碳纤维复合材料论文

关键词: 碳纤维 复合材料 设计 系统

碳纤维复合材料论文(通用6篇)

篇1:碳纤维复合材料论文

碳纤维复合材料

摘要:主要介绍了碳纤维复合材料的基本概述,并对它的一些结构性能、应用(主要在航空领域的应用)、发展,并分析了目前我国碳纤维复合材料的研究进展和应用前景。

关键字:碳纤维复合材料、碳纤维树脂基复合材料、碳/碳复合材料、结构性能、发展、航空领域。

1、引言

碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的“比强度”。碳纤维属于聚合物碳,是有机纤维经固相反应转变为纤维状的无机碳化合物。碳纤维是一种新型非金属材料,它和它的复合材料具有高强度、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、比重小和热胀胀系数小等优异性能,碳纤维单独使用时主要是利用其耐热性、耐蚀性、导电性和其它性质。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP(即碳纤维复合材料)的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。目前,碳纤维不仅广泛应用军事工业,而且在汽车构件、风力发电叶片、核电、油田钻探、体育用品、碳纤维复合芯电缆以及建筑补强材料领域也存在巨大应用空间,而其在航空领域的光辉业绩尤为引人注目。

2、碳纤维的发展

碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的各个领域。在机械电子建筑材料、文体、化工、医疗等各个领域碳纤维有着无可比拟的应用优势。

碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的。80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。经过二十多年的发展,碳纤维及其复合材料已从初创期转入增长发展期,其工业地位已基本确立,美、日、英、法、德等国的碳纤维产量已经占世界产量的绝大部分,并已逐步形成垄断优势。

我国对碳纤维的研究由于起步较晚,技术力量薄弱,虽然碳纤维及其复合材料在我国已被纳入国家“863”和“973”计划,但总体情况不尽理想,我国仍不具备成熟的碳纤维工业化生产技术,国防和民用碳纤维产品基本依赖进口。

3、碳纤维复合材料的性能及主要用途

由于碳纤维主要是由碳元素组成的一种特种纤维,是由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的。其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工性好,沿纤维轴方向表现出很高的强度,且碳纤维比重小。(1)碳纤维的化学性能

碳纤维是一种纤维状的碳素材料。我们知道碳素材料是化学性能稳定性极好的物质之一。这是历史上最早就被人类认识的碳素材料的特征之一。除强氧化性酸等特殊物质外,在常温常压附近,几乎为化学惰性。可以认为在普通的工作温度≤250℃环境下使用,很难观察到碳纤维发生化学变化。根据有关资料介绍,从碳素材料的化学性质分析,在≤250℃环境下,碳素材料既没有明显的氧化发生,也没有生成碳化物和层间化合物生成。由于碳素材料具有气孔结构,因此气孔率高达25%左右,在加热过程易产生吸附气体脱气情况,这样的过程更有利于我们稳定电气性能和在电热领域的应用。(2)碳纤维的物理性能(a)热学性质

碳素材料因石墨晶体的高度各向异性,而不同于一般固体物质与温度的依存性,从工业的应用角度来看,碳素材料比热大体上是恒定的。几乎不随石墨化度和碳素材料的种类而变化(b)导热性质

碳素材料热传导机理并不依赖于电子,而是依靠晶格振动导热,因此,不符合金属所遵循的维德曼—夫兰兹定律。根据有关资料介绍,普通的碳素材料导热系数极高,平行于晶粒方向的导热系数可与黄铜媲美(c)电学性质

碳素材料电学性质主要与石墨晶体的电子行为和不同的处理温度有关,石墨的电子能带结构和载流子的种类及其扩散机理决定了上述性质。碳素材料这类电学性质具有本征半导体所具备的特征,电阻率变化主要与载流子的数量变化有关。

碳纤维的主要用途:

与树脂、金属、陶瓷等基体复合,做成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。最神奇的应用是采用长碳纤维制成的“纳米绳”可以将“太空电梯”由理想变为现实,太空电梯将可以将乘客和各种货物运送到空间轨道站上,也可以用这种“纳米绳”将太空中发射平台与地面固定在一起,在这样的发射平台上发射人造卫星和太空探测器就可以大大降低发射成本。

总结碳纤维复合材料的现实应用有以下几个方面

(一)航天领域

碳纤维复合材料因其独特、卓越的性能,在航空领越特别是飞机制造业中应用广泛。统计显示,目前,碳纤维复合材料在小型商务飞机和直升飞机上的使用量已占70%~80%,在军用飞机上占30%~40%,在大型客机上占15%~50%。(a)碳纤维树脂基复合材料 碳纤维增强树脂基复合材料(CFRP)具有质量轻

等一系列突出的性能,在对重量、刚度、疲劳特性等有严格要求的领域以及要求高温、化学稳定性高的场合,碳纤维复合材料都具有很大优势。碳纤维增强树脂基复合材料已成为生产武器装备的

重要材料。AV—8B 改型“鹞”式飞机是美国军用飞机中使用复合材料最多的机种,其机翼、前机身都用了石墨环氧大型部件,全机所用碳纤维的重量约占飞机结构总重量的26%,使整机减重9%,有效载荷比AV—8A飞机增加了一倍。数据显示采用复合材料结构的前机身段,可比金属结构减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22 为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。

直升飞机上碳纤维增强树脂基复合材料的用量更是与日俱增。武装了驻港部队并参加了2007 年上海合作组织在俄罗斯反恐军演的直-9 型直升飞机,是我国先进的直升飞机。该机复合材料用量已占到60%左右,主要是CFRP。此外,日本生产的OH-1 “忍者”直升飞机,机身的40%是用CFRP,桨叶等也用CFRP 制造。在民用领域,世界最大的飞机A380 由于CFRP 的大量使用,创造了飞行史上的奇迹。这种飞机25%重量的部件由复合材料制造,其中22%为碳纤维增强塑料(CFRP)。由于CFRP 的明显减重以及在使用中不会因疲劳或腐蚀受损,从而大大减少了油耗和排放。燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%~20%,成为第一个每乘客每百公里耗油少于三升的远程客机。(b)碳/碳复合材料

