两个计数原理教案

关键词: 定理 概率 计数 原理

作为一名老师,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。那么大家知道正规的教案是怎么写的吗?下面是小编整理的《两个计数原理教案》,供需要的小伙伴们查阅,希望能够帮助到大家。

第一篇:两个计数原理教案

高考数学一轮复习 第14章 计数原理、二项式定理、概率14.1两个基本计数原理教学案 苏教版

第14章 计数原理、二项式定理、概率

14.1 两个基本计数原理

纲要

1.理解分类计数原理和分步计数原理.

2.会用分类计数原理和分步计数原理分析和解决一些简单的实际问题.

1.分类计数原理:完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……,在第n类方式中有mn种不同的方法,那么完成这件事情共有__________种不同的方法.

2.分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有mn种不同的方法,那么完成这件事情共有____________种不同的方法.

1.5名同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法有__________种.

2.有不同颜色的四件上衣与不同颜色的三条长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是__________.

3.书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从书架上任取1本书,不同的取法数为__________.从第1,2,3层分别各取一本书,不同的取法数为__________.

4.由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有________. 5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有________种(用数字作答).

在计数问题中如何判定是分类计数原理还是分步计数原理?

提示:如果已知的每类办法中的每一种方法都能完成这件事,应该用分类计数原理;如果每类办法中的每种方法只能完成事件的一部分,就用分步计数原理.

一、分类计数原理的应用

x2y2【例1】方程+=1表示焦点在y轴上的椭圆,其中m∈{1,2,3,4,5},n∈mn{1,2,3,4,5,6,7},那么这样的椭圆有多少个?

方法提炼

使用分类计数原理计数的两个条件一是根据问题的特点能确定一个适合于它的分类标准.二是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法.

请做针对训练3

二、分步计数原理的应用

【例2】已知集合M={-3,-2,-1,0,1,2},点P(a,b)(a,b∈M)表示平面上的点,问:

(1)点P可表示平面上多少个不同的点? (2)点P可表示平面上多少个第二象限的点? (3)点P可表示多少个不在直线y=x上的点? 方法提炼

应用分步计数原理要注意两点:

(1)明确题目中所指的“完成一件事”是什么,必须经几步才能完成.

(2)完成这件事需分为若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少任何一步本事件都不可能完成.

请做针对训练1

三、两个计数原理的综合应用

【例3】某个同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读.

(1)若他从这些书中带一本去图书馆,有多少种不同的带法? (2)若带外语、数学、物理参考书各一本,有多少种不同的带法?

(3)若从这些参考书中选两本不同学科的参考书带到图书馆,有多少种不同的带法? 方法提炼

在解决实际问题的过程中,并不一定是单一的分类或分步,而是可能同时应用两个原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的思想求.

请做针对训练2

从近三年高考试题来看,高考对此部分内容考查都在附加题中.单独考查较少,往往结合概率进行考查,题型为解答题,难度为中档题.

1.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答) 2.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有__________种.

3.高三一班有学生50人,男30人,女20人;高三二班有学生60人,男30人,女30人;高三三班有学生55人,男35人,女20人.

(1)从高三一班或二班或三班学生中选一名学生任校学生会主席,有多少种不同的选法?

(2)从高三一班、二班的男生中,或从高三三班的女生中选一名学生任校学生会体育部部长,有多少种不同的选法?

参考答案

基础梳理自测 知识梳理

1.N=m1+m2+…+mn 2.N=m1×m2×…×mn 基础自测

51.32 解析:分5步完成,每一步有两种不同的方法,故不同的报名方法有2=32种. 2.12 解析:由分步计数原理,一条长裤与一件上衣配成一套,分两步,第一步选上衣有4种选法,第二步选长裤有3种选法,所以有4×3=12种选法.

3.15 120 解析:由分类计数原理,不同的取法总数为4+5+6=15.由分步计数原理,不同的取法总数为4×5×6=120. 4.174个 解析:可用排除法,由0,1,2,3可组成的所有四位数有3×4×4×4=192(个),其中无重复的数字的四位数共有3×3×2×1=18(个),故共有192-18=174(个).

