复合线的位置确保每条线的实际误差不超过半公分。
2、不断进取、精益求精
社会在进步,时代在发展,只有不 断学习,才能与时俱进。各种新的施工材料和施工机具不断地应用到施工建设中来,相对的,也出现了更多的施工工艺和施工方法,各项规范也跟着发展。在如今高速发展的,不能自我提高,就意味着落后,就不能适应目前施工建设工作的发展要求。
3、纳百家之长,补自家之短
在与甲方、测绘等单位专业人士的接触中吸收他人的经验,平时到多跑跑施工现场检查与学习,学习工人们施工方法和施工工艺。从他人的成败中,看到问题的所在,同时也看到自身的不足,以达到“博众家之长,补一已之短”的目的。
在今后的工作中根据现场出现的问题积累经验,吸取教训,加 强新知识,新理论的充实,个人操作技术的加强,管理意识的加强,配合其他部门做好本职工作。明年的工作中,在闲暇时间多与片区其他项目测量员互相交流经验,分享心得,互相提升。做到别人出现的问题我不会再出错,我自己出现过的错误不再次发生,做到慢慢蜕变,直到破茧成蝶。
旧的一年快过去了,新的一年将要到来。回顾这一年工作我体 会到了工作中的幸苦和快乐。但是我想就算对工作付出的再多也是值得,因为我所学的东西将会在我以后人生旅途中发挥着很大的作用。在今后的工作中,我会不断加强自己的业务水平与能力,向身边的同事学习更多的专业理论知识和现场施工管理,将理论与实际相结合,总结经验、吸取教训,用积极向上的工作热情;吃苦在前、享受在后的工作作风,去挑战困难和挫折。与同事团结合作、互帮互助,共同 创造美好的明天,为公司的发展壮大添砖加瓦。
最后我要再次感谢公司的领导以及同事,是你们提供给我这么大一个学习工作的平台,让我见识到了建筑这一神圣的工作,我一定不负你们的期望全面提高自己努力做好一个新时期的人才。
总工办地质测量部
苏志春
篇6:矿井通风与安全总结最终版
1.煤矿井下发生事故是在场人员的行动原则?
发生事故后,现场人员应尽量了解和判断事故的性质、地点和灾害程度,迅速向矿调度室报告。同时应根据灾情和现有条件,在保证安全的前提下,及时进行现场抢救,制止灾害进一步扩大。在制止无效时,应由在场的负责人或有经验的老工人带领,选择安全路线迅速撤离危险区域。
当井下掘进工作面发生爆炸事故时,在场人员要立即打开并按规定佩戴好随身携带的自救器,同时帮助受伤的同志戴好自救器,迅速撤至新鲜风流中。如因井巷破坏严重,退路被阻时,应千方百计疏通巷道。如巷道难以疏道,应坐在支架良好的下面,等待救护队抢救。采煤工作面发生爆炸事故时,在场人员应立即佩戴好自救器,在进风侧的人员要逆风撤出,在回风侧的人员要设法经最短路线,撤退到新鲜风流中。如果由于冒顶严重撤不出来时,应集中在安全地点待救。
井下发生火灾时,在初起阶段要竭力扑救。当扑救无效时,应选择相对安全的避灾路线撤离灾区。烟雾中行走时迅速戴好自救器。最好利用平行巷道,迎着新鲜风流背离火区行走。如果巷道已充满烟雾,也绝对不要惊慌、乱跑,要冷静而迅速辨认出发生火灾的地区和风流方向,然后有秩序地外撤。如无法撤出时,要尽快在附近找一个硐室等地点暂时躲避,并把硐室出入口的门关闭以隔断风流,防止有害气体侵入。
当井下发生透水事故时,应避开水头冲击(手扶支架或多人手挽手),然后撤退到上部水平。不要进入透水地点附近的平巷或下山独头巷道中。当独头上山下部唯一出口被淹没无法撤退时,可在独头上山迎头暂避待救。独头上山水位上升到一定位置后,上山上部能因空气压缩增压而保持一定的空间。若是采空区或老窑涌水,要防止有害气体中毒或窒息。
