小学数学抽屉原理教案

关键词: 抽屉 数学 教材 原理

小学数学抽屉原理教案(共8篇)

篇1:小学数学抽屉原理教案

抽屉原理教学设计及反思

一、教学设计 1.教材分析

《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。2.学情分析

“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。3.教学理念

激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。4.教学目标

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。3.通过“抽屉原理”的灵活应用感受数学的魅力。5.教学重难点

重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。6.教学过程

一、课前游戏引入。

上课前,我们先来热身一下,一起来玩抢椅子的游戏。

请3位同学上来参加游戏,第三位同学是请女生还是男生呢?老师认为,不管是请男生还是女生,都一定至少有两位同学的性别是相同的。同意我的说法吗?

游戏规则是:在老师说开始时,3位同学绕着椅子走,当老师说停的,三位同学都要坐在椅子上。

为什么总有一张椅子至少坐两个同学

在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。(板书课题)

二、通过操作,探究新知

(一)探究例1

1、研究3枝铅笔放进2个文具盒。

(1)要把3枝铅笔放进2个文具盒,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。

(2)反馈:两种放法:(3,0)和(2,1)。

(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)(4)“总有”什么意思?(一定有)

(5)“至少”有2枝什么意思?(不少于2枝)

小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔)

2、研究4枝铅笔放进3个文具盒。

(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。

(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)(4)你是怎么发现的?

(5)大家通过枚举出四种放法,能清楚地发现“总有一个文具盒放进2枝铅笔”。如果要让每个文具盒里放的笔尽可能的少,你觉得应该要怎样放?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)(6)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)

(7)谁能用算式来表示这位同学的想法?(5÷4=1…1)商1表示什么?余数1表示什么?怎么办?

(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?

3、类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?

4、从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)

5、如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”

6、小结:刚才我们分析了把铅笔放进文具盒的情况,只要铅笔数量多于文具盒数量时,总有一个文具盒至少放进2枝铅笔。这就是今天我们要学习的抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?铅笔相当于我们要准备放进抽屉的物体,那么文具盒就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。”

7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?

过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。

(二)探究例2

1、研究把5本书放进2个抽屉。

(1)把5本书放进2个抽屉会有几种情况?(5,0)、(4,1)和(3,2)

(2)从三种情况中,我们可以得到怎样的结论呢?(总有一个抽屉至少放进了3本书)(3)还可以怎样理解这个结论?先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。

(4)可以把我们的想法用算式表示出来:5÷2=2…1(商2表示什么,余数1表示什么)2+1=3表示什么?

2、类推:如果把7本书放进2个抽屉中,至少有一个抽屉放进4本书。

如果把9本书放进2个抽屉中。至少有一个抽屉放进5本书。

如果把11本书放进3个抽屉中。至少有一个抽屉放进4本书。你是怎样想的?(11÷3=3…2)商3表示什么?余数2表示什么?3+1=4表示什么?

3、小结:从以上的学习中,你有什么发现?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)

4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。“ 抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

5、做一做:

7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么? 8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?(先让学生独立思考,在小组里讨论,再全班反馈)

三、迁移与拓展

下面我们一起来放松一下,做个小游戏。

我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

四、总结全课

这节课,你有什么收获?

二、教学反思 本节课是通过几个直观例子,借助实际操作,引导学生探究“抽屉原理”,初步经历“数学证明“的过程,并有意识的培养学生的“模型思想。

1、借助直观操作,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解抽屉原理。

2、教师注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决抽屉原理的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。

3、在活动中引导学生感受数学的魅力。本节课的“抽屉原理”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。特别以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了抽屉原理的知识,同时锻炼了学生的思维。在整节课的教学活动中使学生感受了数学的魅力。

篇2:小学数学抽屉原理教案

山东省济南市民生大街小学 张荣明 山东省济南市市中区教研室 董惠平

【教学内容】

《义务教育课程标准实验教科书·数学》六年级下册第68页。

【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。

3. 通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教具、学具准备】

每组都有相应数量的盒子、铅笔、书。

【教学过程】

一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?

生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?

生:对!

师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗?

【点评】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。

二、通过操作,探究新知

(一)教学例1 1.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)

【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢?

生:不管怎么放,总有一个盒子里至少有2枝笔?