5.24 解析:分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法;其次甲从剩下的3门课程中任选1门,有3种方法;最后乙从剩下的2门课程中任选1门,有2种方法.于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).

考点探究突破

【例1】 解:以m的值为标准分类,分为五类.第一类:m=1时,使n>m,n有6种选择;第二类:m=2时,使n>m,n有5种选择;第三类:m=3时,使n>m,n有4种选择;第四类:m=4时,使n>m,n有3种选择;第五类:m=5时,使n>m,n有2种选择.

∴共有6+5+4+3+2=20种方法,即有20个符合题意的椭圆. 【例2】 解:(1)确定平面上的点P(a,b)可分两步完成: 第一步确定a的值,共有6种确定方法; 第二步确定b的值,也有6种确定方法.

根据分步乘法计数原理,得到平面上的点数是6×6=36. (2)确定第二象限的点,可分两步完成:

第一步确定a,由于a<0,所以有3种确定方法; 第二步确定b,由于b>0,所以有2种确定方法.

由分步乘法计数原理,得到第二象限点的个数是3×2=6. (3)点P(a,b)在直线y=x上的充要条件是a=b. 因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个. 由(1)得不在直线y=x上的点共有36-6=30个.

【例3】 解:(1)完成的事情是带一本书,无论是带外语书还是带数学书、物理书,事情都能完成,从而确定为分类计数原理,结果为5+4+3=12种.

(2)完成的事情是带3本不同学科的参考书,只有从外语、数学、物理中各选一本书后,才能完成这件事,因此应用分步计数原理,结果为5×4×3=60种.

(3)选1本数学书和选1本外语书,应用分步计数原理,有5×4=20种选法,同样地,选外语书、物理书各一本有5×3=15种选法,选数学书、物理书各一本有4×3=12种选法,应用分类计数原理,结果为20+15+12=47种.

演练巩固提升 针对训练

1.14 解析:用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).

2.30 解析:分两类.第一类:A类选修课选1门,B类选修课选2门,不同的选法有3×6=18(种);第二类:A类选修课选2门,B类选修课选1门,不同的选法有3×4=12(种).根据分类计数原理共有18+12=30种不同的选法.

3.解:(1)完成这件事有三类方法:

第一类,从高三一班任选一名学生共有50种选法; 第二类,从高三二班任选一名学生共有60种选法; 第三类,从高三三班任选一名学生共有55种选法,

根据分类计数原理,任选一名学生任校学生会主席共有50+60+55=165种选法. (2)完成这件事有三类方法:

第一类,从高三一班男生中任选一名共有30种选法; 第二类,从高三二班男生中任选一名共有30种选法; 第三类,从高三三班女生中任选一名共有20种选法, 综上知,共有30+30+20=80种选法.

第二篇:分类计数原理和分步计数原理教案1

教学目标

正确理解和掌握分类计数原理和分步计数原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.

教学重点和难点

重点:分类计数原理和分步计数原理.

难点:分类计数原理和分步计数原理的准确应用.

教学用具

投影仪.

教学过程设计

(一)引入新课

师:从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.

今天我们先学习两个基本原理.

(这是排列、组合、二项式定理的第一节课,是起始课.讲起始课时,把这一学科的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下面的学习研究打下思想基础)

师:(板书课题)

(二)讲授新课

1.介绍两个基本原理

师:请大家先考虑下面的问题(找出片子——问题1).

问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?

师:(启发学生回答后,作补充说明)

因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有

4+2+3=9

种不同的走法.

这个问题可以总结为下面的一个基本原理.

(打出片子——分类计数原理)

分类计数原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.

(教师放慢速度读一遍分类计数原理)

师:请大家再来考虑下面的问题(打出片子——问题2).

问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见图9-1),从A村经B村去C村,共有多少种不同的走法?

师:(启发学生回答后加以说明)

这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.

一般地,有如下基本原理:

(找出片子——分步计数原理)

分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有

N=m1×m2×…×mn

种不同的方法.

(教师要读一遍分步计数原理)

2.浅释两个基本原理

师:两个基本原理是干什么用的呢?

生:计算做一件事完成它的所有不同的方法种数.

(如果学生不能较准确地回答,教师可以加以提示)

师:比较两个基本原理,想一想,它们有什么区别呢?

