心得总结:Java性能优化技巧

关键词: 保险行业 系统结构 演变 行业

心得总结:Java性能优化技巧(精选4篇)

篇1:心得总结:Java性能优化技巧

心得总结:Java性能优化技巧集锦

一、通用篇

“通用篇”讨论的问题适合于大多数Java应用。

1.1 不用new关键词创建类的实例

用new关键词创建类的实例时,构造函数链中的所有构造函数都会被自动调用。但如果一个对象实现了Cloneable接口,我们可以调用它的clone()方法。clone()方法不会调用任何类构造函数。

在使用设计模式(Design Pattern)的场合,如果用Factory模式创建对象,则改用clone()方法创建新的对象实例非常简单。例如,下面是Factory模式的一个典型实现: public static Credit getNewCredit(){ return new Credit();}

改进后的代码使用clone()方法,如下所示: private static Credit BaseCredit = new Credit();public static Credit getNewCredit(){ return(Credit)BaseCredit.clone();}

上面的思路对于数组处理同样很有用。

1.2 使用非阻塞I/O

版本较低的JDK不支持非阻塞I/O API。为避免I/O阻塞,一些应用采用了创建大量线程的办法(在较好的情况下,会使用一个缓冲池)。这种技术可以在许多必须支持并发I/O流的应用中见到,如Web服务器、报价和拍卖应用等。然而,创建Java线程需要相当可观的开销。

JDK 1.4引入了非阻塞的I/O库(java.nio)。如果应用要求使用版本较早的JDK,在这里有一个支持非阻塞I/O的软件包。

请参见Sun中国网站的《调整Java的I/O性能》。

1.3 慎用异常

异常对性能不利。抛出异常首先要创建一个新的对象。Throwable接口的构造函数调用名为fillInStackTrace()的本地(Native)方法,fillInStackTrace()方法检查堆栈,收集调用跟踪信息。只要有异常被抛出,VM就必须调整调用堆栈,因为在处理过程中创建了一个新的对象。

异常只能用于错误处理,不应该用来控制程序流程。

1.4 不要重复初始化变量

默认情况下,调用类的构造函数时,Java会把变量初始化成确定的值:所有的对象被设置成null,整数变量(byte、short、int、long)设置成0,float和 double变量设置成0.0,逻辑值设置成false。当一个类从另一个类派生时,这一点尤其应该注意,因为用new关键词创建一个对象时,构造函数链中的所有构造函数都会被自动调用。

1.5 尽量指定类的final修饰

带有final修饰符的类是不可派生的。在Java核心API中,有许多应用final的例子,例如java.lang.String。为String类指定final防止了人们覆盖length()方法。

另外,如果指定一个类为final,则该类所有的方法都是final。Java编译器会寻找机会内联(inline)所有的final方法(这和具体的编译器实现有关)。此举能够使性能平均提高50%。

1.6 尽量使用局部变量

调用方法时传递的参数以及在调用中创建的临时变量都保存在栈(Stack)中,速度较快。其他变量,如静态变量、实例变量等,都在堆(Heap)中创建,速度较慢。另外,依赖于具体的编译器/JVM,局部变量还可能得到进一步优化。请参见《尽可能使用堆栈变量》。

1.7 乘法和除法

考虑下面的代码:

for(val = 0;val < 100000;val +=5){ alterX = val * 8;myResult = val * 2;}

用移位操作替代乘法操作可以极大地提高性能。下面是修改后的代码:

for(val = 0;val < 100000;val += 5){ alterX = val << 3;myResult = val << 1;}

修改后的代码不再做乘以8的操作,而是改用等价的左移3位操作,每左移1位相当于乘以2。相应地,右移1位操作相当于除以2。值得一提的是,虽然移位操作速度快,但可能使代码比较难于理解,所以最好加上一些注释。

二、J2EE篇

前面介绍的改善性能技巧适合于大多数Java应用,接下来要讨论的问题适合于使用JSP、EJB或JDBC的应用。

2.1 使用缓冲标记

一些应用服务器加入了面向JSP的缓冲标记功能。例如,BEA的WebLogic Server从6.0版本开始支持这个功能,Open Symphony工程也同样支持这个功能。JSP缓冲标记既能够缓冲页面片断,也能够缓冲整个页面。当JSP页面执行时,如果目标片断已经在缓冲之中,则生成该片断的代码就不用再执行。页面级缓冲捕获对指定URL的请求,并缓冲整个结果页面。对于购物篮、目录以及门户网站的主页来说,这个功能极其有用。对于这类应用,页面级缓冲能够保存页面执行的结果,供后继请求使用。

对于代码逻辑复杂的页面,利用缓冲标记提高性能的效果比较明显;反之,效果可能略逊一筹。

请参见《用缓冲技术提高JSP应用的性能和稳定性》。

2.2 始终通过会话Bean访问实体Bean

直接访问实体Bean不利于性能。当客户程序远程访问实体Bean时,每一个get方法都是一个远程调用。访问实体Bean的会话Bean是本地的,能够把所有数据组织成一个结构,然后返回它的值。

用会话Bean封装对实体Bean的访问能够改进事务管理,因为会话Bean只有在到达事务边界时才会提交。每一个对get方法的直接调用产生一个事务,容器将在每一个实体Bean的事务之后执行一个“装入-读取”操作。

一些时候,使用实体Bean会导致程序性能不佳。如果实体Bean的唯一用途就是提取和更新数据,改成在会话Bean之内利用JDBC访问数据库可以得到更好的性能。

2.3 选择合适的引用机制

典型的JSP应用系统中,页头、页脚部分往往被抽取出来,然后根据需要引入页头、页脚。当前,在JSP页面中引入外部资源的方法主要有两种:include指令,以及include动作。

include指令:例如<%@ include file=“copyright.html” %>。该指令在编译时引入指定的资源。在编译之前,带有include指令的页面和指定的资源被合并成一个文件。被引用的外部资源在编译时就确定,比运行时才确定资源更高效。

include动作:例如。该动作引入指定页面执行后生成的结果。由于它在运行时完成,因此对输出结果的控制更加灵活。但时,只有当被引用的内容频繁地改变时,或者在对主页面的请求没有出现之前,被引用的页面无法确定时,使用include动作才合算。

2.4 在部署描述器中设置只读属性

实体Bean的部署描述器允许把所有get方法设置成“只读”。当某个事务单元的工作只包含执行读取操作的方法时,设置只读属性有利于提高性能,因为容器不必再执行存储操作。

