函数极限性质

关键词: 性质 函数 教学要求 教学

函数极限性质(共10篇)

篇1:函数极限性质

《数学分析》上册教案第三章函数极限武汉科技学院理学院

§2 函数极限的性质

教学章节:第三章函数极限——§2 函数极限的性质

教学目标:使学生掌握函数极限的基本性质.教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等.教学重点:函数极限的性质及其计算.教学难点:函数极限性质证明及其应用.教学方法:讲练结合.教学过程:

引言

在§1中我们引进了下述六种类型的函数极限:

1、limf(x);

2、limf(x);

3、limf(x);

4、limf(x);

5、limf(x);

6、limf(x).xxxxx0xx0xx0

它们具有与数列极限相类似的一些性质,下面以limf(x)为代表来叙述并证明这些性质.至

xx0

于其它类型极限的性质及其证明,只要作相应的修改即可.一、函数极限的性质

性质1(唯一性)如果xa

limf(x)xalimf(x)存在,则必定唯一.证法一设A,xalimf(x)B,则

0,10,当0|xa|1时,|f(x)A|,(1)

20,当0|xa|2时,|f(x)B|.(2)

min1,2取

因而有,则当0xa时(1)和(2)同时成立.AB(f(x)A)(f(x)B)f(x)Af(x)B2,(3)

由的任意性,(3)式只有当

AB0

时,即AB时才成立.AB

2证法二反证,如xa

0xa

limf(x)

A,xa

limf(x)B

且AB,取

0,则0,使当

时,f(x)A0,f(x)B0,即

AB2

A0f(x)B0

AB2

矛盾.性质2(局部有界性)若limf(x)存在,则f在x0的某空心邻域内有界.xx0

limf(x)A

1xx0证明取, 由 , 0, 当0xx0时, 有f(x)A1,即

f(x)Af(x)AA

1,A1

说明f(x)在U0(x0;)上有界,就是一个界.limf(x)b

xa

性质3(保序性)设,xa

limg(x)c

.0xa00

1)若bc,则0,当时有f(x)g(x);

0xa0

2)若

00,当

时有f(x)g(x),则bc.(保不等式性)

证明1)取

0

bc2

即得.2)反证,由1)即得.注若在2)的条件中, 改“f(x)g(x)”为“f(x)g(x)”,未必就有

AB.以 f(x)1x,g(x)1,x00

举例说明.推论(局部保号性)如果xa

号.limf(x)b

0xa00

且b0,则0使当时f(x)与b同

性质4(迫敛性)设limf(x)limh(x)A,且在某U0(x0;)内有f(x)g(x)h(x),xx0

xx0

则limh(x)A.xx0

证明0, 由xx

limh(x)A

limf(x)A,10,使得当0xx01时,有f(x)A,即 Af(x)A.又由

xx0,20,使得当0xx02时,有h(x)A,即Ah(x)A.令min(1,2),则当0xx0时,有Af(x)g(x)h(x)A

limg(x)A

即g(x)A,故 xx.性质6(四则运算法则)若limf(x)和limg(x)都存在,则函数fg,fg当xx0时极限

xx0

xx0

也存在,且 1)limf(x)g(x)limf(x)limg(x);2)limf(x)g(x)limf(x)limg(x).xx0

xx0

xx0

xx0

xx0

xx0

又若limg(x)0,则

xx0

fg

当xx0时极限也存在,且有 3)lim

f(x)g(x)

xx0

xx0

limf(x)

xx0

limg(x)

.3)的证明 只要证有

xx0

lim

1g(x)

B2

1B,令

0

B2

0,由

xx0

limg(x)B

B2

0xx01,10使得当时,B2

g(x)B,即

g(x)Bg(x)BB

.g(x)B

B2

0,仍然由

xx0

limg(x)B

20, 使得当0xx02时,有

.0xx0

取min(1,2),则当时,有

1g(x)

1B

g(x)Bg(x)B

2B

g(x)B

2B

B2



xx0

lim

1g(x)

1B.二、利用函数极限的性质计算某些函数的极限

利用“迫敛性”和“四则运算”,可以从一些“简单函数极限”出发,计算较复杂函数的极限.已证明过以下几个极限:

limCC,limxx0,limsinxsinx0,limcosxcosx0;

xx0

xx0

xx0

xx0

lim

1x

x

0,limarctgx

x

.(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.例1 求limx.x0

x

1

例2 求lim

(xtgx1).x

例3 求lim(1x1

x1

3x3

1).例4lim

5x3x73x3

2x2

5

.x

注关于x的有理分式当x时的极限.参阅[4]P37.7

例5lim

x1n

x

10利用公式x1

1

.[a1(a1)(a

n1

a

n2

a1)

].例6lim

x2x21x1

x2

x2

.例7lim

2x

3x1

x

3x5

.例8lim

xsin(2xx10)

32x

.x

例9lim

x1.x0

x1

例10已知 lim

x16A参阅[4]P69.x3

x3

B.求 A和B.作业教材P51—521-7,8(1)(2)(4)(5); 2

补充题已知lim

xAxB7.求A和B.(A

16x2

x24

B3,B

203

.)