(学生经过思考后可以得出:各类的方法数相加,各步的方法数相乘.)

两个基本原理的区别在于:一个与分类有关,一个与分步有关.

师:请看下面的分析是否正确.

(打出片子——题1,题2)

题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.

1~10中一共有N=4+2+1=7个合数.

题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?

第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.

生乙:从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.

(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)

师:为什么会出现错误呢?

生:题1的分类可能有问题吧,题2都走北路不符合要求.

师:(教师归纳)

进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用分类计数原理,否则不可以.

如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用分步计数原理.

也就是说:类类互斥,步步独立.

(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)

(三)应用举例

师:现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.请看例题1.(板书)

例1书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.

(1)若从这些书中任取一本,有多少种不同的取法?

(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?

(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?

(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)

师:(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据分类计数原理,得到的取法种数是

N=m1+m2+m3=3+5+6=14.

故从书架上任取一本书的不同取法有14种.

师:(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据分步计数原理,得到不同的取法种数是

N=m1×m2×m3=3×5×6=90.

故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法.

师:(3)从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有3×5种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有3×6种方法;第三类办法是语文书、英语书各取1本,有5×6种方法.一共得到不同的取法种数是

N=3×5+3×6+5×6=63.

即,从书架任取不同科目的书两本的不同取法有63种.

师:请大家再来分析和解决例题2.

(板书)

例2由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?

师:每一个三位整数是由什么构成的呢?

生:三个整数字.

师:023是一个三位整数吗?

生:不是,百位上不能是0.

师:对!百位的数字不能是0,也就是说,一个三位整数是由百位、十位、个位三位数字组成的,其中最高位不能是0.那么要组成一个三位数需要怎么做呢?

生:分成三个步骤来完成:第一步确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字.

师:很好!怎样表述呢?

(教师巡视指导、并归纳)

解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据分步计数原理,得到可以组成的三位整数的个数是N=4×5×5=100.

答:可以组成100个三位整数.

(教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.

教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础)

(四)归纳小结

师:什么时候用分类计数原理、什么时候用分步计数原理呢?

生:分类时用分类计数原理,分步时用分步计数原理.

师:应用两个基本原理时需要注意什么呢?

生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.

(五)课堂练习

P222:练习1~4.

(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)

(六)布置作业

P222:练习5,6,7.

补充题:

1.在所有的两位数中,个位数字小于十位数字的共有多少个?

(提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)

2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第

一、

二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.

(提示:需要按三个志愿分成三步.共有m(m-1)(m-2)种填写方式)

3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?

(提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)

4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?

(提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语.(1)N=5+2+3;(2)N=5×2+5×3+2×3)

课堂教学设计说明

两个基本原理一课是排列、组合、二项式定理的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,通常教师们或者感觉很简单,一带而过;或者感觉难以开头.中学数学课程中引进的关于排列、组合的计算公式都是以分步计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,因此必须使学生学会正确地使用两个基本原理,学会正确地使用这两个基本原理是这一章教学中必须抓住的一个关键.所以在教学目标中特别提出要使学生学会准确地应用两个基本原理分析和解决一些简单的问题.对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的.基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题.

正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件.而原理中提到的分步和分类,学生不是一下子就能理解深刻的,这就需要教师引导学生,帮助他们分析,找到分类和分步的具体要求——类类互斥,步步独立.教学过程中的题1和题2,就是为了解决这一问题而提出的.

分类用分类计数原理,分步用分步计数原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类、分步,特别是在分类时必须做到既不重复,又不遗漏,找到分步的方法有时是比较困难的,这就要着重进行训练.教学中给出了例题

1、例题2.这两个题目都是在课本例题的基础上稍加改动过的,目的就是要帮助学生发展思维能力,培养学生周密思考、细心分析的良好习惯.为了帮助学生在今后能正确运用两个基本原理解决其它排列组合问题,特别给出了4个补充习题,为下面将要进行的课打下一个基础.

考虑到这节课无论是两个基本原理,还是例题都是文字较多的,因此特别设计了使用教具——投影仪.要是有实物投影仪那就更方便了.