井下发生冒顶事故时,应查明事故地点顶、帮情况及人员埋压位置、人数和埋压状况。采取措施,加固支护,防止再次冒落,同时小心地搬运开遇险人员身上的煤、岩块,把人救出。搬挖的时候,不可用镐刨、锤砸的方法扒人或破岩(煤),如岩(煤)块较大,可多人搬或用撬棍、千斤顶等工具抬起,救出被埋压人员。对救出来的伤员,要立即抬到安全地点,根据伤情妥善救护。
2.火区缩封的条件?封闭火区内火灾熄灭的标志有哪些?试述分段逐步打开火区的步骤。答:
1、缩封条件:(1)火区内空气中的氧气浓度降到5.0%以下。(2)火区内空气中不含有乙烯、乙炔,一氧化碳浓度在封闭期间内逐渐下降,并稳定在15ppm以下。(3)上述3项指标持续稳定的时间不少于15天。
2、判别火区火熄灭的条件:(1)火区内温度下降到30℃ 以下,或与火灾发生前该区的空气日常温度相同;(2)火区内的氧气浓度降到5%以下;(3)火区内空气中不含有C2H2、C2H4 , CO 在封闭期间内逐渐下降,并稳定在0.001%以下;(4)火区的出水温度低于25 ℃,或与火灾发生前该区的日常出水温度相同;(5)以上四项指标持续稳定的时间在1个月以上。
3、火区启封:火区启封可以采取锁风启封和通风启封的方法。锁风启封火区具体做法是:先在火区进风密闭墙外5~6m 的地方构筑一道带风门的临时密闭,形成一个过渡空间,习惯上称为“风闸”,并在这两道密闭之间储备足够的水泥、砂石和木板等材料,然后,救护队员佩带呼吸器进入风闸内,将风门关好,形成一个不通风的封闭空间。这时,救护队员可将原来的密闭打开,进入火区探查。确认在一定距离的范围内无火源后,再选择适当的地点(一般可距原密闭100~150m,条件允许时也可到300m)构筑新的带风门的密闭。新密闭建成后,就可将原来的密闭打开,恢复通风、处理和恢复巷道。如此重复,一段一段地打开火区,逐步向火源逼近。3.如何判定一个瓦斯矿井采用瓦斯抽放的必要性?简述矿井瓦斯抽放方法有哪些?
答:衡量一个矿井是否有必要抽放,可以根据以下几点:对于生产矿井,由于矿井的通风能力已经确定,所以矿井瓦斯用处量超过通风所能稀释瓦斯量时,即应考虑抽放瓦斯;对于新建矿井,当采煤工作面瓦斯涌出量>5m3/min,掘进工作面瓦斯涌出量>3m3/min,采用通风方法解决瓦斯问题不合理时,应该抽放瓦斯。对于全矿井,一般认为,绝对瓦斯涌出量>30m3/min,相对瓦斯涌出量>15~25m3/t时应抽放瓦斯;开采保护层应考虑抽放瓦斯。开采层瓦斯抽放方法:(1)岩巷揭煤、煤巷掘进预抽:由岩巷向煤巷打穿层钻孔,煤巷工作面打超前钻孔。(2)采空区大面积预抽:由开采层机巷、风巷或煤门打上向、下向顺层钻孔;由石门、岩巷或临近层煤巷向开采层打穿层钻孔;地面钻孔;密闭开采巷道。(3)边掘边抽:由煤巷两侧或岩巷向煤层周围打防护钻孔。(4)边材边抽:由开采层机巷、风巷等向工作面前方卸压区打钻;由岩巷、煤门等向开采分层的上部或下部未开采分层打穿层或顺层钻孔。邻近层瓦斯抽放方法:(1)开采工作面推过后抽放上下邻近煤层:由开采层机巷、风巷、中巷或岩巷向邻近层打钻;由开采层机巷、风巷、中巷或岩巷向采空区方向打斜交钻孔;由煤门打沿邻近层钻孔;地面钻孔;在邻近层掘汇集瓦斯巷道; 采空区瓦斯抽放:密封采空区插管、打钻和预埋管抽放。围岩瓦斯抽放:由岩巷两侧或正前向裂隙带打钻、密闭岩巷进行抽放等措施。
4.火风压的定义?发生风流逆转和逆退的原因是什么?如何防止风流逆转和逆退?