例11lim2x2axb

0.x1x

求a和b.

2解法一

2x

axax

1x

ax

2x1x

(a1)x2

ax2

1x

b,(x).a10,a1;又 ab,b1.解法二2x2

1xaxbx  2x2ab

,xx

2x 由x且原式极限存在,

2x2xx

ab

x0,即 alim2x2b

1,blim2x2x1x.xx2xx1x

篇2:函数极限性质

在§1中我们引入了下述六种类型的函数极限:

1);

2);

3);

4);

5);

6)。

它们具有与数列极限相类似的一些性质,下面以第4)种类型的极限为代表来叙述并证明这些性质。

至于其他类型极限的性质及其证明,只要相应的作些修改即可。

定理3.2(唯一性)若极限 证

设与、都是

存在,则此极限是唯一的。

时的极限,则对任给的,分别存在正数,使得当

时有

(1)

当 时有

(2)

取,则当时,(1)式与(2)式同时成立,故有

由的任意性得。这就证明了极限是唯一的。定理3.3(局部有界性)若极限 内有界。

存在,则在某空心邻域证

设。取,则存在,使得对一切。

这就证明了在内有界。

定理3.4(局部保号性)若(或),存在,使得对一切

(或),则对任何正数

(或证 设有,这就证得结论。对于,对任何,取,则存在)。,使得对一切的情形可类似地证明。

定理3.5(保不等式性)设 内有,则

与都存在,且在某邻域。

(3)

证 设,使得当,时,则对任给的,分别存在正数与

(4)

时有

(5)

令,则当

时,不等式

与(4),(5)式同时成立,于是 有式成立。,从而

。由的任意性得,即(3)定理3.6(迫敛性)设==,且在某内有

(6)

则。

证 按假设,对任给的时

(7),分别存在正数

与,使得当当时有

(8)

令,则当

时,不等式(6)、(7)、(8)式同时成立,故有,由此得,所以。定理3.7(四则运算法则)若极限数,当

都存在,则函 时极限也存在,且

1)=

2)=

又若,则当时极限也存在,且有

3)

这个定理的证明类似于数列极限中的相应定理,留给读者作为练习。利用函数极限的迫敛性与四则运算法则,我们可从一些简单的函数极限出发计算较复杂的函数极限。

例1求。

解 由第一章§3习题13,当 时有,而,故由迫敛性得

。另一方面,当时有,故由迫敛性又可得。

综上,我们求得。

例2 求。

及§1例4所得的

并按四则运算法则有

=

例3 求

解 当 时有。故所求极限等于。

例4

证明

任给(不妨设),为使

(9)

即,利用对数函数

(当

时)的严格增性,只要

篇3:函数极限性质

一、问题的提出

本例中数列极限许多学生认为是由于但这种想法似是而非, 严格地讲这是由得出来的, 同一个类型的例子基本上都是这样, 由此可见这个式子的正确使用是我们必须要掌握的。

其中[x]表示x的整数部分, 令x->+∞时, 不等式左右两侧表现两个数列的极限再利用函数极限的夹逼定理得到

接下来我们重点了解一下能不能从数列极限求函数极限研究数列极限和函数极限时, 许多学生会想到海涅定理, 根据海涅定理, 的充分必要条件是对于任意趋于+∞的数列{n}都有。

二、得到的重要结果

通过上面的分析, 我们就可以提出下面的定理。

定理1设f (x) 在[a, +∞]上有定义, (a>0) , 如果存在数列{xn}, {yn}满足对于任意x>=a, 当n<=x

证明:对于任意A>0, 由于所以存在N∈N+ (假设N≥a) , 当n>N时, 就会有|xn-A|<ε且|yn-A|<ε取X=N+1, 当x>X时, 总可以找到满足n0>N且n0≤x≤n0+1, 由条件可得xn0≤f (x) ≤yn0, 所以xn0-A≤f (x) -A≤yn0-A, 于是|f (x) -A|≤max{|xn0-A|, |yn0-A|}<ε。

在学习定积分时且遇到下面的问题:

篇4:从事物的极限到函数的极限

每年秋季刚考进大学的非文科一年级新生们都要学习高等数学这门课程的。而高等数学里第一个概念就是数学极限的定义,这对于学生是非常难学的,老师也感到难教,这是一个历史现象。

目前高中阶段在学习变化率导数时,也是有意地绕过极限定义的。可见极限定义困难的程度。

极限的定义为什么这样难教难学,就是因为我们对于它挖掘认识的不够。

我经过很长一段时间对极限琢磨与研究着,而今我有个重大发现,我窥视到了函数y=f(x)的极限就是函数y=f(x)在某种条件下的极大值ak 极小值。因为极大值、极小值是此前中学阶段里很普通而又很熟练的知识,在这个很熟练的基础上,学习极限就一帆风顺了。下面是我的设计:

一、事物的极限

极限并不陌生和抽象,在生产生活中,我们身边存在和充满着许多通俗易懂极限的问题。

比如我们行走在一座桥的前面看见路旁有个交通警示牌,牌上写着20t,这是什么意思呢?这是告诉人们经过桥梁的车辆及其载物不能超过20吨重,超过了20吨,桥梁就有可能断裂或倒塌,酿成危险性事故。这是桥梁负荷的极大限制值。

用火箭发射人造卫星,火箭的发射速度不能小于7.9km/s,小于这个发射速度,卫星就上不了天,这是卫星上天时火箭发射速度的极小限制值。

严寒的冬天,千里冰封,万里雪飘……必须要到晴天气温才能不断升高,达到0℃以上的时候,冰雪才能融化。这个0℃是标准大气压之下冰雪融化温度的极小限制值。

上面的极大限制值、极小限制值。取极大值、极小值的“极”字,取限制的“限”字。简称为极限。反过来,以后看到“极限”一词也可顾名思义地联想起极限里的“极”字就是极大值或极小值。“限”字就是限制。

这样一来,我们得到了含有变量的事物的极限定义。

定义:含有变量的事物在某种条件下变化着,它的极大限制值或极小限制值,就叫做这事物在该条件下的极限。

于是,上面桥梁的负荷极限是20t,火箭发射人造卫星能上天速度的极限是7.9km/s,冰雪在其温度不断升高时,保持固体形状的极限温度是0℃。

化合物H2O在其温度下降时,保持液体状态的极限温度是0℃,在其温度不断上升时,保持液体状态的极限温度是100℃。

篇5:函数极限

1.按定义证明下列极限:

(1)limx6x5=6;(2)lim(x2-6x+10)=2;x2x

x251;(4)lim(3)lim2xx1x2

(5)limcos x = cos x0 xx04x2=0;

2.根据定义2叙述limf(x)≠ A.xx0

3.设limf(x)= A.,证明limf(x0+h)= A.xx0h0

4.证明:若limf(x)= A,则lim| f(x)| = |A|.当且仅当A为何值时反之也成立? xx0xx0

5.证明定理3.1

6.讨论下列函数在x0→0 时的极限或左、右极限:(1)f(x)=x

x;(2)f(x)= [x]

2x;x0.(3)f(x)=0;x0.1x2,x0.

7.设 limf(x)= A,证明limf(xxx01)= A x

8.证明:对黎曼函数R(x)有limR(x)= 0 , x0∈[0,1](当x0=0或1时,考虑单侧极限).xx0

习题

1. 求下列极限:

x21(1)lim2(sinx-cosx-x);(2)lim;x02x2x1x22

x21x113x;

lim(3)lim;(4)

x12x2x1x0x22x3

xn1(5)limm(n,m 为正整数);(6)lim

x1xx41

(7)lim

x0

2x3x2

70;

a2xa3x68x5.(a>0);(8)lim

xx5x190

2. 利用敛性求极限:(1)lim

x

xcosxxsinx

;(2)lim2

x0xx4

xx0

3. 设 limf(x)=A, limg(x)=B.证明:

xx0

(1)lim[f(x)±g(x)]=A±B;

xx0

(2)lim[f(x)g(x)]=AB;

xx0

(3)lim

xx0

f(x)A

=(当B≠0时)g(x)B

4. 设

a0xma1xm1am1xam

f(x)=,a0≠0,b0≠0,m≤n,nn1

b0xb1xbn1xbn

试求 limf(x)

x

5. 设f(x)>0, limf(x)=A.证明

xx0

xx0

lim

f(x)=A,其中n≥2为正整数.6.证明limax=1(0

x0

7.设limf(x)=A, limg(x)=B.xx0

xx0

(1)若在某∪(x0)内有f(x)< g(x),问是否必有A < B ? 为什么?

(2)证明:若A>B,则在某∪(x0)内有f(x)> g(x).8.求下列极限(其中n皆为正整数):(1)lim 

x0

x

x11

lim;(2);nnx0x1xx1x

xx2xnn

(3)lim;(4)lim

x0x0x1

x1

x

(5)lim

x

x(提示:参照例1)

x

x0

x0

x0

9.(1)证明:若limf(x3)存在,则limf(x)= lim f(x3)(2)若limf(x2)存在,试问是否成立limf(x)=limf(x2)?

x0

x0

x0

习题

1.叙述函数极限limf(x)的归结原则,并应用它证明limcos x不存在.n

n

2.设f 为定义在[a,+)上的增(减)函数.证明: lim= f(x)存在的充要条件是f在n

[a,+)上有上(下)界.3.(1)叙述极限limf(x)的柯西准则;

n

(2)根据柯西准则叙述limf(x)不存在的充要条件,并应用它证明limsin x不存在.n

n

4.设f在∪0(x0)内有定义.证明:若对任何数列{xn}∪0(x0)且limxn=x0,极限limf(xn)都

n

n

存在,则所有这极限都相等.提示: 参见定理3.11充分性的证明.5设f为∪0(x0)上的递减函数.证明:f(x0-0)和f(x0+0)都存在,且f(x0-0)=supf(x),f(x0+0)=