2.5 缓冲对EJB Home的访问

EJB Home接口通过JNDI名称查找获得。这个操作需要相当可观的开销。JNDI查找最好放入Servlet的init()方法里面。如果应用中多处频繁地出现EJB访问,最好创建一个EJBHomeCache类。EJBHomeCache类一般应该作为singleton实现。

2.6 为EJB实现本地接口

本地接口是EJB 2.0规范新增的内容,它使得Bean能够避免远程调用的开销。请考虑下面的代码。PayBeanHome home =(PayBeanHome)javax.rmi.PortableRemoteObject.narrow(ctx.lookup(“PayBeanHome”), PayBeanHome.class);PayBean bean =(PayBean)javax.rmi.PortableRemoteObject.narrow(home.create(), PayBean.class);

第一个语句表示我们要寻找Bean的Home接口。这个查找通过JNDI进行,它是一个RMI调用。然后,我们定位远程对象,返回代理引用,这也是一个 RMI调用。第二个语句示范了如何创建一个实例,涉及了创建IIOP请求并在网络上传输请求的stub程序,它也是一个RMI调用。

要实现本地接口,我们必须作如下修改:

方法不能再抛出java.rmi.RemoteException异常,包括从RemoteException派生的异常,比如 TransactionRequiredException、TransactionRolledBackException和 NoSuchObjectException。EJB提供了等价的本地异常,如TransactionRequiredLocalException、TransactionRolledBackLocalException和NoSuchObjectLocalException。

所有数据和返回值都通过引用的方式传递,而不是传递值。

本地接口必须在EJB部署的机器上使用。简而言之,客户程序和提供服务的组件必须在同一个JVM上运行。

如果Bean实现了本地接口,则其引用不可串行化。

请参见《用本地引用提高EJB访问效率》。

软件资讯 > 开发特区 > 开发语言 > Java

2006年05月11日 作者:songxin 责任编辑:xietaoming

文章导读:分通用篇、J2EE篇、GUI篇三部分介绍Java性能优化技巧。

2.7 生成主键

在EJB之内生成主键有许多途径,下面分析了几种常见的办法以及它们的特点。

利用数据库内建的标识机制(SQL Server的IDENTITY或Oracle的SEQUENCE)。这种方法的缺点是EJB可移植性差。

由实体Bean自己计算主键值(比如做增量操作)。它的缺点是要求事务可串行化,而且速度也较慢。

利用NTP之类的时钟服务。这要求有面向特定平台的本地代码,从而把Bean固定到了特定的OS之上。另外,它还导致了这样一种可能,即在多CPU的服务器上,同一个毫秒之内生成了两个主键。

借鉴Microsoft的思路,在Bean中创建一个GUID。然而,如果不求助于JNI,Java不能确定网卡的MAC地址;如果使用JNI,则程序就要依赖于特定的OS。

还有其他几种办法,但这些办法同样都有各自的局限。似乎只有一个答案比较理想:结合运用RMI和JNDI。先通过RMI注册把RMI远程对象绑定到JNDI树。客户程序通过JNDI进行查找。下面是一个例子: public class keyGenerator extends UnicastRemoteObject implements Remote { private static long KeyValue = System.currentTimeMillis();public static synchronized long getKey()throws RemoteException { return KeyValue++;}

2.8 及时清除不再需要的会话

为了清除不再活动的会话,许多应用服务器都有默认的会话超时时间,一般为30分钟。当应用服务器需要保存更多会话时,如果内存容量不足,操作系统会把部分内存数据转移到磁盘,应用服务器也可能根据“最近最频繁使用”(Most Recently Used)算法把部分不活跃的会话转储到磁盘,甚至可能抛出“内存不足”异常。在大规模系统中,串行化会话的代价是很昂贵的。当会话不再需要时,应当及时调用HttpSession.invalidate()方法清除会话。HttpSession.invalidate()方法通常可以在应用的退出页面调用。

2.9 在JSP页面中关闭无用的会话

对于那些无需跟踪会话状态的页面,关闭自动创建的会话可以节省一些资源。使用如下page指令: <%@ page session=“false”%>

2.10 Servlet与内存使用

许多开发者随意地把大量信息保存到用户会话之中。一些时候,保存在会话中的对象没有及时地被垃圾回收机制回收。从性能上看,典型的症状是用户感到系统周期性地变慢,却又不能把原因归于任何一个具体的组件。如果监视JVM的堆空间,它的表现是内存占用不正常地大起大落。

解决这类内存问题主要有二种办法。第一种办法是,在所有作用范围为会话的Bean中实现HttpSessionBindingListener接口。这样,只要实现valueUnbound()方法,就可以显式地释放Bean使用的资源。

另外一种办法就是尽快地把会话作废。大多数应用服务器都有设置会话作废间隔时间的选项。另外,也可以用编程的方式调用会话的 setMaxInactiveInterval()方法,该方法用来设定在作废会话之前,Servlet容器允许的客户请求的最大间隔时间,以秒计。

2.11 HTTP Keep-Alive

Keep-Alive功能使客户端到服务器端的连接持续有效,当出现对服务器的后继请求时,Keep-Alive功能避免了建立或者重新建立连接。市场上的大部分Web服务器,包括iPlanet、IIS和Apache,都支持HTTP Keep-Alive。对于提供静态内容的网站来说,这个功能通常很有用。但是,对于负担较重的网站来说,这

里存在另外一个问题:虽然为客户保留打开的连接有一定的好处,但它同样影响了性能,因为在处理暂停期间,本来可以释放的资源仍旧被占用。当Web服务器和应用服务器在同一台机器上运行时,Keep-Alive功能对资源利用的影响尤其突出。

2.12 JDBC与Unicode

想必你已经了解一些使用JDBC时提高性能的措施,比如利用连接池、正确地选择存储过程和直接执行的SQL、从结果集删除多余的列、预先编译SQL语句,等等。

除了这些显而易见的选择之外,另一个提高性能的好选择可能就是把所有的字符数据都保存为Unicode(代码页13488)。Java以Unicode形式处理所有数据,因此,数据库驱动程序不必再执行转换过程。但应该记住:如果采用这种方式,数据库会变得更大,因为每个Unicode字符需要2个字节存储空间。另外,如果有其他非Unicode的程序访问数据库,性能问题仍旧会出现,因为这时数据库驱动程序仍旧必须执行转换过程。