答:火风压:火灾时高温烟流刘过巷道所在地回路中的自然风压发生变化,这种因火灾而产生的自然风压变化量在灾变通风中称为火风压。1)上行风路产生火风压。发生风流逆转的原因主要是:①因火风压的作用使高温烟流流经巷道各点的压能增大:②因巷道冒顶等原因造成火源下风副风阻增大,导致主干风路火源上风侧风量减小.沿程各节点压能降低。为了防止旁侧风路风流逆转,主要措施有:①降低火风压;②保持主要通风机正常运转;⑧采用打开风门、增加排烟通路等措施减小排烟路线上的风阻。
2)下行风路产生火风压。在下行风路中产生火风压,其作用方向与主要通风机作用风压方向相反。当火风压等于主要通风机分配到该分支压力时,该分支的风流就会停滞;当火风压大于该分支的压力时,该分支的风流就会反向。主干风路风阻及其产生的火风压一定时,风量越小,越容易反向。防止下行风风路风流逆转的途径有:减小火势,降低火风压;增大主要通风机分配到该分支上的压力。
3)发生风流逆退的原因是:烟气增量过大,主通风机风压作用于主干风路的风压小。防止逆退措施是:减小主干风路排烟区段的风阻;在火源的下风侧使烟流短路排至总回风;在火源的上风侧、巷道的下半部构筑挡风墙,迫使风流向上流,并增加风流的速度。挡风墙距火源5m左右;也可在巷道中安带调节风窗的风障,以增加风速。
5.灾变时期风流控制:1维持正常通风稳定风流2停风3反风4风流短路
6.煤层自燃的指标气体?常用的指标气体(1)一氧化碳(CO)(2)ICO(3)乙烯。(4)其它指标气体。国外有的煤矿采用烯炔比(乙烯和乙炔(C2H2)之比)和链烷比(C2H6/CH4)来预测煤的自热与自然。
7.煤与瓦斯突出的危害?预防煤与瓦斯突出的技术措施? 突出的危害:突出可直接摧毁巷道设施设备破坏通风系统、造成人员伤亡(压力波冲击、煤岩掩埋、瓦斯窒息),突出涌出的大量瓦斯可引起瓦斯的燃烧爆炸。区域性防突措施:实施以后可使较大范围煤层消除突出危险性的措施,称为区域性防突措施;开采保护层和预抽煤层瓦斯,其中开采保护层最有效。局部防突措施:实施以后可使局部区域(如掘进工作面)消除突出危险性的措施称为局部防突措施;松动爆破;钻孔排放瓦斯;水力冲孔;金属骨架;超前钻孔;超前支架;卸压槽;震动放炮。8.预防瓦斯爆炸的措施:
1、防止瓦斯积聚,瓦斯积聚指浓度超过2%,体积超过0.5m3,a搞好通风,b及时处理局部积存的瓦斯,c抽放瓦斯,d经常检查瓦斯浓度和通风状态。
2、防止瓦斯引燃:明火、防爆电器、供电闭锁、安全炸药和瞬发雷管,防止机械摩擦、抗静电复合材料。
3、防止瓦斯灾害事故扩大的措施1编制周密的预防和处理瓦斯爆炸事故计划,并对有关人员贯彻这一计划。2实行分区通风3通风系统力求简单4装有主要通风机的出风井口,应安装防爆门或防爆井盖,防止爆炸波冲毁通风机,影响救灾与恢复通风5防止煤尘事故的隔爆措施,同样也适用于防止瓦斯爆炸。9.瓦斯突出的一般规律?