0xu

x0

0xun(x0)

inff(x)

6.设 D(x)为狄利克雷函数,x0∈R证明limD(x)不存在.xx0

7.证明:若f为周期函数,且limf(x)=0,则f(x)=0

x

8.证明定理3.9

习题

1.求下列极限

sin2xsinx3

(1)lim;(2)lim

x0x0sinx2x

(3)lim

x

cosxx

tanxsinxarctanx

lim(5)lim;(6);3x0x0xx

sin2xsin2a1

(7)limxsin;(8)lim;

xxaxxa

;(4)lim

x0

tanx

;x

cosx2

(9)lim;(10)lim

x0x01cosxx11

sin4x

2.求下列极限

12x

(1)lim(1);(2)lim1axx(a为给定实数);

nx0x

x

(3)lim1tanx

x0

cotx

;(4)lim

1x

;

x01x

(5)lim(x

3x22x1);(6)lim(1)x(,为给定实数)

n3x1x

3.证明:limlimcosxcoxcos4.利用归结原则计算下列极限:(1)limnsin

n

x0n



x2

xxcos1 2n22

n

;(2)

习题

1. 证明下列各式

(1)2x-x2=O(x)(x→0);(2)x sinxO(x)(x→0);

+

(3)x1o(1)(x→0);

(4)(1+x)n= 1+ nx+o(x)(x→0)(n 为正整数)(5)2x3 + x2=O(x3)(x→∞);

(6)o(g(x))±o(g(x))=o(g(x))(x→x0)

(7)o(g1(x))·0(g2(x))=o(g1(x)g2(x))(x→x0)2. 应用定理3.12求下列极限:

x21x(1)lim(2)lim x01cosxxxcosx

x3. 证明定理3.13

4. 求下列函数所表示曲线的渐近线:

13x34

(1)y =;(2)y = arctan x;(3)y = 2

xx2x

5. 试确定a的值,使下列函数与xa当x→0时为同阶无穷小量:

(1)sin2x-2sinx;(2)

-(1-x);1x

(3)tanxsinx;(4)

x24x3

6. 试确定a的值,使下列函数与xa当x→∞时为同阶无穷大量:

(1)

x2x5;(2)x+x2(2+sinx);

(3)(1+x)(1+x2)…(1+xn).7. 证明:若S为无上界数集,则存在一递增数列{xn}s,使得xn→+∞(n→∞)

8. 证明:若f为x→r时的无穷大量,而函数g在某U0(r)上满足g(x)≥K>0,则fg为x→r

时的无穷大量。

9. 设 f(x)~g(x)(x→x0),证明:

f(x)-g(x)= o(f(x))或 f(x)-g(x)= o(g(x))

总 练习题

1. 求下列极限:

1

(x[x])lim([x]1)(1)lim;(2)

x3

x1

(3)lim(x

axbxaxbx)

xxa

(4)lim

x

(5)lim

xxa

x

(6)lim

xxxx

x0

(7)lim

nm,m,n 为正整数 nx11xm1x

2. 分别求出满足下述条件的常数a与b:

x21

(1)limaxb0 xx1

x(3)limx

(2)lim

xxx2

x1axb0

x1axb0

x2

3. 试分别举出符合下列要求的函数f:

(1)limf(x)f(2);(2)limf(x)不存在。

4. 试给出函数f的例子,使f(x)>0恒成立,而在某一点x0处有limf(x)0。这同极限的xx0

局部保号性有矛盾吗?

5. 设limf(x)A,limg(u)B,在何种条件下能由此推出

xa

gA

limg(f(x))B?

xa

6. 设f(x)=x cos x。试作数列

(1){xn} 使得 xn→∞(n→∞), f(xn)→0(n→∞);(2){yn} 使得 yn→∞(n→∞), f(yn)→0(n→∞);(3){zn} 使得 zn→∞(n→∞), f(zn)→0(n→∞).7. 证明:若数列{an}满足下列条件之一,则{an}是无穷大数列:

(1)limanr1

n

(2)lim

an1

s1(an≠0,n=1,2,…)

nan

n2

n2

8. 利用上题(1)的结论求极限:

(1)lim1

n

11(2)lim1

nnn

9. 设liman,证明

n

(1)lim

(a1a2an) nn

n

(2)若an > 0(n=1,2,…),则lima1a2an 10.利用上题结果求极限:

(1)limn!(2)lim

n

In(n!)

nn

11.设f为U-0(x0)内的递增函数。证明:若存在数列{xn}U-0(x0)且xn→x0(n→∞),使得

limf(xn)A,则有

n

f(x0-0)=

supf(x)A

0xU(x0)