第三篇:1.1分类加法计数原理与分步乘法计数原理 教学设计 教案

教学准备

1. 教学目标

知识与技能:①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; 过程与方法:培养学生的归纳概括能力;

情感、态度与价值观:引导学生形成 “自主学习”与“合作学习”等良好的学习方式

2. 教学重点/难点

教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解

3. 教学用具

多媒体

4. 标签

1.1分类加法计数原理和分步乘法计数原理

教学过程 引入课题

先看下面的问题:

①从我们班上推选出两名同学担任班长,有多少种不同的选法? ②把我们的同学排成一排,共有多少种不同的排法?

要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.

在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.

分类加法计数原理 (1)提出问题

问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?

问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?

探究:你能说说以上两个问题的特征吗? (2)发现新知

分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法. 那么完成这件事共有种不同的方法

(3)知识应用

例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:

如果这名同学只能选一个专业,那么他共有多少种选择呢?

分析:由于这名同学在 A , B 两所大学只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有

5+4=9(种). 变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?

探究:如果完成一件事有三类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法,在第3类方案中有种不同的方法,那么完成这件事共有多少种不同的方法?

如果完成一件事情有类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢? 一般归纳:

完成一件事情,有n类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法„„在第n类办法中有种不同的方法.那么完成这件事共有 种不同的方法. 理解分类加法计数原理:

分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事. 例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?

解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,

第一类,

m1 = 1×2 = 2

第二类,

m2 = 1×2 = 2

第三类,

m3 = 1×2 = 2

条 所以, 根据加法原理, 从顶点A到顶点C1最近路线共有 N = 2 + 2 + 2 = 6

练习 1.填空: ( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是_ ;

( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有_条.

第四篇:长沙市一中教案_高二理科数学《1.1分类计数原理与分步计数原理(三)》

长沙市第一中学高二数学备课组

选修2-3

1.1 分类计数原理与分步计数原理(3)

教学目标

1、进一步理解两个计数原理,会区分“分类”与“分步”,

2、掌握分类计数原理与分步计数原理,并能用这两个原理分析和解决一些简单问题.

教学的重点与难点

1、分类加法计数原理与分步乘法计数原理的准确理解

2、正确理解“完成一件事情”的含义,根据实际问题的特征,正确地区分“分步”与“分类”。

教学过程

一.复习引入

1.什么是分类计数原理与分步计数原理? 二.举例应用

1、教材的P8面的例6。 例

2、教材的P9面的例7。 例

3、教材的P9面的例8。 例

4、教材的P9面的例9。 三.课堂练习:

1.已知直线方程Ax + By = 0,若从0,1,2,3,5,7这六个数字中每次取两个不同的数作为A、B的值,则表示不同直线的条数是( C) A.2 B.12

C.22

D.25 2.从1到200的自然数中,各个数位上都不含有数字8的自然数有多少? 解:分三类:一位数,两位数和三位数. 第一类:一位数中除8外符合要求的有8个(0除外);

第二类:两位数中,十位上数字除0和8外有8种情况,而个位数字除8外,有9种情况,共有8×9个符合要求;

第三类:三位数中,百位上数字是1的,十位和个位上数字除8外均有9种情况,共有9×9种,而百位数字上是2的只有200符合. 所以,从1到200不含数字8的自然数共有N = 8 + 8×9 + 9×9 + 1 = 162 (个). 3.集合A、B的并集A∪B = {a1,a2,a3},当A≠B时,(A, B)与(B, A)视为不同的对,则这样的对(A, B)共有多少个? 解:按集合A分类. 第一类:A =时,B = {a1,a2,a3},有2个;

第二类:A = {a1}时,B = {a2,a3},B = {a1,a2,a3},有4个;A = {a2}或{a3}时,同理也分别有4个,共有12个;

—第1页●共2页—

长沙市第一中学高二数学备课组

选修2-3 第三类:A为双元素集合时,以A = {a1,a2}为例,B = {a3},B = {a1,a3},B = {a2,a3},B = {a1,a2,a3},共有8个;当A = {a1,a3}或{a2,a3}时情况相同,共有3×8 = 24(个);