2.13 JDBC与I/O

如果应用程序需要访问一个规模很大的数据集,则应当考虑使用块提取方式。默认情况下,JDBC每次提取32行数据。举例来说,假设我们要遍历一个5000 行的记录集,JDBC必须调用数据库157次才能提取到全部数据。如果把块大小改成512,则调用数据库的次数将减少到10次。

在一些情形下这种技术无效。例如,如果使用可滚动的记录集,或者在查询中指定了FOR UPDATE,则块操作方式不再有效。

2.14 内存数据库

许多应用需要以用户为单位在会话对象中保存相当数量的数据,典型的应用如购物篮和目录等。由于这类数据可以按照行/列的形式组织,因此,许多应用创建了庞大的Vector或HashMap。在会话中保存这类数据极大地限制了应用的可伸缩性,因为服务器拥有的内存至少必须达到每个会话占用的内存数量乘以并发用户最大数量,它不仅使服务器价格昂贵,而且垃圾收集的时间间隔也可能延长到难以忍受的程度。

一些人把购物篮/目录功能转移到数据库层,在一定程度上提高了可伸缩性。然而,把这部分功能放到数据库层也存在问题,且问题的根源与大多数关系数据库系统的体系结构有关。对于关系数据库来说,运行时的重要原则之一是确保所有的写入操作稳定、可靠,因而,所有的性能问题都与物理上把数据写入磁盘的能力有关。关系数据库力图减少I/O操作,特别是对于读操作,但实现该目标的主要途径只是执行一套实现缓冲机制的复杂算法,而这正是数据库层第一号性能瓶颈通常总是 CPU的主要原因。

一种替代传统关系数据库的方案是,使用在内存中运行的数据库(In-memory Database),例如TimesTen。内存数据库的出发点是允许数据临时地写入,但这些数据不必永久地保存到磁盘上,所有的操作都在内存中进行。这样,内存数据库不需要复杂的算法来减少I/O操作,而且可以采用比较简单的加锁机制,因而速度很快。

三、GUI篇

这一部分介绍的内容适合于图形用户界面的应用(Applet和普通应用),要用到AWT或Swing。

3.1 用JAR压缩类文件

Java档案文件(JAR文件)是根据JavaBean标准压缩的文件,是发布JavaBean组件的主要方式和推荐方式。JAR档案有助于减少文件体积,缩短下载时间。例如,它有助于Applet提高启动速度。一个JAR文件可以包含一个或者多个相关的Bean以及支持文件,比如图形、声音、HTML 和其他资源。

要在HTML/JSP文件中指定JAR文件,只需在Applet标记中加入ARCHIVE = “name.jar”声明。

请参见《使用档案文件提高 applet 的加载速度》。

3.2 提示Applet装入进程

你是否看到过使用Applet的网站,注意到在应该运行Applet的地方出现了一个占位符?当Applet的下载时间较长时,会发生什么事情?最大的可能就是用户掉头离去。在这种情况下,显示一个Applet正在下载的信息无疑有助于鼓励用户继续等待。

下面我们来看看一种具体的实现方法。首先创建一个很小的Applet,该Applet负责在后台下载正式的Applet:

import java.applet.Applet;import java.applet.AppletStub;import java.awt.Label;import java.awt.Graphics;import java.awt.GridLayout;public class PreLoader extends Applet implements Runnable, AppletStub { String largeAppletName;Label label;public void init(){ // 要求装载的正式Applet largeAppletName = getParameter(“applet”);// “请稍等”提示信息

label = new Label(“请稍等...” + largeAppletName);add(label);} public void run(){ try { // 获得待装载Applet的类

Class largeAppletClass = Class.forName(largeAppletName);// 创建待装载Applet的实例

Applet largeApplet =(Applet)largeAppletClass.newInstance();// 设置该Applet的Stub程序 largeApplet.setStub(this);// 取消“请稍等”信息 remove(label);// 设置布局

setLayout(new GridLayout(1, 0));add(largeApplet);// 显示正式的Applet largeApplet.init();largeApplet.start();} catch(Exception ex){ // 显示错误信息

label.setText(“不能装入指定的Applet”);} // 刷新屏幕 validate();

} public void appletResize(int width, int height){ // 把appletResize调用从stub程序传递到Applet resize(width, height);} }

编译后的代码小于2K,下载速度很快。代码中有几个地方值得注意。首先,PreLoader实现了AppletStub接口。一般地,Applet从调用者判断自己的codebase。在本例中,我们必须调用setStub()告诉Applet到哪里提取这个信息。另一个值得注意的地方是,AppletStub接口包含许多和Applet类一样的方法,但appletResize()方法除外。这里我们把对appletResize()方法的调用传递给了resize()方法。

3.3 在画出图形之前预先装入它

ImageObserver接口可用来接收图形装入的提示信息。ImageObserver接口只有一个方法imageUpdate(),能够用一次repaint()操作在屏幕上画出图形。下面提供了一个例子。public boolean imageUpdate(Image img, int flags, int x, int y, int w, int h){ if((flags & ALLBITS)!=0 { repaint();} else if(flags &(ERROR |ABORT))!= 0){ error = true;// 文件没有找到,考虑显示一个占位符 repaint();} return(flags &(ALLBITS | ERROR| ABORT))== 0;}

当图形信息可用时,imageUpdate()方法被调用。如果需要进一步更新,该方法返回true;如果所需信息已经得到,该方法返回false。

3.4 覆盖update方法

update()方法的默认动作是清除屏幕,然后调用paint()方法。如果使用默认的update()方法,频繁使用图形的应用可能出现显示闪烁现象。要避免在paint()调用之前的屏幕清除操作,只需按照如下方式覆盖update()方法:

public void update(Graphics g){ paint(g);}

更理想的方案是:覆盖update(),只重画屏幕上发生变化的区域,如下所示: public void update(Graphics g){ g.clipRect(x, y, w, h);paint(g);}

3.5 延迟重画操作

对于图形用户界面的应用来说,性能低下的主要原因往往可以归结为重画屏幕的效率低下。当用户改变窗口大小或者滚动一个窗口时,这一点通常可以很明显地观察到。改变窗口大小或者滚动屏幕之类的操作导致重画屏幕事件大量地、快速地生成,甚至超过了相关代码的执行速度。对付这个问题最好的办法是忽略所有“迟到” 的事件。