(1)突出多发生在一定的采深以后;(2)突出多发生在地质构造带、应力集中区;(3)突出的强度和次数,与煤层厚度、倾角、硬度、透气性等有关;(4)突出与瓦斯关系,瓦斯压力小含量低,可能发生突出。(5)突出大多发生在落煤、放炮工序(6)突出前有预兆 10.影响瓦斯涌出的因素:
1、自然因素:1煤层和围岩瓦斯含量2地面大气压变化
2、开采技术因素 :1开采规模 2开采顺序和回采方法 3生产工艺 4风量变化 5采区通风系统 6采空区密闭质量
11.瓦斯爆炸的条件:
1、一定浓度的瓦斯(5%~16%);
2、高温火源的存在(引火温度为650℃~750℃)时间大于瓦斯的引火感应器;
3、充足的氧气(O2浓度>12%)
12.矿井瓦斯等级:矿井瓦斯等级,根据矿井相对瓦斯涌出量、绝对瓦斯涌出量和瓦斯涌出形式划分为:低瓦斯矿井:矿井相对瓦斯涌出量小于或等于10m3/t且矿井绝对瓦斯涌出量小于或等于40m3/t;高瓦斯矿井:矿井相对瓦斯涌出量大于10m3/t且矿井绝对瓦斯涌出量大于40m3/t;矿井采掘过程中,只要发生一次煤岩与瓦斯突出,该矿井极为突出矿井,发生突出的煤层即为突出煤层。
13.影响煤层瓦斯含量的因素?1)、煤的吸附特性
2)、.煤层露头3)、煤层的埋藏深度---深,瓦斯大4)、围岩透气性、泥岩、完整石灰岩低透气性5)、煤层倾角----大,瓦斯小,小,瓦斯大6)、地质构造----封闭地质,瓦斯大,开放的,瓦斯小7)、水文地质条件----水流,带走瓦斯
14.煤炭自燃条件:1)有自燃倾向性的煤被开采后呈破碎状态,堆积厚度一般要大于0.4m 2)有较好的蓄热条件。3)有适量的通风供氧4)上述三个条件共存的时间大于煤的自燃发火期。上述四个条件缺一不可前三个是煤炭自燃的必要条件,最后一个条件是充分条件。15.试述煤炭自然的影响因素?答:1煤的自燃性能:煤的分子结构;煤化程度;煤岩成分;煤中瓦斯含量;水分;煤中硫和其他矿物质。2开采技术:矿井开拓方式和采取巷道布置、回采方法和回采工艺3影响采空区自燃因素:分为散热带、自燃带、窒息带4漏风两方面作用供氧和降低煤温5地质因素:倾角、煤层厚度、地质构造、开采深度。
16.煤自燃过程:煤炭自燃过程大体分为3个阶段:潜伏期、自热期、燃烧期。特点潜伏期:自燃层被开采、接触空气起至煤温开始升高止的时间区间称之为潜伏期,在潜伏期,煤与氧的作用是以物理吸附为主,放热很小,无宏观效应;经过潜伏期后煤的燃点降低,表面的颜色变暗。自热阶段:温度开始升高起至其温度达到燃点的过程叫自热阶段。特点1)氧化放热较大,煤温及其环境温度升高2)产生CO、CO2和碳氢类气体产物并散发出煤油味和其他芳香气味3)有水蒸气产生,火源附近出现雾气,遇冷会在巷道壁面上结成水珠,即所谓的挂汗现象4)微观结构发生变化;
燃烧阶段:发生燃烧、出现明火,产生大量的高温烟雾,其中含有CO、CO2以及碳氢类化合物,若达到自燃点供风不足,只有烟雾无明火,即干馏或阴燃。
17.简述国内主要防灭火技术及各自的优缺点。(1)注浆 优点:经济便宜材料来源广泛
缺点:容易形成拉沟现象,不能向高处堆积(2)充氮气 优点:①可使防治区域缺氧惰化,迅速灭火②可造成防治区域正压,能防止或杜绝新鲜空气流入③具有降温作用④扩散半径大,惰化覆盖面广。⑤无腐蚀或不损坏综采设备
缺点:①氮气在防治区滞留的时间不是太长,氮气易遗失②氮能迅速遏制火灾,但灭火降温困难,使火区完全熄灭时间相当长。③具有窒息性,对人体有害。
(3)凝胶 优点:吸水性大,对可见火源灭火速度快 缺点:流量小,价格贵,有效覆盖范围小
(4)三相泡沫 优点:①可向采空区高处堆积②水浆成为泡沫,可避免浆体的流失③粉煤灰或黄泥固体颗粒的分布更为均匀,提高了防灭火的有效性④氮气被封装在泡沫之中,能较长时间滞留在采空区中⑤泡沫堆积没有安全隐患,即不会发生溃浆;(5)阻燃剂优点:保水吸湿能力强,价格便宜,缺点:腐蚀设备,危害人体健康
18.煤的自燃倾向性和自燃发火期定义是什么?二者的区别于联系?
答:煤炭自燃倾向性:是煤的一种自然属性,它取决于煤在常温下的氧化能力和发热能力,是煤发生自燃能力总的量度。煤的自然发火期:对一定的煤,在具有供氧和蓄热环境的条件下,产生自然发火需要的时间,一般用月表示。
二者联系:煤的自燃发火期包括煤的自燃倾向性。区别:煤炭自燃倾向性是煤的一种自然属性;煤的自燃发火期是一个统计数据,还反映了煤炭开采的外因条件(漏风,管理,开采条件)。
19.瓦斯喷出和煤与瓦斯突出的区别?