12.设函数f在(0,+∞)上满足方程f(2x)=f(x),且limf(x)A。证明:f(x)A,x∈(0,+∞)

x

13.设函数f在(0,+∞)此上满足方程f(x2)= f(x),且

f(x)=limf(x)f(1)lim

x0

x

证明:f(x)f(1),x∈(0,+∞)

14.设函数f定义在(a,+∞)上,f在每一个有限区间内(a,b)有界,并满足

x

lim(f(x1)f(1))A证明

x

lim

f(x)

篇6:1-2函数极限

§1.2函数极限

教学目标:

1.掌握各种情形下的函数极限的基本概念和性质。

2.掌握极限存在性的判定及应用。

3.熟练掌握求函数极限的基本方法。

教学重难点:函数极限的概念、性质及计算

教学过程:

一、复习数列极限的定义及性质

二、导入新课:

由上节知,数列是自变量取自然数时的函数,xnf(n),因此,数列是函数的一种特殊情况。对于函数,自变量的变化主要表现在两个方面:

1、自变量x任意接近于有限值a,记为xa,相应的函数值f(x)的变化情况。

2、当自变量x的绝对值x无限增大,记x,相应的函数值f(x)的变化情况。

三、讲授新课:

Ⅰ、当xa(a为有限实数)时函数f(x)的极限

(一)引例 曲线的切线:求抛物线y2x2在点M0(1,2)处的切线。

方法:割线――切线。求曲线的切线可归结为求出曲线在定点的切线斜率,从数量上看,动割线的斜率的极限就是切线的斜率。

(二)函数极限的概念

1、当xa(a为有限实数)时函数f(x)的极限

与数列极限的意义相仿,自变量趋于有限值a时的函数极限可理解为:当xa时,f(x)A(A为某常数),即当xa时,f(x)与A无限地接近,或说f(x)A可任意小,亦即对于预先任意给定的正整数(不论多么小),当x与a充分接近时,可使得f(x)A小于。用数学的语言说,即

定义(定义):设函数f(x)在点a的某空心邻域内有定义,A为定数.若对>0,>0,使得当0<|x-a|<δ时有

f(x)A,则称xa时,函数f(x)以A为极限,记作 limf(x)A,或f(x)→A(x→a).xa

0,说明:(1)“x与x0充分接近”在定义中表现为:有0xx0,即xU(x0,)。

显然越小,此与数列极限中的N所起的作用是一样的,它也依赖于。x与x0接近就越好,一般地,越小,相应地也小一些。

(2)定义中“0<|x-a|<δ”指出xa,这说明,当xa时,函数f(x)有没有极限与

f(x)在点a有无定义无关。函数极限概念侧重于描述f(x)在xa且xa时的变化趋势。

正因为如此,这个概念能解决切线问题。

(3)函数极限limf(x)A的几何意义:当x在a的去心邻域时,函数yf(x)图形完全落在xa

以直线yA为中心线,宽为2的带形区域内.(|f(x)A|,Af(x)A)

y

A(4)在应用定义验证这种 类型的函数极限时,具体方法是:对任A给的0,通过不等式|f(x)A| 反解出|xx0|,进而找到满足条件的,证明结论。

Ⅱ、求函数极限

下面我们举例说明如何应用

定义来验证这种类型的函数极限。请读者特别注意以下

各例中的值(依赖于)是怎样确定的。

例1 证明limCC,(C为常数).xa

证明:任给0,任取0,当0xx0时,总有 f(x)cCC0,依定义,有limCC.xa

例2 证明lim(3x2)4.x

2证明:任给0,由于f(x)4(3x2)43x63x2,取

,则当

0x2时,总有f(x)4,所以lim(3x2)4.x2

x2

12.例3 证明lim

x1x1

证明:函数在点x=1处没有定义,x21

f(x)A2x1,任给0,要使

x1

x21x21

2.f(x)A,只要取,当0x1时,就有2,lim

x1x1x1

练习:

1、证明lim(axb)ax0b

xx0

(a0)

证明:对0,要使得(axb)(ax0b)a(xx0)axx0,只须

xx0

a,所以取

a

0显然当xx0时,有(axb)(ax0b)。

x21

2。

2、证明lim

2x12xx1

3x212x121x证明:对0,因为a1,所以x10. 2

2xx132x133(2x1)[此处x1,即考虑x01附近的情况,故不妨限制x为0x11,即0x2,xxx2121x

x1]。因为2x11,,要使,只须 ,即2

33(2x1)32xx13

x212

1,3}(从图形中解释),当0x时,有2x3。取min{。

2xx13

Ⅲ、单侧极限

有些函数在其定义域上某些点左侧与右侧的解析式不同(如分段函数定义域上的某些点),或函数在某些点仅在其一侧有定义(如在定义区间端点处),这时函数在那些点上的极限只能