建议在这里引入一个数毫秒的时差,即如果我们立即接收到了另一个重画事件,可以停止处理当前事件转而处理最后一个收到的重画事件;否则,我们继续进行当前的重画过程。

如果事件要启动一项耗时的工作,分离出一个工作线程是一种较好的处理方式;否则,一些部件可能被“冻结”,因为每次只能处理一个事件。下面提供了一个事件处理的简单例子,但经过扩展后它可以用来控制工作线程。

public static void runOnce(String id, final long milliseconds){ synchronized(e_queue){ // e_queue: 所有事件的集合 if(!e_queue.containsKey(id)){ e_queue.put(token, new LastOne());} } final LastOne lastOne =(LastOne)e_queue.get(token);final long time = System.currentTimeMillis();// 获得当前时间 lastOne.time = time;(new Thread(){public void run(){ if(milliseconds > 0){ try {Thread.sleep(milliseconds);} // 暂停线程 catch(Exception ex){} } synchronized(lastOne.running){ // 等待上一事件结束 if(lastOne.time!= time)// 只处理最后一个事件 return;} }}).start();} private static Hashtable e_queue = new Hashtable();private static class LastOne { public long time=0;public Object running = new Object();}

3.6 使用双缓冲区

在屏幕之外的缓冲区绘图,完成后立即把整个图形显示出来。由于有两个缓冲区,所以程序可以来回切换。这样,我们可以用一个低优先级的线程负责画图,使得程序能够利用空闲的CPU时间执行其他任务。下面的伪代码片断示范了这种技术。Graphics myGraphics;Image myOffscreenImage = createImage(size().width, size().height);

Graphics offscreenGraphics = myOffscreenImage.getGraphics();offscreenGraphics.drawImage(img, 50, 50, this);myGraphics.drawImage(myOffscreenImage, 0, 0, this);

3.7 使用BufferedImage

Java JDK 1.2使用了一个软显示设备,使得文本在不同的平台上看起来相似。为实现这个功能,Java必须直接处理构成文字的像素。由于这种技术要在内存中大量地进行位复制操作,早期的JDK在使用这种技术时性能不佳。为解决这个问题而提出的Java标准实现了一种新的图形类型,即BufferedImage。

BufferedImage子类描述的图形带有一个可访问的图形数据缓冲区。一个BufferedImage包含一个ColorModel和一组光栅图形数据。这个类一般使用RGB(红、绿、蓝)颜色模型,但也可以处理灰度级图形。它的构造函数很简单,如下所示:

public BufferedImage(int width, int height, int imageType)

ImageType允许我们指定要缓冲的是什么类型的图形,比如5-位RGB、8-位RGB、灰度级等。

3.8 使用VolatileImage

许多硬件平台和它们的操作系统都提供基本的硬件加速支持。例如,硬件加速一般提供矩形填充功能,和利用CPU完成同一任务相比,硬件加速的效率更高。由于硬件加速分离了一部分工作,允许多个工作流并发进行,从而缓解了对CPU和系统总线的压力,使得应用能够运行得更快。利用VolatileImage可以创建硬件加速的图形以及管理图形的内容。由于它直接利用低层平台的能力,性能的改善程度主要取决于系统使用的图形适配器。VolatileImage的内容随时可能丢失,也即它是“不稳定的(volatile)”。因此,在使用图形之前,最好检查一下它的内容是否丢失。VolatileImage有两个能够检查内容是否丢失的方法: public abstract int validate(GraphicsConfiguration gc);public abstract Boolean contentsLost();

每次从VolatileImage对象复制内容或者写入VolatileImage时,应该调用validate()方法。contentsLost()方法告诉我们,自从最后一次validate()调用之后,图形的内容是否丢失。

虽然VolatileImage是一个抽象类,但不要从它这里派生子类。VolatileImage应该通过

Component.createVolatileImage()或者 GraphicsConfiguration.createCompatibleVolatileImage()方法创建。

3.9 使用Window Blitting

进行滚动操作时,所有可见的内容一般都要重画,从而导致大量不必要的重画工作。许多操作系统的图形子系统,包括WIN32 GDI、MacOS和X/Windows,都支持Window Blitting技术。Window Blitting技术直接在屏幕缓冲区中把图形移到新的位置,只重画新出现的区域。要在Swing应用中使用Window Blitting技术,设置方法如下: setScrollMode(int mode);

在大多数应用中,使用这种技术能够提高滚动速度。只有在一种情形下,Window Blitting会导致性能降低,即应用在后台进行滚动操作。如果是用户在滚动一个应用,那么它总是在前台,无需担心任何负面影响

篇2:心得总结:Java性能优化技巧

DOM 是用与平台和语言无关的方式表示 XML 文档的官方 W3C 标准。DOM 是以层次结构组织的节点或信息片断的集合。这个层次结构允许开发人员在树中寻找特定信息。分析该结构通常需要加载整个文档和构造层次结构,然后才能做任何工作。由于它是基于信息层次的,因而 DOM 被认为是基于树或基于对象的。DOM 以及广义的基于树的处理具有几个优点。首先,由于树在内存中是持久的,因此可以修改它以便应用程序能对数据和结构作出更改。它还可以在任何时候在树中上下导航,而不是像 SAX 那样是一次性的处理。DOM 使用起来也要简单得多。

另一方面,对于特别大的文档,解析和加载整个文档可能很慢且很耗资源,因此使用其他手段来处理这样的数据会更好。这些基于事件的模型,比如 SAX。

Bean文件:

package com.test;

import java.io.*;

import java.util.*;

import org.w3c.dom.*;

import javax.xml.parsers.*;

public class MyXMLReader{

public static void main(String arge[]){

long lasting =System.currentTimeMillis();

try{

File f=new File(“data_10k.xml”);

DocumentBuilderFactory factory=DocumentBuilderFactory.newInstance();

DocumentBuilder builder=factory.newDocumentBuilder();

Document doc = builder.parse(f);

NodeList nl = doc.getElementsByTagName(“VALUE”);

for(int i=0;i<nl.getLength();i++){

System.out.print(“车牌号码:” + doc.getElementsByTagName(“NO”).item(i).getFirstChild().getNodeValue());

System.out.println(“ 车主地址:” + doc.getElementsByTagName(“ADDR”).item(i).getFirstChild().getNodeValue());

}

}catch(Exception e){

e.printStackTrace();

}

System.out.println(“运行时间:”+(System.currentTimeMillis()lasting)+ “ 毫秒”);