是:是这样吗?谁还有这样的发现,再说一说。

师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

(4,0,0)

(3,1,0)

(2,2,0)

(2,1,1),师:还有不同的放法吗?

生:没有了。

师:你能发现什么?

生:不管怎么放,总有一个盒子里至少有2枝铅笔。

师:“总有”是什么意思?

生:一定有

师:“至少”有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝? 师:就是不能少于2枝。(通过操作让学生充分体验感受)

师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?

学生思考——组内交流——汇报

师:哪一组同学能把你们的想法汇报一下?

组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

师:你能结合操作给大家演示一遍吗?(学生操作演示)

师:同学们自己说说看,同位之间边演示边说一说好吗?

师:这种分法,实际就是先怎么分的?

生众:平均分

师:为什么要先平均分?(组织学生讨论)

生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?

师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)

师:哪位同学能把你的想法汇报一下,生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把6枝笔放进5个盒子里呢?还用摆吗? 生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把7枝笔放进6个盒子里呢?

把8枝笔放进7个盒子里呢?

把9枝笔放进8个盒子里呢?„„

你发现什么?

生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

【点评】教师关注了“抽屉原理”的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。

2.解决问题。

(1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?

学生活动—独立思考 自主探究)

(2)交流、说理活动。

师:谁能说说为什么?

生1:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。生2:我们也是这样想的。

生3:把5只鸽子平均分到4个笼子里,每个笼子1只,剩下1只,放到任何一个笼子里,就能保证至少有2只鸽子飞进同一个笼里。

生4:可以用5÷4=1„„1,余下的1只,飞到任何一个鸽笼里都能保证至少有2只鸽子飞进一个个笼里,所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。

师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?

生:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。

师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:5÷4=1„„1)

师:同位之间再说一说,对这种方法的理解

师:现在谁能说说你对“总有一个鸽笼里至少飞进2只鸽子的理解

生:我们发现这是必然存在的一个现象,不管鸽子怎样飞回鸽笼,一定会有一个鸽笼里至少有2只鸽子。

师:同学们都有这个发现吗?

生众:发现了。

师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。

(二)教学例2 1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡视了解各种情况)

2.学生汇报。

生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

板书:5本 2个 2本„„ 余1本(总有一个抽屉里至有3本书)

7本 2个 3本„„ 余1本(总有一个抽屉里至有4本书)

9本 2个 4本„„ 余1本(总有一个抽屉里至有5本书)

师:2本、3本、4本是怎么得到的?生答完成除法算式。

5÷2=2本„„1本(商加1)

7÷2=3本„„1本(商加1)

9÷2=4本„„1本(商加1)

师:观察板书你能发现什么?

生1:“总有一个抽屉里的至少有2本”只要用 “商+ 1”就可以得到。

师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

生:“总有一个抽屉里的至少有3本”只要用5÷3=1本„„2本,用“商+ 2”就可以了。生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

交流、说理活动:

生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。

生3∶我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。

师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

师:同学们同意吧?

师:同学们的这一发现,称为“抽屉原理”,“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

3.解决问题。71页第3题。(独立完成,交流反馈)

小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。

【点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用“有余数除法” 形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。

三、应用原理解决问题

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

生:2张/因为5÷4=1„1

师:先验证一下你们的猜测:举牌验证。

师:如有3张同花色的,符合你们的猜测吗?

师:如果9个人每一个人抽一张呢?