第四类:A = {a1,a2,a3}时,B =,{a1},{a2},{a3},{a1,a2},{a1,a3},{a2,a3}有7个,

∴共有14个. 共有2 + 12 + 24 + 14 = 52 (个). 4.用三只口袋装小球,一只装有5个白色小球,一只装有6个黑色小球,另一只装有7个红色小球,若每次从中取两个不同颜色的小球,共有多少种不同的取法? 解:第一类办法:取白球、黑球,共有5×6 = 30(种)取法;

第二类办法:取黑球、红球,共有6×7 = 42(种)取法; 第三类办法:取红球、白球,共有7×5 = 35(种)以法. 由分类加法计数原理知,共有30 + 42 + 35 = 107(种)不同的取法. 5.某文艺团体有10人,每人至少会唱歌或跳舞中的一种,其中7人会唱歌,5人会跳舞,从中选出会唱歌与跳舞的各1人,有多少种不同的选法?

解:首先求得只会唱歌的有5人,只会跳舞的有3人,既会唱歌又会跳舞的有2人. 第一类方法:从只会唱歌的5人中任选1人,从只会跳舞的3人中任选1人,共有5×3 = 15(种)不同的选法;

第二类方法:从只会唱歌的5人中任选1人,从既会唱歌又会跳舞的2人中任选1人,共有5×2 = 10(种)不同的选法;

第三类方法:从只会跳舞的3人中任选1人,从既会唱歌又会跳舞的2人中任选1人,共有3×2 = 6(种)不同的选法;

第四类方法:将既会唱歌又会跳舞的2人全部选出,只有1种选法. 由分类加法计数原理知,共有15 + 10 + 6 + 1 = 32(种)不同的选法.

四.课后作业

《习案》与《学案》

—第2页●共2页—

第五篇:计数原理-10.2 排列与组合(教案)

响水二中高三数学(理)一轮复习

教案 第十编 计数原理 主备人 张灵芝 总第52期

§10.2 排列与组合

基础自测

1.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有 个. 答案 54 2.(2008·福建理)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案共有 种. 答案 14 3.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有 种.(用式子表示) 答案 A88

4.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法种数是 (用式子表示). 3答案 C100-C394

5.(2007·天津理)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答). 答案 390

例题精讲

例1 六人按下列要求站一横排,分别有多少种不同的站法? (1)甲不站两端; (2)甲、乙必须相邻; (3)甲、乙不相邻; (4)甲、乙之间间隔两人; (5)甲、乙站在两端; (6)甲不站左端,乙不站右端. 解 (1)方法一 要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A14种站法,然后其余

155人在另外5个位置上作全排列有A55种站法,根据分步计数原理,共有站法:A4·A5=480(种).

2方法二 由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A5种站法,然后中24间人有A44种站法,根据分步计数原理,共有站法:A5·A4=480(种).

5方法三 若对甲没有限制条件共有A66种站法,甲在两端共有2A5种站法,从总数中减去这两种 329

5情形的排列数,即共有站法:A66-2A5=480(种). (2)方法一 先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有A55种站法,再把

52甲、乙进行全排列,有A22种站法,根据分步计数原理,共有A5·A2=240(种)站法. 方法二 先把甲、乙以外的4个人作全排列,有A44种站法,再在5个空档中选出一个供甲、乙放

2412入,有A15种方法,最后让甲、乙全排列,有A2种方法,共有A4·A5·A2=240(种). (3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A442种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有A5种站法,故共有站法为2A44·A5=480(种).

52也可用“间接法”,6个人全排列有A66种站法,由(2)知甲、乙相邻有A5·A2=240种站法,所52以不相邻的站法有A66-A5·A2=720-240=480(种). (4)方法一 先将甲、乙以外的4个人作全排列,有A4然后将甲、乙按条件插入站队,有3A24种,2种,故共有A4(3A24·2)=144(种)站法. 方法二 先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A2然后把甲、4种,乙及中间2人看作一个“大”元素与余下2人作全排列有A3最后对甲、乙进行排列,有A22种3种方法,32方法,故共有A24·A3·A2=144(种)站法. (5)方法一 首先考虑特殊元素,甲、乙先站两端,有A22种,再让其他4人在中间位置作全排列,

24有A44种,根据分步计数原理,共有A2·A4=48(种)站法. 方法二 首先考虑两端两个特殊位置,甲、乙去站有A22种站法,然后考虑中间4个位置,由剩下

24的4人去站,有A44种站法,由分步计数原理共有A2·A4=48(种)站法.