}

public void characters(char ch[], int start, int length)throws SAXException {

String tag =(String)tags.peek();

if(tag.equals(“NO”)){

System.out.print(“车牌号码:” + new String(ch, start, length));

}

if(tag.equals(“ADDR”)){

System.out.println(“ 地址:” + new String(ch, start, length));

}

}

public void startElement(String uri,String localName,String qName,Attributes attrs){

tags.push(qName);

}

}

10k消耗时间:110 47 109 78

100k消耗时间:344 406 375 422

1000k消耗时间:3234 3281 3688 3312

10000k消耗时间:32578 34313 31797 31890 30328

然后是 JDOM http:///

JDOM 的目的是成为 Java 特定文档模型,它简化与 XML 的交互并且比使用 DOM 实现更快。由于是第一个 Java 特定模型,JDOM 一直得到大力推广和促进。正在考虑通过“Java 规范请求 JSR-102”将它最终用作“Java 标准扩展”。从 2000 年初就已经开始了 JDOM 开发。

JDOM 与 DOM 主要有两方面不同。首先,JDOM 仅使用具体类而不使用接口。这在某些方面简化了 API,但是也限制了灵活性。第二,API 大量使用了 Collections 类,简化了那些已经熟悉这些类的 Java 开发者的使用。

JDOM 文档声明其目的是“使用 20%(或更少)的精力解决 80%(或更多)Java/XML 问题”(根据学习曲线假定为 20%)。JDOM 对于大多数 Java/XML 应用程序来说当然是有用的,并且大多数开发者发现 API 比 DOM 容易理解得多。JDOM 还包括对程序行为的相当广泛检查以防止用户做任何在 XML 中无意义的事。然而,它仍需要您充分理解 XML 以便做一些超出基本的工作(或者甚至理解某些情况下的错误)。这也许是比学习DOM 或 JDOM 接口都更有意义的工作。

JDOM 自身不包含解析器。它通常使用 SAX2 解析器来解析和验证输入 XML 文档(尽管它还可以将以前构造的 DOM 表示作为输入)。它包含一些转换器以将 JDOM 表示输出成 SAX2 事件流、DOM 模型或 XML 文本文档。JDOM 是在 Apache 许可证变体下发布的开放源码。

Bean文件:

package com.test;

import java.io.*;

import java.util.*;

import org.jdom.*;

import org.jdom.input.*;

public class MyXMLReader {

public static void main(String arge[]){

long lasting = System.currentTimeMillis();

try {

SAXBuilder builder = new SAXBuilder();

Document doc = builder.build(new File(“data_10k.xml”));

Element foo = doc.getRootElement();

List allChildren = foo.getChildren();

for(int i=0;i<allChildren.size();i++){

System.out.print(“车牌号码:” +((Element)allChildren.get(i)).getChild(“NO”).getText());

System.out.println(“ 车主地址:” +((Element)allChildren.get(i)).getChild(“ADDR”).getText());

}

} catch(Exception e){

e.printStackTrace();

}

System.out.println(“运行时间:” +(System.currentTimeMillis()lasting)+ “ 毫秒”);

}

}

10k消耗时间:109 78 109 31

100k消耗时间:297 359 172 312

1000k消耗时间:2281 2359 2344 2469

10000k消耗时间:20938 19922 20031 21078

JDOM 和 DOM 在性能测试时表现不佳,在测试 10M 文档时内存溢出。在小文档情况下还值得考虑使用 DOM 和 JDOM。虽然 JDOM 的开发者已经说明他们期望在正式发行版前专注性能问题,但是从性能观点来看,它确实没有值得推荐之处。另外,DOM 仍是一个非常好的选择。DOM 实现广泛应用于多种编程语言。它还是许多其它与 XML 相关的标准的基础,因为它正式获得 W3C 推荐(与基于非标准的 Java 模型相对),所以在某些类型的项目中可能也需要它(如在 JavaScript 中使用 DOM)。

SAX表现较好,这要依赖于它特定的解析方式。一个 SAX 检测即将到来的XML流,但并没有载入到内存(当然当XML流被读入时,会有部分文档暂时隐藏在内存中)。

篇3:心得总结:Java性能优化技巧

1 网络计算机中JVM的性能表现

目前, 随着多种性能优化技术在JVM中的应用, Java在桌面操作系统及服务器中的运行效率有了很大程度的提高。但嵌入式领域的JVM性能的研发工作却滞留在起步阶段。Linux NC应用的是桌面OS的JVM。虽然这种JVM的优化技术大大提高了Java的执行性能, 但嵌入式设备NC的计算及存储能力却难以负担这种JVM的技术对CPU、内存的较高要求。

2 基于Linux NC的JVM性能优化方案

Linux成为继Windows CE之后, 第2个应用于NC的主流操作系统。因此, 本文的优化工作将基于Linux平台。

2.1 优化对象

源代码开放的软件包Kaffe是一个优秀的Java语言环境。优化方案选择Kaffe作为优化对象, 主要基于4个原因:Kaffe是基于类Unix系统上开发的, 特别是Linux和Free BSD。因此, 把Kaffe移植到支持POSIX原语的体系结构比其它体系结构容易;Kaffe是一个完整的遵从Personal Java 1.1规范的Java语言环境, 可以应用于各种因特网设备、嵌入式系统;Kaffe的解释器采用switch-case模式, 性能相对较低;Kaffe基于模块实现, 具有伸缩性和高效性。

2.2 技术选择

鉴于上述优化技术的特点, 作者分析得出编译执行技术与NC的不适用性, 主要表现在:

在800MHz工作频率, 32位的总线宽度的CPU下, 编译执行的Java程序会呈现较明显的停滞现象;

NC的CPU Cache容量难以容纳全部的核心代码, 使得CPU访问内存的机率增加, JVM的执行效率降低;

编译产生的机器代码量是原字节码的几倍到几十倍, NC的内存和CPU Cache难以承受。

因此, 解释执行技术更适合Linux终端设备。由于:

解释执行的JVM占用较小的ROM;字节码占用较小内存空间, 减轻了对数据Cache的压力;解释方式运行的JVM的核心代码量较小, 增加了在指令Cache中的比例。

2.3 方案设计

根据以上分析结论, 及解释技术的优化技术在嵌入式移动通信领域的应用良好的现状, 本文采用解释执行技术及其优化手段设计优化方案。

DTI工作机制:转化函数对应一个translated code数组, 函数按顺序读入字节码指令, 查找其解释程序入口地址, 将地址保存在对应的数组中。即原来的操作码对应转化为解释程序的标号地址。