碳/碳复合材料是以碳纤维及其制品(碳毡或碳布)作为增强材料的复合材料。因为它的组成元素只有一个(即碳元素),因而碳/碳复合材料具有许多碳和石墨材料的优点,如密度低(石墨的理论密度为2.3g/cm3)和优异的热性能,即高的热导率、低热膨胀系数,能承受极高的温度和极大的热加速率,有极强的抗热冲击,在高温和超高温环境下具有高强度、高模量和高化学惰性。凭借着轻质难熔的优良特性,碳纤维增强基体的(C/C)复合摩擦材料在航空航天工业中得到了广泛应用。航天飞机轨道的鼻锥和机翼前缘材料,都会选用碳碳复合材料。另外还大量用作高超音速飞机的刹车片,目前,国际上大多数军用和民用干线飞机采均用碳纤维增强基体的复合材料刹车副。这种刹车副不仅质量轻、抗热冲击性好、摩擦系数稳定、使用寿命长,更为方便的是可设计性强,性能便于调节。还可制作发热元件和机械紧固件、涡轮发动机叶片和内燃机活塞等。

(二)、其他领域 1)、高尔夫球棒

用CFRP制成的高尔夫球棒、可减轻重量约10一40%。根据动量守恒定律,可使球获得较大的初速度。另一方面.CFRP具有高的阻尼特性,可使击球时间延长,球被击得更远。2)、钓鱼竿

碳纤维增强复合材料制成的钓鱼竿比GFRP制品或竹竿都要轻得多,使其在撒竿时消耗能量少,而且撤竿距比后者远20%左右。CFRP所制的钓鱼竿长而好,刚性大,钓鱼竿在弯曲之后能迅速复原,使其传递诱饵的感觉较为灵敏。现在已有商品销售,用碳纤维增强塑料还可以制成渔具的卷铀,其重量不超过l40克,但它的疲劳强度高,耐摩擦,因而使用寿命长。3)、赛车

用石墨纤维长丝制成的管材可用来制造比赛车或通用自行车的车架,其特点是重量轻,比钢制架可减重50%左右,使自行车的总重量减轻15%。

碳纤维与玻璃纤维混合增强复合材料可用来制造越野赛汽车,它的特点是重量轻。用金属材料制造的同样车体的总重量为226.8公斤,用CFRP制造时为63.5公斤,用CF/GPRP制造时重量可减轻到31.8至36.5公斤。

在赛车领域,碳纤维复合材料最著名的运用无疑是F1车身。为了使重量保持最小,所有车队都广泛使用碳纤材料,而这些材料的强固性足以支撑车子的重量。

4.我国碳纤维复合材料发展现状

现代的碳纤维是以聚丙烯腈、人造丝或木质素为原丝,将有机纤维跟塑料树脂结合在一起高温分解并且碳化后得到的,还不能直接用碳或石墨来制取。

据了解,目前全球碳纤维产能约3.5万吨,我国市场年需求量6500吨左右,属于碳纤维消费大国。在以“高性能聚丙烯腈碳纤维制备的基础科学问题”为主题的第335次香山科学会议上,会议执行主席、国家自然科学基金委员会师绪院士指出,与国外技术相比,我国碳纤维领域还存在较大差距。2007年,我国碳纤维产能仅200吨左右,而且主要是低性能产品。由于缺少具有自主知识产权的技术支撑,目前国内企业尚未掌握完整的碳纤维核心关键技术。这就使得我国碳纤维在质量、技术和生产规模等方面均与国外存在很大差距,绝大部分高性能增强材料都长期依赖进口,价格非常昂贵。由于缺乏创新与集成和应用领域的拓展,极大地制约了我国碳纤维复合材料工业的发展。

基于我国高性能碳纤维复合材料产业尚不能满足国民经济快速、健康、持续发展的需求,国家发展改革委2008~2009 年组织实施高性能纤维复合材料高技术产业化专项,重点支持碳纤维、芳纶纤维、高强聚乙烯纤维及其高性能复合材料的生产技术及关键装备的产业化示范,以满足国民经济以及航空航天等高技术产业发展的需求,培育一批具有国际竞争力的龙头企业。这一举措将为我国从材料大国转变为材料强国奠定坚实的基础。今年5月,由鹰游纺机自主研发的碳纤维生产线和神鹰碳纤维项目通过国家级验收,标志着我国碳纤维生产已成功实现国产化和产业化。

篇2:碳纤维复合材料论文

摘要

一、碳纤维复合材料的概况

二、碳纤维复合材料的结构

三、碳纤维复合材料的用途

四、碳纤维复合材料的优势

五、碳纤维的产业

六、结论

1、概况

在复合材料大家族中,纤维增强材料一直是人们关注的焦点。自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使其复合材料领域呈现出一派勃勃生机。下面让我们来了解一下别具特色的碳纤维复合材料。

2、结构

碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。

碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。

碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。

3、用途 碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。

碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。随着尖端技术对新材料技术性能的要求日益苛刻,促使科技工作者不断努力提高。80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。

由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。因为航天飞行器的重量每减少1公斤,就可使运载火箭减轻500公斤。所以,在航空航天工业中争相采用先进复合材料。有一种垂直起落战斗机,它所用的碳纤维复合材料已占全机重量的1/4,占机翼重量的1/3。据报道,美国航天飞机上3只火箭推进器的关键部件以及先进的MX导弹发射管等,都是用先进的碳纤维复合材料制成的。