1,x0,单侧地给出定义。例如函数f(x),当x从左侧趋于0时,f(x)以1为极限.当x

x,x0.从右侧趋于0时,f(x)以0为极限.它们分别称为x趋于0时f(x)的左极限和右极限。

左极限:0,0,使得当axa时,都有f(x)A.则称A为函数f(x)当xa

时的左极限。记作 limf(x)A,或f(a0)A。

xa

右极限:0,0,使得当axa时,都有f(x)A.则称A为函数f(x)当xa

时的右极限。记作 limf(x)A,或f(a0)A。

xa

由左、右极限的定义不难看出,函数f(x)当xa时极限存在函数左、右极限存在且相等,即limf(x)limf(x).xa

xa

若左、右极限存在不相等,则极限不存在。

1,x0,

例4 函数f(x)sngx0,x0,当x0时极限不存在。

1,x0.

证明:事实上,f(x)的左极限limf(x)1,右极限limf(x)1,左右极限不相等,所以

x0

x0

limf(x)不存在。

x0

Ⅳ、当x时,函数f(x)的极限

(一)当x时,函数f(x)的极限

定义:对于任意给定的0,总存在一个M0,使得对于满足不等式xM的一切x,均有不等式f(x)A成立,则称函数f(x)当x∞时以A为极限,记作

limf(x)A

x

x

x,或 f(x)→A(x→∞).同样可以定义limf(x)A,limf(x)A.注意:(1)limf(x)A可看作数列极限limf(n)a的直接推广。它们不同之处在于,这里所

x

n

考虑的是所有大于M的实数(连续),而不仅仅是正整数(跳跃性的)。(2)limf(x)Alimf(x)limf(x)A。

x

x

x

(3)几何意义:当xM或xM时,函数yf(x)图形完全落在以直线yA为中心线,宽为2的带形区域内.(二)例题 例5 证明lim

0.xx

2110||x|M,只需,如果取,则对x2x2

证明:任意给定0,要使|一切满足xM的x,均有|

例6 证明lim

sinx

0.xx

0|,证毕。x2

证:要使

11sinxsinx

10,只需|x|.,因此对0,取M,当xM时,有

xxx

sinxsinx

0,故lim0.xxx

Ⅴ、函数极限的性质

下面以limf(x)为代表叙述函数极限的性质,这些性质对其余5种类型的函数极限也成立.xa1、(唯一性)若limf(x)存在,则此极限是唯一的.xa2、(局部有界性)若limf(x)A,存在某个00和常数M0,当0xx00时,有

xa

|f(x)|M.注意:如果一个数列收敛,则这个数列有界。但函数f(x)在点a有极限,只能断言它在某个

局部范围,即在点a的某空心邻域有界,称为局部有界。

3、(局部保号性)若limf(x)=A>0(或<0),则存在00,使当0xx00时,有f(x)0

xa

(或f(x)0)。

A,则由limf(x)=A,对上述0,总存在00,使当0xx00时,xa

2AA

有|f(x)A|0,因而f(x)A0A0.22

A

若A<0, 取0,则由limf(x)=A,对上述0,总存在00,使当0xx00时,有

xa2

AA

|f(x)A|0,因而f(x)A0A0.224、四则运算法则

证:设A>0,取0

设limf(x)与limg(x)存在,则函数f±g,f·g,(若limg(x)≠0)当x→a时极限存在且

xa

xa

fg

xx0

1)lim[f(x)g(x)]=limf(x)±limg(x);

xa

xa

xa

2)lim[f(x)g(x)]=limf(x)limg(x);

xa

xa

xa

f(x)f(x)limxa

3)lim=.(limg(x)≠0)

xag(x)limg(x)xx0

xa

注意:公式(1)、(2)可以推广到任意有限个函数的情况。特别地,有

lim[(f(x))n][limf(x)]n.xa

xa

例7 求lim[(3x22x1)(x33)].x

2x23x2

例8 求lim.(先约分)

x1x3

12x31

3x例9 求lim3.(分子分母同除以)

xx8x27x

x1,x0

例10 设f(x)x23x1,求limf(x),limf(x).x0x,x03

x1

(注意求limf(x)时,由于时分段函数,所以要求在x0时的左右极限。)

x0

四、习题处理

五、小结,作业:p36ex1、6、8.附录:设limf(x)A,limg(x)B。证明:

xx0

xx0

f(x)A

,(当 B≠0时)