技术的改良。为了节省DTI中translated code数组的空间, 方案对数组进行了合理的压缩。

合并操作数。在32位CPU中, 标号地址长度占用4B的存储器。操作码后的操作数长度从0B到数10B不等。原来16位和32位的操作数分别占用2B, 2个字节码单元和4B, 4个字节码单元。合并后, 它们均占用1个translated code数组单元。

处理跳转地址。操作数的合并引起了操作码对应偏移量的变化, 因此, 需要更新绝对和相对跳转指令的目标地址。方案引入tcbc_offset数组, 令其保存translated code数组相对于原字节码数组的偏移量的差值 (带符号) 。当修改跳转目标地址时, 利用该数组的值分别计算绝对和相对跳转指令的新目标地址。同时, 方案通过3个优化途径进一步提升DTI的优化

幅度:

(1) 《Java虚拟机规范》只定义了202条指令, 其余的可由用户自定义, 即伪指令。

第1类伪指令:用指定数据类型的伪指令替代不指定操作数类型的指令。省去遍历各种类型常量池的操作。如:ldc指令把常量池中的项压入Java栈。伪指令intldc, floatldc, stringldc指定具体的数据类型。在转化字节码的过程中, 根据常量的数据类型, 对应到伪指令, 直接指向某个类型的常量池。提高了执行效率, 减小了字节码尺寸。

第2类伪指令:将小于等于4个字节的常量值放入translated code数组中操作数的位置, 省去查找常量池的操作。

(2) 合并字节码指令序列在字节码转化过程中, 可以跟踪记录每个Java方法被调用的次数, 虚拟机初始化时, 首先设定一个默认的调用频率指标, 对调用频率高于默认值, 且最高的Java方法进行连续的字节码指令合并。将该Java方法的字节码指令对应的处理程序合并到一个标号地址下, 然后修改translated code数组中该Java方法的首标号地址, 使其指向新的合并后的地址, 并依次转移操作数, 处理操作数指针, 以保证操作码和操作数之间的对应关系, 最后释放剩余的translated code数组。该处理方式既提高了解释执行的速度, 同时再次获得压缩translated code数组的效果。

(3) 管理转化码数组空间

字节码转化为translated code需要付出原字节码大小的3~4倍的存储空间的代价。对于内存空间有限的Linux NC来说, 需要一种机制高效的利用这块内存空间。方案根据访问频率进行空间淘汰的方法满足了translated code空间限制的条件。其工作机制:

·开辟translated code的专用内存--Translated Code Block;

·变量accessCount记录Java方法被调用的次数;

·若当前translated code的内存量不足以存放新的转化码时, 查找方法表中已转化的每个Java方法的accessCount值, 选择该值最小的Java方法所对应的translated code进行内存空间释放。重复该过程直到能容纳新的转化码为止。

2.4 方案实现

(1) 数据结构

修改涉及Java类型实例信息和Java方法信息的数据结构, 同时为DTI添加新的数据结构。在Translated_code结构体中构建共同体, 保存程序处理代码入口地址或者操作数信息, 以及原字节码的偏移量等其它控制参数。

(2) 优化后的执行流程

字节码解释模块和字节码转化模块实现了方案的设计思想。run_translatedMachine () --解释模块的主体函数实现了translated code解释器和switch-case解释器两种执行方式。若字节码转化过程失败则采用switch-case模式执行。switch-case解释完一条字节码后, 根据程序计数器的值, 进行下一次switch;translated code解释完一条字节码后, 直接goto到下一条指令的解释程序。转化模块包含两个重要函数:translated_method () 将字节码转化为translated code;manage_tcspace () 以Java方法为单位管理转化后的字节码。translated_method () 通过manage_tcspace () 申请转化码空间, 空间足够的情况下进入实际的转化流程。方案的实现通过3个阶段完成字节码转化、解释过程:第1阶段实现DTI的转化及操作数的合并;第2阶段实现合并字节码序列;第3阶段处理前两个阶段引起的操作码偏移量的变化, 即跳转指令的更新。

3 结论与展望

本文的优化方案主要有以下3个特点:

提高了Kaffe在Linux NC上的执行效率;在技术成本方面, 系统资源占用率相对较低, 并保证NC产品在Java技术方面原有的支持特性;方案的设计基于模块化结构, 具有清晰、完整的特点, 且易于实现和扩展。

该方案虽然已将NC的JVM性能提升到一定水平, 但还存在一些值得深入改进的地方。如:方案的转化字节码的设计本质上属于编译执行方式, 因此可应用基于编译方式的优化技术;对代码量较小的高频Java方法进行内嵌, 以减小方法调用的开销。这些技术的实现会使JVM在Linux NC中的表现更加出色!

摘要:目前, Linux网络计算机中的Java虚拟机在运行Java应用程序时, 存在着执行性能较低的问题。该文实现一种优化方案:在Kaffe虚拟机中应用并改良直接线索式解释器优化技术。旨在兼顾LinuxNC现有的硬件配置和软件模式, 有效地提升Java虚拟机运行效率, 并保证较低的CPU和内存成本。从而改善虚拟机的性能表现。

关键词:Linux,NC,Kaffe,Java虚拟机,性能优化

参考文献

[1]黄广君, 普杰信, 吴庆涛.嵌入式Java虚拟机实现中的代码优化[J].河南科技大学学报 (自然科学版) , 2003, 24 (1) :57-60.

[2]李允, 罗蕾, 雷昊峰, 等.嵌入式Java虚拟机的性能优化技术[J].计算机工程, 2004, 30 (18) :47-49.