生:至少有3张牌是同一花色,因为9÷4=2„1

四、全课小结

篇3:小学数学抽屉原理教案

一、激活学生原有认知,注重动手操作,让学生初步形成“抽屉”表象

教学要重视引导学生动手实践,让学生在“看一看,摆一摆,想一想”等操作中丰富感性认识,形成表象,掌握“抽屉原理”的基本特征。例如,教学例1时,由于例题中的数据较小,为学生自主探索提供了很大的空间。因此,让每个小组分别准备4枝铅笔和3个文具盒,先让学生通过实践验证“将4枝铅笔放在3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔”,然后进行小组交流,逐步提高学生的逻辑思维能力。在此过程中,教师要适当给予指导,有意识地让学生理解“抽屉”的“一般模型”,即题中的“文具盒”就相当于“抽屉”。在学生探究的基础上,引导他们将教材中提供的两种方法(枚举法和假设法)进行比较,帮助学生理解“为什么要先考虑每个文具盒放1枝铅笔的情况”,从而体会假设法的基本思想———尽可能地平均分。在解决了“4枝铅笔放在3个文具盒”的问题后,教师进一步引导学生思考:把5枝铅笔放进4个文具盒里,总有一个文具盒里至少放进2枝铅笔,为什么?如果把6枝铅笔放在5个文具盒里,结果是否一样呢?把9枝铅笔放在8个文具盒中呢?把10枝铅笔放在9个文具盒中呢?把100枝铅笔放在99个文具盒中呢?进而引导学生得出一般性的结论:只要“待分的数量”比“抽屉”的数量多,就必定有一个“抽屉”有“两份”,即此题中要放的铅笔数比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。接着,进一步启发学生思考:如果要放的铅笔数比文具盒的数量多2,多3,多4呢?学生会从中发现:只要铅笔数比文具盒的数量多,这个结论同样也是成立的。

教学例1的“做一做”,先启发学生运用例题中的方法迁移类推,然后加以解释,从而加深学生对“抽屉原理”含义的理解,以形成稳定的认知结构。

二、操作体验,让学生经历将具体问题抽象为数学问题的过程

教学例2,首先根据教材提供的让学生把5本书放进2个抽屉的情景组织学生操作。在操作过程中,学生发现不管怎么放,总有一个抽屉至少要放进3本书,从而产生探究的愿望学生先采用枚举的方法,把5分解成两个数,有(5, 0)、(4, 1)、(3, 2)三种情况。任何一种分法,总有一个数不小于3。之后,可以考虑更具一般性的假设法,即先把5本书“平均分成2份”(2个抽屉)。用有余数除法5÷2=2……1计算发现如果每个抽屉放进2本,还剩1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。

探究“把5本书放进2个抽屉”的问题后,教材进一步提出“如果一共有7本书,9本书,情况会怎样”的问题,让学生利用前面的方法进行类推,得出“7本书放进2个抽屉,总有一个抽屉至少放进4本书;9本书放进2个抽屉,总有一个抽屉至少放进5本书”的结论,进而使学生对“抽屉原理”达到一般性的理解

教学例2时,教师可鼓励学生用多样化的方法解决问题,深化对“抽屉原理”的理解。在此过程中,教师还可适当加大“待分数”,如:“将113本书放在2个抽屉里呢?”学生可以应用有余数除法列出算式:113÷2=56……1,即:113本书放进2个抽屉,每个抽屉放进56本,还剩1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有57本书了。说明把113本书放在2个抽屉里,有一个抽屉至少有57本书。但由于这个除法算式的余数正好是1,学生容易将求“某个抽屉至少有书的本数”的方法是“用商加1”错误地理解“商加余数”。因此,教学中教师应结合余数不是1的情况,引导学生进行对比,并让学生在对比、辨析中更好地理解“抽屉原理”的实质。

教学例2的“做一做”,先让学生想一想,算一算,说一说从而明确例1和例2的联系与区别。

三、鼓励学生大胆猜测,激发解决问题的动机

学生学习应当是一个生动活泼的,主动的和富有个性的过程”,所以,应将数学知识置于学生熟悉的情境中,鼓励学生大胆猜测、验证,提高学生学习的积极性,进而激发学生的参与意识。由于“抽屉原理”的变式很多,应用更灵活,因此,能否将具体问题和“抽屉原理”联系起来,能否找到问题与一般化模型之间的内在关系,是解决问题的关键。教学例3时,教师首先引导学生思考本例题的问题与“抽屉原理”是否有关系,有什么样的联系,如把“什么”看成抽屉,要分放的东西是什么。学生在思考这些问题时,一开始可能会缺乏思考的方向,很难找到切入点。此时,可以让学生先自由猜测,充分说一说后再验证。

例如,有的学生会猜测“只摸2个球就能保证这2个球同色”,类似说法只要举出一个反例就可以否定,如摸出的两个球正好是一红一蓝时,就不能满足条件。再如,由于受题目中“4个红球和4个蓝球”这个条件的干扰,许多学生会猜测要摸的球数只要比其中一种颜色的个数多1就可以了,即“至少要摸出5个球才能保证一定有2个是同色的”。为了验证这个猜测,学生自觉地把“摸球问题”与“抽屉问题”联系起来,把两种颜色看成两个抽屉,根据5÷2=2……1可以知道,摸出5个球是没有必要的。那么,猜测错误的原因在哪里?关键是在此事例学生未搞清“抽屉”是什么,“抽屉”有几个。弄清“抽屉”及其“个数”,就能推断“要保证有一个抽屉至少有2个同色的球,分的物体个数至少比抽屉数多1”。现在“抽屉数”就是“颜色数”,结论就变成“要保证摸出两个同色的球,摸出的球的数量至少要比颜色种数多1”。因此,要从两种颜色的球中保证摸出两个同色的,最少要摸出3个球。