xx0xx0xx0g(x)B

证明因为limf(x)A,limg(x)B所以0,分别存在10,20,使得当

(1)lim[f(x)g(x)]AB;(2)lim[f(x)g(x)]AB;(3)lim

xx0

xx0

0|xx0|1时,有|f(x)A|;当0|xx0|2时,有|g(x)B|。(1)取min{1,2},于是当0|xx0|时,有

|(f(x)g(x))(AB)||f(x)A||g(x)B|2,所以lim[f(x)g(x)]AB。

xx0

同理可证:lim[f(x)g(x)]AB

xx0

(2)因为limf(x)A,由局部有界性定理,知存在30,使f(x)在U0(x0,3)有界。即存在xx0

M0,当0|xx0|3时,|f(x)|M。现在取min{1,2,3},于是当0|xx0|时,有

|f(x)g(x)AB||f(x)g(x)f(x)B||f(x)BAB|

|f(x)||g(x)B|B|f(x)A|MB(MB)所以lim[f(x)g(x)]AB

xx0

B2

0,于是由局部保号性定理知,存在40,(3)因为limg(x)B0,limBg(x)B

xx0xx02

B2

当0|xx0|4时,|Bg(x)|。现在取min{1,2,4},于是当0|xx0|时,有

f(x)ABf(x)Ag(x)|Bf(x)ABABAg(x)|

g(x)BBg(x)|B||g(x)|

|B||f(x)A||A||Bg(x)||B||A||B||A|

22

|B||g(x)|BBf(x)A

。所以lim

篇7:函数极限的证明

以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)

几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……

(二)时函数的极限:

考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=

为使需有为使需有于是,倘限制,就有

例7验证例8验证(类似有(三)单侧极限:

1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:

Th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有

=§2函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合

一、组织教学:

我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性(不等式性质):

Th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)

註:若在Th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:

6.四则运算性质:(只证“+”和“”)

(二)利用极限性质求极限:已证明过以下几个极限:

(注意前四个极限中极限就是函数值)

这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)

例2例3註:关于的有理分式当时的极限.例4

篇8:函数极限性质

1.1 数列

初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N+,则称f:N+→R或f(n),n∈N+为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a1,a2,…an…,或简单地记作{an},其中an是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.

1.2 数列的极限的定义

定义1(1)设{an}为数列,a为定数.若对任给的正数ε,总存在正整数N,使得当n>N时,有|an-a|<ε,则称数列{an}收敛于a,定数a为数列{an}的极限,并记作.

2. 关于函数极限

2.1 x→∞时函数极限

定义2(1)设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数ε,存在正数M(≥a),使得当x>M时有|f(x)-A|<ε,则称函数当x→+∞时以A为极限,记作.

现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,.

2.2 x→x0时函数极限

定义3(函数极限的ε-δ定义)(1)设函数f在点x0的某个空心邻域U0(x0;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x0|<δ时有|f(x)-A|<0ε,则称函数f当x→x0时以A为极限,记作.

类似可定义及.

3. 数列极限与函数极限的异同及根本原因

从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x0;x→x0+;x→x0+的极限,分类的标准是根据的趋向的不同来分类.

二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.

正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x0,根据自变量x趋近于x0的方向不同又可以分为x0点处的左极限和右极限,于是某定点处有三种类型x→x0;x→x0+;x→x0+函数极限.

综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

摘要:极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.

关键词:极限,数列极限,函数极限

参考文献

篇9:复变函数求极限的方法

关键词 复变函数 极限 方法

中图分类号O174.5文献标识码A文章编号1673-9671-(2009)111-0097-01

在一般的教科书中,没有对复变函数极限的求法作详细的讨论,而主要把复变函数的极限问题转化为它的实部和虚部,即两个二元实变函数的极限问题来讨论。但对许多复变函数而言,写出它的实部和虚部都比较麻烦,从而增加了求极限的复杂性。针对此问题,本文给出了几种求复变函数极限的常规方法,并通过例题解析了这些方法。

1 转化为两个二元实变函数求极限

设 , , ,

2 利用复变函数的连续性

利用复变初等函数的连续性(如: 、(正整)、、、、 在整个复平面均连续; 、(不是正整数) 在除去原点和负实轴上的点外处处连续等等),以及复变函数的连续性满足四则运算、复合运算,可知如果一个复变函数是由复变初等函数和常数经过四则运算和初等运算构造的,我们可先判别它在极限点的连续性,如果连续,则极限等于函数在极限点的函数值。

例1 求 。

解 由于在z和cosz 均在点 z=0连续,且仅当(k为任意整数)时,cosz=0 ,所以 在点 z=0连续,从而 。

3 利用等价无穷小求极限

利用一些复变函数的泰勒展开式,我们可以证明有些实函数的等价无穷小在复变函数中也成立。如:当 z→0时,

(1);

(2) ;

(3) ;

其中(3)式中的只取主值分支。

这里我们给出和的证明:根据sinz 的泰勒展开式知 ,所以 , 。

例2 求 。

解。

注:和实函数一样,和或差中的项不能用等价无穷小代替。

4 利用洛必达法则求未定式的极限

复变函数也有洛必达法则,但与实函数相比稍稍有点差别

例3 求 。

解 显然当z→0 时,是未定式。所以

例4 求

我们知道:若z0 是 的可去奇点、极点和本性奇点,则 分别为 、 和既不存在也不为 。

例5 求 。

解 因为在z=0的某去心领域内,有洛朗展开式

,从而z=0是的本性奇点,所以 既不存在也不为。

参考文献:

[1]西安交通大学高等数学教研室.复变函数(第四版)[M],北京:高等教育出版社,1996.