现在的F1(世界一级方程锦标赛)赛车,车身大部分结构都用碳纤维材料。顶级跑车的一大卖点也是周身使用碳纤维,用以提高气动性和结构强度

碳纤维可加工成织物、毡、席、带、纸及其他材料。传统使用中碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。

4、优势

1、高强度(是钢铁的5倍)

2、出色的耐热性(可以耐受2000℃以上的高温)

3、出色的抗热冲击性

4、低热膨胀系数(变形量小)

5、热容量小(节能

6、比重小(钢的1/5)

7、优秀的抗腐蚀与辐射性能

5、碳纤维的产业

5.1 碳纤维的取材形式及比例

预浸布:51.6%,编织布:20%(其中有12.4%要经过预浸进入后段),短切纱:19%,纤维丝束通过缠绕等方式直接使用:9.9%.5.2 碳纤维产业链关联度非常紧密,上游帮扶下游就是帮自己碳纤维产业链。碳纤维制造企业因为资金和技术的优势,要成为引领整个产业链的生力军!市场培育任重道远!只有不断推进从碳纤维向纤维材料以及复合材料制品的纵深发展,完善产业链,扩大碳纤维的应用范围,才能使整个碳纤维行业实现跨越式的发展。5.3 碳纤维产业链中的价值链我们常听到关于碳纤维价值链的说法是:从石油原料到碳纤维,增值关系是1 到3,而把碳纤维做成复合材料,增值可以到10。而国际上还有一个类似的说法:一个工业用碳纤维复合材料零件的成本构成,其中碳纤维和树脂的成本占25%,把碳纤维转成预浸料或编织布(我们称之为纤维材料),转化成本为15%,而把纤维材料制造成复合材料构件,需要60%的成本,原因是这个过程的边角废料太多,主要是沿袭于航空航天的成型工艺效率太低。当很多人抱怨:碳纤维因为价格太高而影响其应用面时,我们必须重视除了25%~30%的碳纤维成本之外的其它70%~75%的纤维和构件成型的巨大成本。否则,即使碳纤维成本降得再低,做出的复合材料成本还是惊人!

6、结论

中国碳纤维“平民化”发展之路探讨

篇3:碳纤维复合材料的应用

碳纤维复合材料自20世纪50年代面世以来, 以其独特的性能, 主要用于火箭、航天、航空等尖端科学技术, 随着碳纤维复合材料性能的不断完善和提高, 目前在土木工程、航空航天、石油化工、交通运输、体育产品等领域得到广泛应用。

1 碳纤维复合材料的性能

碳纤维是由碳元素组成的特种纤维, 其含碳量一般在90%以上。碳纤维材料有其独特的性能, 包括:强度高, 是钢铁的5倍;耐热性好, 可以承受2000℃以上的高温;密度小, 是钢铁的1/5;热膨胀系数低, 在温差变化较大的情况下, 变形量较低;抗热冲击性能也很好;耐腐蚀性能好, 能耐硫酸等强酸的腐蚀;抗拉强度好, 能达到钢的7~9倍。

2 碳纤维复合材料的应用

2.1 土木建筑领域的应用

水泥在土木建材领域中用量最大, 但水泥也有诸如脆性大、抗拉强度低等缺点, 而现在用混凝土或水泥做基体制成的碳纤维增强复合材料, 克服了水泥强度低、在混凝土中易开裂、易受到氯盐、硫酸盐等侵蚀的缺点, 在冬季及寒冷地区有很大的应用空间。在大型建筑中, 钢筋的使用量相当惊人, 国家体育场“鸟巢”的钢筋绑扎量达到5.2万吨, 施工量大, 运输、安装费时费力, 如果采用自身较轻的碳纤维, 可以大大降低建筑结构的重量, 方便施工, 减少安装时间, 降低施工周期[1]。用碳纤维和树脂制成的碳纤维复合材料片, 拉伸模量高、拉伸强度大, 广泛应用于加固受损的钢筋混凝土结构物[2], 用在石油平台上可使石油平台壁的耐冲击性能大大增强。

2.2 航空航天领域的应用

航空工业最早大量采用碳纤维复合材料。在航空工业中, 飞行器的质量轻, 就意味着油耗的降低, 速度的加快, 碳纤维强度高、密度低、变形量低的特点决定了碳纤维是理想的航空材料。美国波音公司的787飞机, 机体大量采用碳纤维材料, 质量比传统的铝合金机体减轻近20%, 耗油量大大降低, 碳排放量每年可减少2700吨, 被誉为“绿色客机”。欧洲空客公司A380客机上的机舱内壁板、后机身蒙皮、水平安定面等都由碳纤维复合材料制成。美国的“超级大黄蜂”战斗机、法国的“阵风”战斗机、欧洲的“台风”战斗机都大量使用碳纤维复合材料。碳纤维复合材料在航空工业上有着巨大的应用潜力[3]。

碳纤维复合材料可以减轻火箭和导弹的重量, 加大火箭和导弹的射程, 提高落点的精度[4]。美国的战斧式巡航导弹和三叉戟-2型导弹的发动机壳体采用的就是碳纤维复合材料。我国早在上世纪八十年代就在某型海防导弹上成功采用了碳纤维复合材料, 使导弹的射程增大。“天宫一号”上的相机支架组件就是采用了由哈尔滨玻璃钢研究院研制的碳纤维复合材料。人造卫星展开式太阳能电池板也多采用碳纤维复合材料制作。目前碳纤维复合材料作为结构隐身材料也已经得到了某些应用[5]。