54(6)方法一 甲在左端的站法有A55种,乙在右端的站法有A5种,且甲在左端而乙在右端的站法有A4 330 54种,共有A66-2A5+A4=504(种)站法. 方法二 以元素甲分类可分为两类:①甲站右端有A55种站法,②甲在中间4个位置之一,而乙不145114在右端有A14·A4·A4 种,故共有A5+A4·A4·A4=504(种)站法. 例2 男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?

(1)男运动员3名,女运动员2名; (2)至少有1名女运动员; (3)队长中至少有1人参加; (4)既要有队长,又要有女运动员.

2解 (1)第一步:选3名男运动员,有C36种选法.第二步:选2名女运动员,有C4种选法. 2共有C36·C4=120种选法. (2)方法一 至少1名女运动员包括以下几种情况: 1女4男,2女3男,3女2男,4女1男.

4233241由分类计数原理可得总选法数为C14C6+C4C6+C4C6+C4C6=246种. 方法二 “至少1名女运动员”的反面为“全是男运动员”可用间接法求解. 5从10人中任选5人有C10种选法,其中全是男运动员的选法有C56种.所以“至少有1名女运动员”的5选法为C10-C56=246种. (3)方法一 可分类求解:

443“只有男队长”的选法为C8; “只有女队长”的选法为C8; “男、女队长都入选”的选法为C8; 43所以共有2C8+C8=196种选法. 方法二 间接法:

55从10人中任选5人有C10种选法.其中不选队长的方法有C8种.所以“至少1名队长”的选法为55C10-C8=196种.

44(4)当有女队长时,其他人任意选,共有C9种选法.不选女队长时,必选男队长,共有C8种选法.444其中不含女运动员的选法有C5种,所以不选女队长时的选法共有C8-C5种选法.所以既有队长又有女444运动员的选法共有C9+C8-C5=191种. 331 例3 4个不同的球,4个不同的盒子,把球全部放入盒内. (1)恰有1个盒不放球,共有几种放法? (2)恰有1个盒内有2个球,共有几种放法? (3)恰有2个盒不放球,共有几种放法?

解 (1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选

1212个放2个球,其余2个球放在另 外2个盒子内,由分步计数原理,共有C14C4C3×A2=144种. (2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个 子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法. (3)确定2个空盒有C

2、(2,2)两类,第一类有序不4种方法. 4个球放进2个盒子可分成(3,1)均匀分组有CC24( C342C11A234C11A22种方法;第二类有序均匀分组有

2C24C2A22·A

22种方法.故共有+2C24C2A22·A22)=84种. 巩固练习

1.用0、

1、

2、

3、

4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数: (1)奇数;(2)偶数; (3)大于3 125的数.

12解 (1)先排个位,再排首位,共有A13·A4·A4=144(个).

1123(2)以0结尾的四位偶数有A35个,以2或4结尾的四位偶数有A2·A4·A4个,则共有A5+ 12A12·A4·A4=156(个).

2(3)要比3 125大,

4、5作千位时有2A35个,3作千位,

2、

4、5作百位时有3A4个,3作千位,1作 321百位时有2A13个,所以共有2A5+3A4+2A3=162(个). 2.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中 (1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法? (2)甲、乙均不能参加,有多少种选法? (3)甲、乙两人至少有一人参加,有多少种选法?

(4)队中至少有一名内科医生和一名外科医生,有几种选法?

3解 (1)只需从其他18人中选3人即可,共有C18=816(种). 5(2)只需从其他18人中选5人即可,共有C18=8 568(种).

43(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C12C18+C18=6 936(种). 332 (4)方法一 (直接法)至少一名内科医生一名外科医生的选法可分四类:一内四外;二内三外;三

4233241内二外;四内一外,所以共有C112C8+C12C8+C12C8+C12C8=14 656(种). 方法二 (间接法)由总数中减去五名都是内科医生和五名都是外科医生的选法种数,

55得C520-(C8+C12)=14 656(种). 3.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式? (1)分成1本、2本、3本三组;

(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本; (3)分成每组都是2本的三组; (4)分给甲、乙、丙三人,每人2本.