所谓瓦斯喷出就是大量瓦斯在压力状态下,从煤岩裂缝中喷出,包括短时间的喷出和长时间的喷出。煤与瓦斯突出是指在压力作用下,破碎的煤与瓦斯由煤体内突然向采掘空间大量喷出,是另一种类型的瓦斯特殊涌出的现象。20.矿井突水有哪些预兆? 答案:矿井突出水预兆主要有:挂红、挂汗、空气变冷、出现雾气、水叫、顶板淋水加大、顶板来压、底板鼓起或产生裂隙出现渗水、水色发浑、有臭味等。21.煤与瓦斯突出预兆有哪些?
答:地压显现方面的预兆:煤炮声,支架声响,岩煤开裂,掉碴,底鼓,煤岩自行剥落,煤壁颤动,钻孔变形,垮孔顶钻,夹钻杆,钻机过负荷等
瓦斯涌出方面的预兆:瓦斯涌出异常,瓦斯浓度忽大忽小,煤尘增大,气温、气味异常,打钻喷瓦斯、喷煤、哨声、风声、蜂鸣声等
煤层结构与构造方面的预兆:层理紊乱,煤强度松软或不均匀,煤暗淡无光泽,煤厚增大,倾角变陡,挤压褶曲,波状隆起,煤体干燥,顶底板阶梯凸起,断层等 22.煤矿井下巷道冒顶的主要预兆有哪些? 答案:预兆有:①顶板发出响声;②掉渣、漏顶;③顶板有裂缝;④顶板出现离层;⑤淋水量增加。
23.矿山救护队的任务和原则?
矿山救护队的任务:(任务简答:救人、处理灾害、灭火、安全技术、审查、培训、教育)(1)救护井下遇险遇难人员;(2)处理井下火、瓦斯、煤尘、水和顶板等灾害事故;(3)参加危及井下人员安全的地面灭火工作;(4)参加排放瓦斯、震动性放炮、启封火区、反风演习和其它需要佩用氧气呼吸器的安全技术工作;(5)参加审查矿井灾害预防和处理计划,协助矿井搞好安全和消除事故隐患的工作;(6)负责辅助救护队的培训和业务领导工作;(7)协助矿山搞好职工救护知识的教育。原则:加强战备、严格训练、主动预防、积极抢救。24.矿井防治水可归纳为“查、探、放、排、堵、截”六个字 “有疑必探、先探后掘、” 是采掘工作的原则。
25.造成矿井水害的水源?基本条件?防治水措施?
矿井水害的水源主要有大气降水、地表水、含水层水、岩溶陷落柱水、断层水、以及旧巷或老空区积水等
1、地面防治水:1.慎重选择井筒位置2.河流改道3.铺整河底4.填堵通道5.挖沟排(截)洪6.排除积水7.加强雨季前的防讯工作
2、井下防治水:
1、做好矿井水文观测与水文地质工作(查)(1)做好水文观测工作(2)做好矿井水文地质工作;
2、井下探水(1)、探水起点的确定(2)、探水钻孔布置;
3、放水(疏干)(1).疏放老空水(2).疏放含水层水;
4、截水;
5、矿井注浆堵水
26.矿井综合防尘措施有哪些?(1)通风除尘(2)湿式作业:
1、湿式凿岩、钻眼;
2、洒水及喷雾洒水;
3、掘进机喷雾洒水;
4、采煤机喷雾洒水;
5、综放工作面喷雾洒水;
6、水炮泥和水封爆破(3)净化风流:
1、水幕净化风流;
2、湿式除尘装置(4)个体防护 27.均匀防灭火:均压防灭火是采用风窗、风机、连通管、调压气室等调压手段,改变通风系统内的压力分布,降低漏风通道两端的压差,减少漏风,从而达到抑制和熄灭火区的目的。
28.矿井瓦斯涌出来源的分析与分源治理?