2.3 石油工业的应用

美国经过多年的努力, 在20世纪90年代初研制成功了碳纤维复合材料连续抽油杆, 试验结果表明:碳纤维复合材料连续抽油杆克服了普通钢抽油杆质量大、能耗高、失效次数多、活塞效应大、作业速度慢、易磨损的缺点, 是一种很有发展前途的特种抽油杆[6]。近来亚洲第一大石油公司中国石油天然气股份有限公司计划大力发展碳纤维产业, 拓宽碳纤维复合材料的应用领域, 不断向高端市场延伸, 特别是海上钻井平台, 目前每个平台要使用钢材8万吨, 如果改用复合材料, 则每个平台仅消耗1.3万吨的碳纤维复合材料。深海油气田将是碳纤维复合材料发挥作用的重要领域。

2.4 汽车工业、高速列车及体育用品中的应用

碳纤维扩大应用的最大希望在于在汽车工业的应用。在汽车车身、零部件中使用碳纤维复合材料, 不但可以降低汽车的重量, 而且可以更加经济环保, 降低油耗。洛克希德马丁能源研究所 (Lockheed martin Energy Research) 的瓦伦 (David Warren) 统计过, 如果每一辆北美的汽车用2.2kg碳纤维, 那北美1800万辆小车的碳纤维总量就超过当前全球大丝束碳纤维总生产能力的4倍[7]。美国通用汽车公司和帝人公司日前宣布将联合研制应用在汽车上的先进碳纤维复合材料。碳纤维复合材料刹车片主要用于高速列车, 是碳纤维复合材料的又一重要应用。日本、法国已经成功地将碳纤维复合材料刹车片应用于新干线和TGV高速列车制动, 德国Knoor Bremse公司也研制出了高速列车用碳纤维复合材料盘型制动器。随着我国高速列车的飞速发展, 碳纤维复合材料刹车片有着广阔的发展空间。碳纤维复合材料在运动器材中也得到了广泛应用。包括高尔夫球杆、网球拍、滑雪板、钓鱼竿、自行车架、冰球拍、船桨、赛艇等, 都已经形成了成熟的市场。

3 结语

目前我国碳纤维复合材料发展迅速, 在大飞机、高速列车等项目上都有着巨大的需求, 但我国碳纤维复合材料的发展与发达国家相比还有很大差距, 碳纤维复合材料还需要大量进口, 在碳纤维的低成本上和复合材料成型技术上我们还要花很大的力气。

参考文献

[1]高鑫.碳纤维在土木建筑中的应用[J].建材工业信息, 2004, No5, 40-41.

[2]赵稼祥.2002世界碳纤维前景[J].高科技纤维与应用, 2002, Dec, Val.27, No6, 7-9.

[3]赵稼祥.碳纤维复合材料在民用航空上的应用[J].高科技纤维与应用, 2003, Jun, Vol.28, No3, 33-35.

[4]韩冰, 陈平.碳纤维复合材料火箭发动机壳体用韧性环氧树脂基体的研究.复合材料学报, 2002, Apr, Vol.19, No2, 25-27.

[5]袁健.碳纤维复合材料天线反射面研制[J].火控雷达技术, 2003, Sep, Val.32, 44-46.

[6]吴则中, 田丰, 张海宴, 郑永生, 郑银强.碳纤维复合材料连续抽油杆的特点及应用前景[J].石油机械, 2002, Vol.30, No2, 53-56.

篇4:碳纤维复合材料在自行车上的应用

摘 要:自行车是人们日常生活中不可缺少的代步工具,深受世界各国人民喜爱,形成了巨大的自行车消费市场。随着现代社会的飞快发展,自行车已不仅仅是交通和运输工具,已具有集健身、旅游、竞赛等多种功能。因此迫切需要有新形态、新材料的自行车出现,以使自行车外观更具美感,更具轻量化,骑乘舒适性更好。

关键词:碳纤维;自行车;应用

碳纤维,是一种含碳量在95%以上的高强度、高模量的新型纤维材料,碳纤维在自行车领域的应用,被称为自行车行业的“黑色革命”。碳纤维自行车具有以下优点:

精:塑性变形小,回弹性好,尺寸稳定性高。刚:弹性模量高,变形量小,骑行中不泄力。轻:材料密度小,用料量少,产品净质量轻。巧:流线型设计,骑行风阻小,骑行速度更快。

碳纤维自行车的创新之处在于:①采用高强、高模的碳纤维材料替代金属材料,减轻车身重量,制造出更适合选手使用的比赛用车。②采用人机工程学进行计算机模拟设计,使碳纤维自行车安全性更高,满足客户要求。③特殊的叠层技术,使其能制造出质量更轻,强度更高的碳纤维自行车车架及其部件。④利用碳纤维预浸料的可设计性,制造出特定造型的自行车或其部件,满足整车组装工序的特殊需求。⑤模压成型工艺,实现碳纤维自行车一体成型,无缝隙,结构强度高,产品造型美观。⑥采用高强度粘合剂进行连接和胶合固化工艺控制技术。

碳纤维自行车的制作流程:设计、裁剪、卷料、预型、成型、加工、胶合、补磨、涂装、组装等。按照碳纤维自行车主部件结构设计要求,将预浸料裁切成各种尺寸、各种角度;将裁切好的各种尺寸、各种角度的预浸料卷制到芯模上,卷制到规定尺寸后,取出芯模;将卷制好的碳纤维复合材料零部件对接,并穿入气袋。将预型好的部件半成品按工艺要求装入模具,在电热炉台上充气加压,加温固化;将成型好的部件经过加工处理,上胶插接后送到烤箱中固化;将胶合后的粗坯进行补土、喷漆、打磨。去除表面缺陷,达到表面平整光滑;贴上水标,喷漆、打蜡,然后组装成整车。