篇4:心得总结:Java性能优化技巧

1 数据库设计

要在良好的SQL Server方案中实现最优的性能,最关键的是要有1个很好的数据库设计方案。在实际工作中,许多SQL Server方案往往是由于数据库设计得不好导致性能很差。所以,要实现良好的数据库设计就必须考虑这些问题。

1.1 逻辑库规范化问题

一般来说,逻辑数据库设计会满足规范化的前3级标准:

1.第1规范:没有重复的组或多值的列。

2.第2规范:每个非关键字段必须依赖于主关键字,不能依赖于1个组合式主关键字的某些组成部分。

3.第3规范:1个非关键字段不能依赖于另1个非关键字段。

遵守这些规则的设计会产生较少的列和更多的表,因而也就减少了数据冗余,也减少了用于存储数据的页。但表关系也许需要通过复杂的合并来处理,这样会降低系统的性能。某种程度上的非规范化可以改善系统的性能,非规范化过程可以根据性能方面不同的考虑用多种不同的方法进行,但以下方法经实践验证往往能提高性能。

1.如果规范化设计产生了许多4路或更多路合并关系,就可以考虑在数据库实体(表)中加入重复属性(列)。

2.常用的计算字段(如总计、最大值等)可以考虑存储到数据库实体中。

比如某一个项目的计划管理系统中有计划表,其字段为:项目编号、年初计划、二次计划、调整计划、补列计划…,而计划总数(年初计划+二次计划+调整计划+补列计划)是用户经常需要在查询和报表中用到的,在表的记录量很大时,有必要把计划总数作为1个独立的字段加入到表中。这里可以采用触发器以在客户端保持数据的一致性。

3.重新定义实体以减少外部属性数据或行数据的开支。相应的非规范化类型是:

(1)把1个实体(表)分割成2个表(把所有的属性分成2组)。这样就把频繁被访问的数据同较少被访问的数据分开了。这种方法要求在每个表中复制首要关键字。这样产生的设计有利于并行处理,并将产生列数较少的表。

(2)把1个实体(表)分割成2个表(把所有的行分成2组)。这种方法适用于那些将包含大量数据的实体(表)。在应用中常要保留历史记录,但是历史记录很少用到。因此可以把频繁被访问的数据同较少被访问历史数据分开。而且如果数据行是作为子集被逻辑工作组(部门、销售分区、地理区域等)访问的,那么这种方法也是很有好处的。

1.2 生成物理数据库

要想正确选择基本物理实现策略,必须懂得数据库访问格式和硬件资源的操作特点,主要是内存和磁盘子系统I/O。这是一个范围广泛的话题,但以下的准则可能会有所帮助。

1.与每个表列相关的数据类型应该反映数据所需的最小存储空间,特别是对于被索引的列更是如此。比如能使用smallint类型就不要用integer类型,这样索引字段可以被更快地读取,而且可以在1个数据页上放置更多的数据行,因而也就减少了I/O操作。

2.把1个表放在某个物理设备上,再通过SQL Server段把它的不分簇索引放在1个不同的物理设备上,这样能提高性能。尤其是系统采用了多个智能型磁盘控制器和数据分离技术的情况下,这样做的好处更加明显。

3.用SQL Server段把一个频繁使用的大表分割开,并放在2个单独的智能型磁盘控制器的数据库设备上,这样也可以提高性能。因为有多个磁头在查找,所以数据分离也能提高性能。

4.用SQL Server段把文本或图像列的数据存放在1个单独的物理设备上可以提高性能。1个专用的智能型的控制器能进一步提高性能。

2 与SQL Server相关的硬件系统

与SQL Server有关的硬件设计包括系统处理器、内存、磁盘子系统和网络,这4个部分基本上构成了硬件平台,Windows NT和SQL Server运行于其上。

2.1 系统处理器(CPU)

根据自己的具体需要确定CPU结构的过程就是估计在硬件平台上占用CPU的工作量的过程。从以往的经验看,CPU配置最少应是1个80586/100处理器。如果只有2~3个用户,这就足够了,但如果打算支持更多的用户和关键应用,推荐采用Pentium Pro或PⅡ级CPU。

2.2 内存(RAM)

为SQL Server方案确定合适的内存设置对于实现良好的性能是至关重要的。SQL Server用内存做过程缓存、数据和索引项缓存、静态服务器开支和设置开支。SQL Server最多能利用2GB虚拟内存,这也是最大的设置值。还有一点必须考虑的是Windows NT和它的所有相关的服务也要占用内存。

Windows NT为每个WIN32应用程序提供了4GB的虚拟地址空间。这个虚拟地址空间由Windows NT虚拟内存管理器(VMM)映射到物理内存上,在某些硬件平台上可以达到4GB。SQL Server应用程序只知道虚拟地址,所以不能直接访问物理内存,这个访问是由VMM控制的。Windows NT允许产生超出可用的物理内存的虚拟地址空间,这样当给SQL Server分配的虚拟内存多于可用的物理内存时,会降低SQL Server的性能。

这些地址空间是专门为SQL Server系统设置的,所以如果在同一硬件平台上还有其它软件(如文件和打印共享,应用程序服务等)在运行,那么应该考虑到它们也占用一部分内存。一般来说硬件平台至少要配置32MB的内存,其中,Windows NT至少要占用16MB。1个简单的法则是,给每一个并发的用户增加100KB的内存。例如,如果有100个并发的用户,则至少需要32MB+100用户*100KB=42MB内存,实际的使用数量还需要根据运行的实际情况调整。可以说,提高内存是提高系统性能的最经济的途径。

2.3 磁盘子系统

设计1个好的磁盘I/O系统是实现良好的SQL Server方案的一个很重要的方面。这里讨论的磁盘子系统至少有1个磁盘控制设备和1个或多个硬盘单元,还有对磁盘设置和文件系统的考虑。智能型SCSI-2磁盘控制器或磁盘组控制器是不错的选择,其特点如下:

(1)控制器高速缓存。

(2)总线主板上有处理器,可以减少对系统CPU的中断。

(3)异步读写支持。

(4)32位RAID支持。

(5)快速SCSI—2驱动。

(6)超前读高速缓存(至少1个磁道)。

3 检索策略

在精心选择了硬件平台,又实现了1个良好的数据库方案,并且具备了用户需求和应用方面的知识后,现在应该设计查询和索引了。有2个方面对于在SQL Server上取得良好的查询和索引性能是十分重要的,第1是根据SQL Server优化器方面的知识生成查询和索引;第2是利用SQL Server的性能特点,加强数据访问操作。

3.1 SQL Server优化器

Microsoft SQL Server数据库内核用1个基于费用的查询优化器自动优化向SQL提交的数据查询操作,

数据操作查询是指支持SQL关键字WHERE或HAVING的查询,如SELECT、DELETE和UPDATE。基于费用的查询优化器根据统计信息产生子句的费用估算。

了解优化器数据处理过程的简单方法是检测SHOWPLAN命令的输出结果。如果用基于字符的工具(例如isql),可以通过键入SHOW SHOWPLAN ON来得到SHOWPLAN命令的输出。如果使用图形化查询,比如SQL Enterprise Manager中的查询工具或isql/w,可以设定配置选项来提供这一信息。