瓦斯来源:煤壁瓦斯涌出、采空区瓦斯涌出、采落煤瓦斯放散 一般是将全矿的瓦斯来源分为回采区、掘进区和已采取三部分。其测定方法是同时测定全矿井、各回采区和各掘进区的绝对瓦斯涌出量。然后分别计算出个回采区、掘进区的已采区三者各占的比例。测定回采区掘进区的瓦斯涌出量时,要分别在各区进、回风流中测瓦斯浓度和通过的风量,回风和进风绝对瓦斯涌出量的差值,即为该区的绝对瓦斯涌出量。
29.尘肺病的分类和患病的地点?尘肺病的分类:(1)硅肺病(矽肺病):患者多为长期从事岩巷掘进的矿工;(2)煤硅肺病(煤矽肺):患者多为岩巷掘进和采煤的混合工种矿工;(3):煤肺病
患者多为长期单一的在煤层中从事采掘工作的矿工。发病原理的四个过程:>10um、5-10um、2-5um、小于2um(1%-2%)。影响尘肺病的发病因素:(1)矿尘成分(2)矿尘粒度及分散度(3)矿尘浓度(4)个体方面的因素 30.改善煤矿安全生产状况的基本对策
答:落实煤矿安全生产责任;强化煤矿安全生产监管监察;依靠科学技术,加大安全投入,促进安全状况好转;深化煤矿安全专项整治;强化安全教育培训;建立规范的工商保险体系;加快安全管理信息网络化建设;加快煤炭行业的改革和发展;促进本质安全型矿井建设。第一部分 矿井瓦斯 1.煤与瓦斯突出:在采掘过程中,突然从煤(岩)壁内部向采掘空间喷出煤岩和瓦斯的现象,称为煤与瓦斯突出,简称突出。
2.四位一体综合防突措施的内容是什么?答:“四位一体”的综合性防突措施:突出危险性预测;防治突出措施;防突措施的效果检验;安全防护措施。3.上隅角瓦斯处理:(1)冲淡、设置风障或隔离(2)负压引排、改变漏风(3)排放铁管、风障
4.简述地质构造对煤层瓦斯含量的影响?地质构造是影响煤层瓦斯含量的最重要因素之一。在围岩属低透气性的条件下,封闭型地质构造有利于瓦斯的储存,而开放型地质构造有利于排放瓦斯。同一矿区不同地点瓦斯含量的差别,往往是地质构造因素造成的结果。5.矿井瓦斯的生成:煤层瓦斯是腐植型有机物(植物)在成煤过程中生成的。成气过程分两个阶段:第一阶段为生物化学成气时期,第二阶段为煤化变质作用时期。
6.瓦斯涌出不均匀系数:kg=Qmax/Qa在正常生产过程中,矿井绝对瓦斯涌出量受各种因素的影响,其数值在一段时间内围绕平均值上下波动,我们把其峰值与平均值的比值称为瓦斯涌出不均系数。7.预测瓦斯涌出量的方法有两类,一类是矿山统计法,二是瓦斯含量法,前者多用于生产矿井,后者多用于新矿井,而每一类又有多种方法。
8.瓦斯喷出的原因及防治?内因:煤层或岩层构造的裂缝中储存有大量高压瓦斯,外因:在采掘过程中,爆破穿透,机械振动或地压活动,使煤层造成泄压缝隙,构成瓦斯喷出的通道是其外在因素。防治:探明地质构造和沼气情况,排放或抽放沼气,把沼气引至总回风流或工作面后20米以外的地方。将裂缝裂隙堵住不让沼气喷出。
9.预防和治理瓦斯喷出的主要技术措施有哪些?答:主要分两种情况:1)当瓦斯喷出量和压力都不大时,用黄泥或水泥沙浆等充填材料堵塞喷出口。井筒和巷道底板的小型喷出,多采用这种防治措施。2)当瓦斯压力和喷出量较大时,就在可能的喷出地点附近打前探钻孔,查明瓦斯的积存范围和瓦斯压力。如果瓦斯压力不大,积存量不多,可以通过钻孔,让瓦斯自然排放到回风流中。如果自然排放量较大,有可能造成风流中瓦斯超限时,应将钻孔或巷道封闭,通过瓦斯管把瓦斯引排到适宜地点或接入抽放瓦斯管路,将瓦斯抽到地面。10.影响瓦斯抽放的重要参数有哪些?答:钻孔方向;孔间距;抽放负压;钻孔直径 11.瓦斯抽放:高瓦斯矿井、开采保护层、突出煤层,超过通风能力应考虑瓦斯抽放。抽放瓦斯的方法:按瓦斯的来源分为① 本煤层瓦斯抽放 ② 邻近层瓦斯抽放 ③ 采空区瓦斯抽放;按机理分为:① 采前抽放 ②采中抽放 ③ 采后抽放;按抽放工艺分类:① 巷道抽放法 ② 钻孔抽放法 ③ 巷道、钻孔混合抽放法三类。