1 结构设计与材料裁剪工艺

为了确保自行车的安全性,轻量化。设计工程师依据力学原理在结构设计上采用碳纤维单向预浸布,进行合理裁剪形成0°、30°、45°、90°等纤维走向,将复杂的构件分解为每一片层逐一卷制叠成为预制件。单向预浸布的优点是强度高且稳定,叠层角度可设计,适合做碳纤维自行车的主结构,单向预浸布的叠层角度设计如图1所示。

单向预浸布经过不同的裁剪方式,可以得到不同的角度料。依据自行车各部分受力状况的不同,所使用的角度料就不一样。在车架座管端口、中变固定座处,需要用90度料来补强,增加抗压系数。

碳纤维编织预浸布,用做碳纤维自行车的外观,不仅增加了自行车结构件的强度,同时美化了碳纤维自行车的外观,显现了碳纤维织物的材料效果。

2 材料界面性能的研究

围绕碳纤维的表面改性以及配套树脂的设计和合成展开研究工作,目的是促进碳纤维与聚合物树脂基材的界面相容性,重点研究碳纤维及其改性产物与聚合物树脂复合后界面结构对材料使用性能的影响,归纳出碳纤维表面性质、碳纤维/树脂界面特性与复合材料性能三者之间的可控关系,实现碳纤维复合材料的优异性能。

3 外固内扩成型工艺

依据碳纤维预浸布树脂系统的特定要求,设计人员针对性地制定了外固内扩成型工艺,工艺控制主要是针对气压、温度和时间三个要素。在成型的过程中,随着温度和粘度的变化,物料胶化、软化、硬化。成型过程中还有一个很重要的技术要点,就是加压时间的控制。碳纤维复合材料主部件采用袋压成型法,即利用耐高温尼龙袋注入高压气体,将复合材料内的空气挤出,带动树脂的流动,使材料之间达到一定的密度,然后高温固化。因为产品的不规则性,在耐高温尼龙袋的选用时,一般会选用大于产品最大内径的规格,这样就造成在产品内径小于尼龙袋的情况下,尼龙袋会有一定的折叠。因而树脂在高温流动时,会在尼龙袋折叠的地方堆积,产生不规则的树脂块或造成纤维的不平整性。而过多的树脂堆积,不仅会增加产品的重量,而且会产生一定的应力,从而影响到产品的使用性能,我们使用EPS成型新工艺解决这一问题。利用EPS高可塑性,能制造比传统硅胶更加合理的内芯,利于产品造型的成型。预先固化的内芯,使产品内壁更加光滑、平整,减轻产品的重量,提高产品品质。在应用EPS工艺后,能利用其预先固定好的内芯型状,在贴料的过程中能保证材料的平整性,卷制的产品不易变形,从而减少因为产品变形带来的品质问题;利用预先固化好的外形,在树脂固化期间,完全避免了因为尼龙带的重叠而带来的树脂堆积,保证了产品内壁的平整性,降低了产品重量,提高了产品的品质。

4 技术措施

采用国产碳纤维,应用CAD,Pro/Engineer技术设计,ABS材料芯模,预型补料采用连续性碳纱,以保证更好的强度与刚性;使用轻克重FAW050和FAW075预浸料,结构采用图文并茂的方式,给予保证每片碳纱所贴位置更精准,从而发挥碳纱在结构中的更大优势,以节省出更多的重量空间,以达到车架等主部件更加轻量化目的。

篇5:碳纤维复合材料论文

自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。

当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年 5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。

因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。

1、国外碳纤维产业现状及发展趋势

1)产业方面

根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。

PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。

大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。

为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel在欧洲大幅度扩产,三菱在美国与本土扩产,Cytec已经基本完成美国的双倍产能扩产计划,SGL也在美国接连扩产。各企业的碳纤维生产已基本实现了全球布局,为进一步实现从原丝到下游复合材料制品的全产业链一体化协调发展奠定了硬件基础。2)技术方面

目前,国外高强、高强中模碳纤维的产业化制备技术成熟,规模化、自动化程度高,关键核心技术掌握在日、美等国手中。其中,日本东丽公司凭借其强大实力研制并形成了包括T300、T700、T800、T1000等在内的高强系列和包括M35J、M40、M40J、M55J、M60J、M70J等在内的高模和高模高强系列产品,一直占领着碳纤维技术的制高点,令对手难望其项背。美国Hexcel经过多年的研究,在IM9高强中模碳纤维基础上,研制出IM10碳纤维,主要力学性能超过日本东丽T1000,并成功应用于大型客机。IM10推出两年半后的2014年初,东丽公司宣布推出T1100碳纤维,重新夺回碳纤维技术的领先地位。

目前,低成本技术已成为碳纤维及其复合材料发展的迫切需求和重要趋势。为了进一步推进行业的快速发展,国外各碳纤维生产商正开展碳纤维产品规模化、稳定化和低成本化生产技术方面的研究。

2、国内碳纤维行业发展现状 1)产业技术现状

在国家科技和产业化示范计划支持下,近10年来我国碳纤维制备与应用技术,实现了从“无”到“有”的转变,出现了前所未有的产业化建设高潮,初步建立起国产碳纤维制备技术研发、工程实践和产业建设的较完整体系,产品质量不断提高,碳纤维及其复合材料技术发展速度明显加快,有效缓解了国防建设重大工程对国产高性能碳纤维的迫切需求,部分型号用碳纤维及其复合材料的国产化自主保障问题基本解决。

目前,T300级碳纤维已实现千吨级产业化,产品成功应用于航空航天和武器装备,民用市场正在推广;T700级碳纤维千吨级生产线已经建成,产品进入应用考核;国产T800级高强中模碳纤维吨级线建成并已批量生产;高模及高模高强碳纤维的产业化仍为空白,其工程化制备关键技术急需突破;更高等级的高强中模和高强高模碳纤维制备关键技术亟待攻关。