SQL Server的优化通过3个阶段完成:查询分析、索引选择、合并选择。

1.查询分析

在查询分析阶段,SQL Server优化器查看每一个由正规查询树代表的子句,并判断它是否能被优化。SQL Server一般会尽量优化那些限制扫描的子句。例如,搜索和/或合并子句。但是不是所有合法的SQL语法都可以分成可优化的子句,如含有SQL不等关系符“”的子句。因为“”是1个排斥性的操作符,而不是1个包括性的操作符,所在扫描整个表之前无法确定子句的选择范围会有多大。当1个关系型查询中含有不可优化的子句时,执行计划用表扫描来访问查询的这个部分,对于查询树中可优化的SQL Server子句,则由优化器执行索引选择。

2.索引选择

对于每个可优化的子句,优化器都查看数据库系统表,以确定是否有相关的索引能用于访问数据。只有当索引中的列的1个前缀与查询子句中的列完全匹配时,这个索引才被认为是有用的。因为索引是根据列的顺序构造的,所以要求匹配是精确的匹配。对于分簇索引,原来的数据也是根据索引列顺序排序的。想用索引的次要列访问数据,就像想在电话本中查找所有姓为某个姓氏的条目一样,排序基本上没有什么用,因为你还是得查看每一行以确定它是否符合条件。如果1个子句有可用的索引,那么优化器就会为它确定选择性。

所以在设计过程中,要根据查询设计准则仔细检查所有的查询,以查询的优化特点为基础设计索引。

(1)比较窄的索引具有比较高的效率。对于比较窄的索引来说,每页上能存放较多的索引行,而且索引的级别也较少。所以,缓存中能放置更多的索引页,这样也减少了I/O操作。

(2)SQL Server优化器能分析大量的索引和合并可能性。所以与较少的宽索引相比,较多的窄索引能向优化器提供更多的选择。但是不要保留不必要的索引,因为它们将增加存储和维护的开支。对于复合索引、组合索引或多列索引,SQL Server优化器只保留最重要的列的分布统计信息,这样,索引的第1列应该有很大的选择性。

(3)表上的索引过多会影响UPDATE、INSERT和DELETE的性能,因为所有的索引都必须做相应的调整。另外,所有的分页操作都被记录在日志中,这也会增加I/O操作。

(4)对1个经常被更新的列建立索引,会严重影响性能。

(5)由于存储开支和I/O操作方面的原因,较小的自组索引比较大的索引性能更好一些。但它的缺点是要维护自组的列。

(6)尽量分析出每一个重要查询的使用频度,这样可以找出使用最多的索引,然后可以先对这些索引进行适当的优化。

(7)查询中的WHERE子句中的任何列都很可能是个索引列,因为优化器重点处理这个子句。

(8)对小于1个范围的小型表进行索引是不划算的,因为对于小表来说表扫描往往更快而且费用低。

(9)与“ORDER BY”或“GROUP BY”一起使用的列一般适于做分族索引。如果“ORDER BY”命令中用到的列上有分簇索引,那么就不会再生成1个工作表了,因为行已经排序了。“GROUP BY”命令则一定产生1个工作表。

(10)分簇索引不应该构造在经常变化的列上,因为这会引起整行的移动。在实现大型交易处理系统时,尤其要注意这一点,因为这些系统中数据往往是频繁变化的。

3.合并选择

当索引选择结束,并且所有的子句都有了一个基于它们的访问计划的处理费用时,优化器开始执行合并选择。合并选择被用来找出一个用于合并子句访问计划的有效顺序。为了做到这一点,优化器比较子句的不同排序,然后选出从物理磁盘I/O的角度看处理费用最低的合并计划。因为子句组合的数量会随着查询的复杂度极快地增长,SQL Server查询优化器使用树剪枝技术来尽量减少这些比较所带来的开支。当这个合并选择阶段结束时,SQL Server查询优化器已经生成了1个基于费用的查询执行计划,这个计划充分利用了可用的索引,并以最小的系统开支和良好的执行性能访问原来的数据。

3.2 高效的查询选择

从以上查询优化的3个阶段不难看出,设计出物理I/O和逻辑I/O最少的方案并掌握好处理器时间和I/O时间的平衡,是高效查询设计的主要目标。也就是说,希望设计出这样的查询:充分利用索引、磁盘读写最少、最高效地利用了内存和CPU资源。

以下建议是从SQL Server优化器的优化策略中总结出来的,对于设计高效的查询是很有帮助的。

1.如果有独特的索引,那么带有“=”操作符的WHERE子句性能最好,其次是封闭的区间(范围),再其次是开放的区间。

2.从数据库访问的角度看,含有不连续连接词(OR和IN)的WHERE子句一般来说性能不会太好。所以,优化器可能会采用R策略,这种策略会生成1个工作表,其中含有每个可能匹配的执行的标识符,优化器把这些行标志符(页号和行号)看做是指向1个表中匹配的行的“动态索引”。优化器只需扫描工作表,取出每一个行标志符,再从数据表中取得相应的行,所以R策略的代价是生成工作表。

3.包含NOT、、或! =的WHERE子句对于优化器的索引选择来说没有什么用处。因为这样的子句是排斥性的,而不是包括性的,所以在扫描整个原来数据表之前无法确定子句的选择性。

4.限制数据转换和串操作,优化器一般不会根据WHERE子句中的表达式和数据转换式生成索引选择。例如:

paycheck * 12>36000 or substring(lastname,1,1)=“L”

如果该表建立了针对paycheck和lastname的索引,就不能利用索引进行优化,可以改写上面的条件表达式为:

paycheck<36000/12 or lastname like “L%”

5.WHERE子句中的本地变量被认为是不被优化器知道和考虑的,例外的情况是定义为储备过程输入参数的变量。

6.如果没有包含合并子句的索引,那么优化器构造1个工作表以存放合并中最小的表中的行。然后再在这个表上构造1个分簇索引以完成一个高效的合并。这种作法的代价是工作表的生成和随后的分族索引的生成,这个过程叫REFORMATTING。

所以应该注意RAM中或磁盘上的数据库tempdb的大小(除了SELECT INTO语句)。另外,如果这些类型的操作是很常见的,那么把tempdb放在RAM中对于提高性能是很有好处的。

4 性能优化的其他考虑

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:SQL Server数据库性能优化技巧性能调优 下一篇:网站前端性能优化总结