12.为什么邻近层抽放总能抽到瓦斯?抽放效果决定于哪些因素?为什么临近层离开采煤层越近,抽放效率越低?答:一般认为,煤层开采后,在其顶板形成三个受采动影响的地带:冒落带、裂隙带、变形带,在其地板则形成卸压带。在距开采煤层很近、冒落带内的煤层,将随顶板的冒落而冒落,瓦斯完全释放到采空区内,这类煤层很难进行临近层抽放。裂隙带内的煤层发生弯曲、变形,形成采动裂隙,并由于卸压,煤层透气系数显著增加,瓦斯在压差作用下大量流向开采煤层的采空区内所以临近层距开采煤层愈近,流向采空区的瓦斯愈大。凑放效果决定的因素:临近层的极限距离;钻场位置;钻场或钻孔的间距;钻孔角度;钻孔进入的层位;孔径和抽放负压。因为在这些煤层内开凿抽瓦斯的巷道,或者打抽瓦斯的钻孔。瓦斯就向两个方向流动:一是沿煤层流向钻孔或巷道;一是沿层间裂隙流向开采每层的采空区。因为抽放系统的压差总是大于临近层与采空区的所以瓦斯将主要沿临近层流向抽放钻孔或巷道。但是瓦斯流向开采煤层采空区的阻力,随层间距的减小而降低,所以抽出的瓦斯量也将随之减少。第二部分 火灾防治
1.火灾预报:利用人体生理感觉预报自然发火(嗅觉视觉触觉);气体成分分析法(指标气体及其临界指标,具备灵敏性;规律性;可测性)2.灌浆与阻化剂防灭火、均压防灭火、惰气防灭火
3.内因火灾:自燃物在一定的外部(适量的通风供氧)条件下,自身发生物理化学变化,产生并积聚热量,使其温度升高,达到自燃点而形成的火灾称之为内因火灾。第三部分 矿尘防治
1.煤尘爆炸机理:可燃的煤尘比表面积大,氧化容易-(遇火)-干馏—(气体)—活化中心-链反应-爆炸
2.煤尘爆炸3个必要条件:本身爆炸性、悬浮达一定浓度、高温热源 3.爆炸特征:(1)易产生连续爆炸:爆炸压力一次比一次增高,呈跳跃式发展。(2)产生粘块与皮渣:煤尘爆炸时,对于结焦性煤尘(气煤、肥煤及焦煤的煤尘)会产生焦炭皮渣与粘块(3)产生大量有毒有害气体:煤尘爆炸时,要产生比沼气爆炸生成量多的有毒有害气,其生成量与煤质和爆炸的强度等有关。(4)挥发分含量减少 4.影响煤尘爆炸因素:(1)煤的挥发分、煤化作用程度低具强爆炸性(2)灰分和水分(3)粒度30-75um最强(4)空气中的瓦斯浓度(5)空气中氧的含量,低于17%时,煤尘不再爆炸(6)引爆热源
5.矿井防尘8字措施?风、水、密、护、革、管、教、查 6.矿尘的危害和预防煤尘爆炸的技术措施?
矿尘的危害:(1)污染工作场所,危害人体健康,引起职业病。(2)某些矿尘(如煤尘、硫化尘)在一定条件下可以爆炸。(3)加速机械磨损,缩短精密仪器使用寿命。(4)降低工作场所能见度,增加工伤事故的发生。
预防煤尘爆炸的技术措施:(1)、减、降尘措施(2)、防止煤尘引燃的措施(3)、限制煤尘爆炸范围扩大的措施
相关文章:
最新实习报告实习目的十 实习报告实习报告实习报告(汇总7篇)01-18
煤矿安全通风01-18
物业公司年度工作计划 公司年度工作计划实用(八篇)01-18
通风安全管理01-18
最新创建全国文明城经验交流分享 成功创建全国文明城市经验总结(6篇)01-18
实习报告实习目的 实训报告评语(十一篇)01-18
煤矿通风安全运行01-18
实习报告 实习报告实习目的(14篇)01-18
最新实习报告 实习报告实习目的(9篇)01-18