截至2014年底,我国已拥有碳纤维生产企业近40家,理论设计总产能达到1.96万吨。已建成6条千吨产能(含配套的原丝生产能力)、7条五百吨产能的碳纤维生产线(含配套的原丝生产能力),拥有千吨以上规模生产线的企业4家,五百吨级的企业(或企业联合体)5家,主体产品为12K及以下的小丝束PAN基碳纤维。

据统计,2007年以来,国内碳纤维产量逐年增加,从2007年的约200吨,增加到2014年的约2600吨,但产能释放能力弱的问题依然非常突出,2014年的碳纤维实际产量不足设计产能的20%。一方面,我国碳纤维企业普遍开工不足、设备闲置、产能浪费,生产成本居高不下;另一方面,受国际碳纤维行业巨头的蓄意压制,碳纤维售价一跌再跌,甚至跌至成本以下,碳纤维企业面临着生产越多亏损越多的局面。目前,我国碳纤维企业长期面对“内忧外患”困扰,几乎全部处于亏损状态,大部分企业只能减产甚至停产,生存状况不容乐观。

2)存在的主要问题

目前,我国碳纤维技术、设备、品种和性能等方面还处于起步阶段,与发达国家相比仍有较大差距,无论产量、质量均有待进一步提高。存在的主要问题包括: ① 重复建设多,产能利用率低

具有国际竞争力的全球九大碳纤维制造商中,日本3家,美国2家,而在近几年中,我国碳纤维产业在国家政策的引导下,各地的碳纤维项目如同雨后春笋般纷纷上马,导致目前的碳纤维企业超过30家。投资建设的企业不少,但同时同质化发展的低水平投资现象居多,又由于自主创新能力不足,导致产能规模小、利用率低、竞争力弱,严重制约了碳纤维产业的健康发展。② 技术相对落后,产品质量差

我国碳纤维产业目前相当于国外碳纤维企业上世纪80年代的水平,缺乏具有自主知识产权的核心生产技术,工艺技术的多元化体系建设尚不完善,原丝生产的技术路线单一,生产工艺稳定性差,生产过程能耗、物耗偏高,成本居高不下。

同时,国产碳纤维产业创新团队力量不足,原始创新能力相对较弱,导致国产碳纤维表现出产品性能稳定性、可靠性差,与树脂产品复配的应用工艺性差,高端产品产业化水平低,与国际同类产品差距显著。

③ 部分关键装备落后,设计制造能力有待突破

目前,国内缺乏大型专用生产设备的设计制造能力,对引进装备的二次改造能力也不强。尽管一些企业已开始装备国产化的研究,但自主设计、制造能力相对较弱,装备的工艺适应性、系统可靠性和控制水平等方面与进口设备仍有较大差距。使得碳纤维综合指标协调与可控性不高。因此,缺乏大型专业装备的设计制造能力也成为碳纤维产业面临的主要问题之一。

④ 差别化专用上浆剂有待进一步国产化

目前,国内所用的上浆剂大部分为水性乳液型上浆剂,以环氧树脂为主,品种较少,不能满足国产碳纤维应用日益发展的要求。不匹配的上浆剂会使碳纤维出现毛丝较多、脆性增大、灰份含量高等问题,降低了使用性能。因此,急需开发出包括热塑性树脂上浆剂在内的、适合国产碳纤维的多系列上浆剂类型,进一步研发耐湿热老化、耐高温等高端领域的差别化、专用上浆剂,完善、改进上浆工艺,以满足不同领域碳纤维复合材料加工制造的实际要求。⑤ 应用市场技术发展独立,产业牵引力不足

我国的碳纤维应用是独立于碳纤维制备技术而发展起来的,碳纤维上下游产业发展严重脱节,纤维几乎完全依赖于进口,对国内碳纤维产业发展的牵引力不足,直接造成碳纤维企业开工率低,产能浪费严重。同时,国内碳纤维复合材料的设计、制造和应用水平与发达国家存在较大差距,直接导致国产碳纤维复合材料在高端制品上的应用和工业领域的拓展受到制约。因此,我国复合材料及其制品的设计、制造技术有待进一步提高,碳纤维下游应用市场亟待培育和开拓。

二、国内外碳纤维应用领域现状

1、航空航天领域

航空航天是国际碳纤维应用的传统市场,几十年来,航空航天领域的碳纤维复合材料用量稳步增长。美国等发达国家先后开发了碳纤维-酚醛防热复合材料、高强高韧碳纤维-环氧复合材料、耐高温碳纤维复合材料等系列产品,广泛应用于战略导弹、运载火箭、先进战机、卫星、飞机发动机导向叶片、机翼和涵道部件等。碳纤维已成为航空航天、尖端武器装备必不可少的战略基础材料。

国外碳纤维复合材料在战斗机、直升机、无人机上的用量早已达到或超过机身总重的50%,波音787“梦幻航线”和空客A350XWB宽体客机上,碳纤维复合材料主、次结构件重量占比也已达到50%。碳纤维复合材料的使用大大的减轻了机身质量,提高了飞机燃油经济性

目前,我国航空航天用碳纤维复合材料体系基本建立,先后发展出了酚醛、环氧、双马、聚酰亚胺等多种树脂基体,构建了碳纤维-酚醛烧蚀防热和碳纤维-环氧、碳纤维-双马结构承载两大复合材料系列,逐渐进入成熟应用阶段,应用范围和应用比例逐步扩大;建立了预浸料铺层模压、缠绕、热压罐、液体成型等多种工艺手段,并在多种型号上得到应用,形成了较为完备的复合材料设计、制造、检测、应用一体化体系,为我国航空航天事业的跨越发展提供了重要支撑。另外,我国自行研制的碳纤维复合材料刹车预制件,性能已全面达到国外水平。采用这一预制件技术所制备的国产碳/碳刹车盘已批量装备于国防重点型号的军用飞机,并在B757-200型民航飞机上使用,在其它机型上的使用正在实验考核中。