2解 (1)分三步:先选一本有C16种选法;再从余下的5本中选2本有C5种选法;对于余下的三本 123全选有C33种选法,由分步计数原理知有C6C5C3=60种选法.

233(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此共有C16C5C3A3=360种选法. 222(3)先分三步,则应是C6C4C2种选法,但是这里面出现了重复,不妨记六本书为A、B、C、D、 222E、F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则C6C4C2种分法中还有(AB、EF、CD),(CD、AB、EF)、(CD、EF、AB)、(EF、CD、AB)、(EF、AB、CD)3共有A33种情况,而且这A3种情况仅是AB、CD、EF的顺序不同,因此,只算作一种情况,故分法有222C6C4C2A33=15种.

222C6C4C2(4)在问题(3)的工作基础上再分配,故分配方式有

A33222·A33= C6C4C2=90种. 回顾总结

知识 方法 思想

课后作业

一、填空题

1.用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有 个. 答案 36 2.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法共有 种.

333 答案 10 3.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 种. 答案 960 4.(2008·天津理)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有 种. 答案 1 248 5.在图中,“构建和谐社会,创美好未来”,从上往下读(不能跳读),共有 种不同的读法.

答案 252 6.(2008·安徽理)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是 (用式子表示). 22答案 C8A6

7.平面内有四个点,平面内有五个点,从这九个点中任取三个,最多可确定 个平面,任取四点,最多可确定 个四面体.(用数字作答) 答案 72 120 8.(2008·浙江理,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是 .(用数字作答) 答案 40

二、解答题

9.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?

解 可先分组再分配,据题意分两类,一类:先将3个项目分成两组,一组有1个项目,另一组有2

22个项目,然后再分配给4个城市中的2个,共有C3A4种方案;另一类1个城市1个项目,即把3个223元素排在4个不同位置中的3个,共有A34种方案.由分类计数原理可知共有C3A4+A4=60种方案. 10.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法? (1)只有一名女生; (2)两队长当选;

334 (3)至少有一名队长当选; (4)至多有两名女生当选.

4解 (1)一名女生,四名男生,故共有C15·C8=350(种).

3(2)将两队长作为一类,其他11人作为一类,故共有C22·C11=165(种).

423(3)至少有一名队长含有两类:有一名队长和两名队长.故共有:C12·C11+C2·C11=825(种). 55或采用间接法:C13-C11=825(种). (4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生. 2345故选法为C5·C8+C15·C8+C8=966(种). 11.已知平面∥,在内有4个点,在内有6个点. (1)过这10个点中的3点作一平面,最多可作多少个不同平面? (2)以这些点为顶点,最多可作多少个三棱锥? (3)上述三棱锥中最多可以有多少个不同的体积?

2解 (1)所作出的平面有三类:①内1点,内2点确定的平面,有C14·C6个;②内2点,2内1点确定的平面,有C2C1③,本身.∴所作的平面最多有C1C6+C2C1(个). 4·4·4·6个;6+2=983(2)所作的三棱锥有三类:①内1点,内3点确定的三棱锥,有C14·C6个;②内2点,内2312点确定的三棱锥,有C24·C6个;内3点,内1点确定的三棱锥,有C4·C6个. 32231∴最多可作出的三棱锥有:C14·C6+C4·C6+C4·C6=194(个). (3)∵当等底面积、等高的情况下三棱锥的体积相等,且平面∥,∴体积不相同的三棱锥最多有

322C36+C4+C6·C4=114(个). 12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法?

解 ∵前排中间3个座位不能坐,∴实际可坐的位置前排8个,后排12个.

12(1)两人一个前排,一个后排,方法数为C18·C12·A2种; 212(2)两人均在后排左右不相邻,共A12-A22·A11=A11种;

1(3)两人均在前排,又分两类:①两人一左一右,共C1C1A2②两人同左同右,有2(A2A24·4·2种;4-A3·2)122112212种.综上可知,不同排法种数为C18·C12·A2+A11+C4·C4·A2+2(A4-A3·A2)=346种. 335

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:加法变乘法练习 下一篇:《抽屉原理》教案