[2]钟玉泉.复变函数论(第二版)[M],北京:高等教育出版社,1988.

[3]贺君燕.复函数的洛必达法则[J],高等数学通报,2008,70(4):47-49.

篇10:多元函数的极限

回忆一元函数极限的定义:

limf(x)A设是定义域Df的聚点。xx0x00对0,总0,xU(x0,)Df时,都有f(x)A成立。

定义1 设二元函数f(P)f(x,y)的定义域为Df,P(x0,y0)是Df的聚点。如果

0Df时,都有存在常数A,对0,总0,P(x,y)U(P0(x0,y0),)f(x,y)A成立,那么称A为P(x,y)趋于P0(x0,y0)时,函数f(x,y)的极限,lifmP(A)记作P或者P0(x,y)(x0,y0)limf(P)A或者xlxi0fmP(A)或者

yy0f(x,y)A,(P(x(x0,y0)。0P,y))Df趋于P0; 注:1.P(x,y)P0(x0,y0)是指点P沿着任意路径在2.为了区别一元函数的极限,把二元函数的极限也称之为二重极限;

3.二元及其多元函数的极限的四则运算法则与一元函数一致。

22例1 设f(x,y)(xy)sin1limf(x,y)0。22,求证xx0yy0xy2证明 显然函数f(x,y)的定义域为DfR{(0,0)},(0,0)是Df的聚点。因为

(x2y2)sin只须1122220xy(xy)sin0,0,所以对,要使2222xyxyx2y2成立即可。也就是说,对0,总0,22P(x,y)U0(O(0,0),)时,总有(xy)sin10成立,故

x2y2xx0yy0lim(x2y2)sin10。22xysin(x2y)? 例2 求极限limx0x2y2y0提示:四则运算,并考虑重要极限和基本不等式。x3y例3 证明函数lim不存在? x0x6y2y0提示:设ykx3。学生练习1.求极限limsin(xy)?

x0xy2xy,x2y202limf(x,y)2学生练习2.证明函数f(x,y)xy的极限x0不存在?

y00,x2y20 四.多元函数的连续连

回忆一元函数连续的定义:

limf(x)f(x0)。f(x)在点x0处连续xx0Df的聚点,且定义2 设二元函数f(P)f(x,y)的定义域为Df,P0(x0,y0)是limf(x,y)f(x0,y0)PDxx0。如果,那么称函数f(x,y)在点P 0f0(x0,y0)处连续。yy0定义3 设二元函数zf(x,y)的定义域为Df,且Df内每一点都是聚点。如果函数zf(x,y)在Df内的没一点处都连续,那么称zf(x,y)在Df上联系或者称zf(x,y)为Df上的连续函数。

注:1.定义2和定义3可以推广至n元函数的情形。

例1 设f(x,y)sinx,证明函数f(x,y)是R2上的连续函数?

limf(x,y)sinx02xx0(x,y)R分析:对P,证明(语言)。000yy0证明

Df的聚点,P定义4.设二元函数zf(x,y)的定义域为Df,且P0Df。0(x0,y0)是如果函数f(x,y)在点P则称点P0(x0,y0)处不连续,0(x0,y0)为函数zf(x,y)的间断点。

xy,x2y2022例2 函数f(x,y)xy在点O(0,0)的连续性?

0,x2y20解:点O(0,0)虽为定义域R2的聚点,但由于f(x,y)在点O(0,0)无极限,故函数f(x,y)在点O(0,0)间断。

例3 函数f(x,y)sin122的定义域为Df{(x,y)xy1},但22xy1C{(x,y)x2y21}上的点为Df的聚点,又由于f(x,y)在C上没有定义。故C上的点是f(x,y)的间断点。

1.函数极限存在;2.有定义; 连续

3.极限等于该点的函数值;

多元函数的连续性的性质与一元函数一致:

1.多元连续函数的和差积商仍为其定义域上的连续函数; 2.多元连续函数的商在分母不为零的点处任连续; 3.多元连续函数的复合函数是连续函数;

4.多元初等函数是其定义区域内的连续函数(定义区域:半酣定义域的区域或者闭区域)。

可以利用多元初等函数的连续性求极限。例4 limxy?

x1xyy2,2)Df是内点,因此存在U(P分析:Df{(x,y)x0且y0},P0(10;)Df是xy3f(1,2)。Df内的区域,因此limx1xy2y2一般地,若f(x,y)是初等函数,且P0(x0,y0)是f(P)的定义域的内点,则xx0yy0limf(x,y)f(x0,y0)。

与闭区间上一元连续函数的最值定理类似,有

性质1 定义在有界闭区域D上多元连续函数必取得最大值和最小值。性质2(介值定理)有界闭区域上多元连续函数必取得介于最大值与最小值之间 的任何一个值。

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:函数极限习题 下一篇:经济极限投资