2、建筑工程领域

建筑工程一直都是通用级碳纤维应用的重点领域。目前,美国和欧洲国家的部分老旧桥梁、古旧建筑都面临着较为严峻的工程修复问题,因此,碳纤维补强材料多以粘贴片材的形式应用。一些新型的加固方法,如外贴预应力片材加固、网格加固、嵌入式加固等也在基础设施加固工程中得到了应用。日本由于频繁地震的原因,多年前就开始了碳纤维耐震补强材料和技术的研究与应用。随着设计、施工水平的提高,碳纤维及其复合材料也独立或作为主要受力材料被应用于隧道、飞机跑道、停机坪、高速公路等工程。另外,桥梁用碳纤维斜拉索、高层建筑电梯用碳纤维拉索、碳纤维增强水泥、碳纤维网格增强混凝土等也已成为目前碳纤维在国外建筑工程领域应用的新形式。

我国拥有全球最大的土木建筑市场,碳纤维在加固道路、桥梁、楼房建筑结构领域的应用正呈现不断增长的的趋势。我国自上世纪90年代开始进行碳纤维复合材料在土木工程、建筑补强中的应用研究,目前已有数十个高校和科研院所在建筑补强用碳纤维复合材料的制备及应用关键技术研究领域开展了深入工作,并在产品生产、装备制造、材料评价及设计体系、应用技术等方面取得了大量成果。工程应用方面,碳纤维布及碳纤维复合材料板成为重要的结构加固材料,并得到了广泛的应用,先后被用于人民大会堂、天安门城楼、北京工人体育场、军事博物馆、京沈高速公路桥、北京地铁隧道、北京国贸立交桥、中石油输油管道等众多重大基础设施、公共设施和工业设施。但与国外相比,我国该领域碳纤维复合材料的应用尚处于起步阶段,仍存在材料类型单

一、应用技术单一的问题,急需进一步的深入研究和实践。

3、能源领域

随着风电叶片大型化的不断推进,碳纤维复合材料的应用也越来越多。国外风电叶片制造商早已在大型叶片的制造中规模化使用了碳纤维,同时碳纤维叶片的制造也真正实现了全产业链的共同进步。碳纤维制造领域,日本东丽、Zoltek等企业,针对风能市场的特殊需求纷纷推出专用的碳纤维产品,如24K T620s和50K Panex 35;中间制品领域,Gurit、Hexcel、ACG等中间产品制造商开发了叶片专用碳纤维预浸料,如SparPregTM、HextoolTM和DformTM;在叶片成型工艺方面,除了改良的预浸料技术——低压中温预浸料真空袋法,还开发了新型真空导入成型技术——液体成型工艺。目前,国外至少有6家大型风电企业正在采用碳纤维复合材料或碳纤维/玻璃纤维混杂复合材料生产大型或特大型风机叶片,其中起步较早、技术较成熟、应用较多的是丹麦Vestas、美国GE和西班牙Gamesa等公司。

国内目前仅有连云港中复连众复合材料集团有限公司(中复连众)和中材科技风电叶片股份有限公司(中材叶片)实现碳纤维在风电叶片中的规模化应用。其中,中复连众自2009年开始碳纤维在风机叶片上的应用研究,并于2012、2013年分别实现了进口和国产碳纤维主梁在75m/6MW叶片上的应用,同时完成了叶片的全尺寸静力和频率测试,目前正在准备挂机。中复连众同期开展了风机叶片用国产碳纤维复合材料理化性能、力学性能、工艺性能方面的研究,探索出国产碳纤维应用的设计要求和制造工艺,为推动国产碳纤维在大型风机叶片领域的应用奠定了坚实的基础。中材叶片于2011年在Sinoma 56m/3.6MW叶片的主梁上首次采用碳纤维预浸料,试制生产的56m碳纤维叶片顺利通过了静力实验,随后成功生产了22套56m/3.6MW风电叶片出口美国。

总体上讲,国内碳纤维在风电叶片上的规模化应用尚处于尝试阶段,叶片的设计、结构验证、长期安全性验证等问题都没有形成完善的解决方案。现阶段碳纤维的供应主要来源于国外公司,以碳纤维预浸料为主,供应渠道受限,也是影响国产碳纤维规模化应用的另一主要原因,因此有必要继续开展国产碳纤维在大型风电叶片上的应用研究。

4、体育休闲领域

体育休闲领域是碳纤维复合材料的重要应用领域。碳纤维在该领域的应用主要集中在高尔夫球棒、钓鱼杆和球拍三个产品类型。近年来,自行车、去混球杆、滑雪杆等新兴产品的碳纤维用量也在不断增长。

我国在20世纪80年代初开始研制碳纤维复合材料体育运动器材,目前,已与美国、日本和中国台湾并列成为高尔夫球棒的主要产地。另外,钓鱼竿、网球拍、鱼线轮、网球拍、羽毛球拍、自行车架等产品也是碳纤维在我国的主要用途。

5、碳纤维复合芯导线领域

碳纤维在电力输送领域的研究起步于上世纪90年代,2002年,美国CTC公司开发出碳纤维复合材料芯棒之后才开始规模化应用。目前,美国CTC公司的整体技术处于国际领先水平,但欧洲、亚洲、南美洲的20多个国家、200余条新建和改造线路中也都开展了碳纤维复合芯导线的应用,挂网总长度超过7000km(架设导线总长约为20000km),电压等级覆盖了13.6-550kV。

我国碳纤维复合芯导线整体技术水平与国外相当。2007年,江苏远东、河北硅谷、中复连众等企业开始自主研制碳纤维复合芯及导线。目前,国内碳纤维复合芯及导线生产厂家接近20家(已有供货业绩的有5家),国内年预期产能超过50000km。各主要生产厂家制备的碳纤维复合芯导线技术指标均满足碳纤维复合芯架空导线技术要求并已通过所有型式试验验证,技术性能已达到国外同类型产品的技术水平。

国内外复合芯制造厂家采用日本东丽或东邦T700级碳纤维,T700级碳纤维作为复合芯关键材料,供应及价格一直受制于日本,高昂的碳纤维价格是限制复合芯导线大范围推广的主要原因。

2014年7月,中复碳芯将中复神鹰T700级碳纤维SYT45试用于碳纤维复合芯导线,并在常州35kV邹区线上成功挂网,运行良好。国产碳纤维在复合芯导线的实际应用方面取得了突破性进展。

6、车用碳纤维复合材料

在各国政府的大力支持下,国外各大碳纤维制造商纷纷与汽车巨头联手,发展汽车用碳纤维复合材料设计制造技术,已经形成“碳纤维、复合材料供应商+零部件供应商+主机厂”的联盟式产业化布局,并突破了车用碳纤维复合材料零部件及车体的规模化、自动化制造技术。最成功的实施案例是德国宝马的i3电动概念车,宝马公司为这款车型建立了一条包括碳纤维原丝、碳丝、编织布、复合材料零部件、主机装配等各环节的碳纤维复合材料车身产业链,日产量可达100辆。另外,日本东丽研发出“TEE WAVE AR1”电动汽车,共用碳纤维复合材料160 kg,碳纤维车身成型周期10min/套。日本东邦与丰田合作成立“复合材料创新中心”生产LEA跑车。美国特斯拉公司推出全球首款Roadster纯电动跑车,整车重1200kg,采用碳纤维增强环氧树脂复合材料车身,成型周期为20min/套,年生产量为1500辆左右。

总的看来,国外在碳纤维复合材料汽车轻量化产业方面已经初具规模,处于复合材料发展技术的前沿,主要核心制造技术掌握在少数几个大公司手中,发展已呈现逐步加快的趋势。

而目前,我国碳纤维复合材料在汽车工业中年用量比例还很小,应用较为成熟的技术大部分集中在非连续纤维复合材料成型工艺上。在连续纤维复合材料的快速成型技术方面,重点突破了以热塑性复合材料快速热压成型和快速树脂流动成型为代表的低成本连续碳纤维复合材料部件制造关键技术,并实现了部分装备的连续化自动化生产,实现了连续碳纤维复合材料片材、板材及部分部件的连续自动化制备,初步建立了车用复合材料部件生产示范线。但是,由于缺乏与国产碳纤维匹配、满足汽车生产节拍的快速固化树脂,尚未形成研究、设计、开发、制造、装备、检测、应用评价与推广应用一条龙产业链,同时碳纤维复合材料部件及整车验证、装配技术、质量控制等方面与国外差距巨大,急需进行进一步技术攻关。

另外,随着我国工业化进程的不断推进,诸如碳纤维连续抽油杆、新型储能电池、采油钻井平台等新兴应用领域对碳纤维的需求量也在不断扩大,碳纤维及其复合材料的发展前景一片大好。

结束语

综上所述,我国碳纤维产业正处在高速发展的关键时期,在蓬勃发展的国际碳纤维产业大背景下,我国在重大工程、一般工业和新兴产业领域对高性能碳纤维产品也提出了迫切的需求。国内碳纤维企业应进一步明确自身的创新主体地位,面向国防军工、民用航空、人造卫星等航空航天高端装备制造业,建筑补强、海洋工程、石油勘探等传统产业升级领域,以及新能源汽车等战略新兴产业,分阶段逐步开展不同品系碳纤维产品的产业化关键技术攻关、成本质量控制、工业应用示范和重点领域应用评价,开发出符合我国实际应用需要的高性能、高稳定性、规模化、低成本生产技术和多品系碳纤维产品,真正实现我国碳纤维产业的快速健康发展。

篇6:碳纤维复合材料论文

针对空间碎片防护性能要求,本文设计了一种新型的多层铝-碳纤维复合材料防护屏,本文应用二级轻气炮对铝防护屏、碳纤维环氧复合材料防护屏及铝-碳纤维环氧复合材料防护屏进行了高速撞击实验,对比了三种防护屏的防护性能,研究了厚度和面密度相同时防护屏的.防护性能差异.研究结果表明铝-碳环氧复合材料复合防护屏具有更加优异的防护性能.

作 者:苗常青 王华吉 曹昱 李 谭惠丰  作者单位:苗常青(哈尔滨工业大学,复合材料与结构研究所,黑龙江,150080;天津大学,材料学院,天津,300072)

王华吉,曹昱,李,谭惠丰(哈尔滨工业大学,复合材料与结构研究所,黑龙江,150080)

刊 名:实验力学  ISTIC PKU英文刊名:JOURNAL OF EXPERIMENTAL MECHANICS 年,卷(期):2010 25(2) 分类号:V423.41 关键词:空间碎片   高速撞击   防护屏  

★ 复合大师经典台词

★ 护墙板的厚度与规格-护墙板施工工艺

★ 英语代词学习:复合不定代词

★ 文化美、前文化美与复合美

★ 复合电刷镀工艺研究

★ 常考点:复合谓语表示

★ 生命的长度与厚度的杂文随笔

★ 当代艺术创新是一个复合工程

★ 全国电线结冰厚度分布及等级预报模型

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:语境下现代纤维艺术论文 下一篇:我国纤维艺术发展论文