在此教学过程中,要在实际问题和“抽屉问题”之间架起一座桥梁并不是一件容易的事。如果学生理解时存在困难,可以引导他们这样思考:球的颜色一共有两种,如果只取两个球,会出现三种情况:两个红球;一个红球一个蓝球;两个蓝球。如果再取一个球,不管是红球还是蓝球,都能保证三个球中一定有两个同色的。

例3的“做一做”是例3解题思路的应用,教师要在生动有趣的情境中引导学生找出“抽屉”及判断其“个数”,激发学生探究的欲望,让学生自主合作解决问题。

四、重视联系实际,发展学生的数学思维

篇4:小学数学抽屉原理教案

高密市第一实验小学 孙 兵

预习学案

1、将3根小棒放到2个杯中,可以怎么放?

2、将4根小棒放到3个杯中,又有哪些放法?

3、分析两个问题中的不同放法,你能得到什么结论?

师:我们在课前作了预习,现在汇报一下预习成果。(学生台前演示分法,教师课件展示,并记录在黑板上。)分析两个问题的不同种分法,你能从中得到什么结论?同桌互相说一说。

学生汇报:不管怎么分,总有一个杯里至少有2根小棒。课件展示

猜测:将5根小棒放到4个杯里呢?如何来验证你的结论呢?小组内讨论。小组汇报

师:你为什么用5÷4呢?能解释一下吗?(学生台前演示)先将其中的4根小棒分别放到4个杯中,还剩一根,这一根不论放到哪个杯中,那个杯中都至少有两根小棒。用平均分的方法。老师有个疑问:为什么要平均分呢?

(只有平均分,才能保证每个杯中的小棒数是最少的。)

我们用算式表示就是:5÷4=1„„1,表示每个杯中先平均放1根,剩下的1根不论放到哪个杯中,总有一个杯中至少有2根小棒。那将7根小棒放到6个杯中呢? 将100根小棒放到99个杯中呢? 你发现了什么规律?同桌说一说。

(只要棒数比杯数多1,总有一个杯中至少有2根小棒。)师:刚才研究的问题有个特点:小棒数比杯数多1,有没有想过棒比杯多

3、多

3、多4的情况?是不是也会有这样的结论呢? 试一试:将5根小棒放到3个杯中;将7根小棒放到4个杯里呢?(总有一个杯里至少有2根小棒)

不管怎么放,总有一个杯里至少有2根小棒。

师:奥,那现在老师得到结论了:只要小棒比杯子多,那就总有1个杯子里至少有2根小棒,同学们同意吗? 为什么不同意?举个例子。9根小棒放到4个杯子里 15根小棒放到4个杯子里

师:研究到这里,你能发现什么规律?着小组内交流一下。用小棒的数量除以杯子的数量,总有一个杯子里至少有的小棒根数就是商加1。有没有不同意见?

当棒数与杯数整除时,就不用加1,结果就是商。

师:今天我们研究的是一个著名的数学问题,这就是著名的“抽屉原理”。只不过我们今天是用小棒和杯子来代替了物体和抽屉。最早利用抽屉原理解决问题的是德国数学家狄利克雷,因此,人们又把这个原理称为“狄利克雷原理”。(课件展示)现在你能用这个原理解决问题了么? 课堂练习(课件展示):“做一做” 1、7只鸽子飞回5个鸽舍,至少有2只鸽子飞回同一个鸽舍。为什么?

2、将15个苹果放到4个盘子中,总会有一个盘子至少有()个苹果。这两个题目中,分别把什么当做了抽屉?

你现在知道用抽屉原理解决问题的关键了么?(找准哪是抽屉)(课件展示)用物体数除以抽屉数,如果能整除则总有一个抽屉里至少有“商”个物体;

如果不能整除(有余数)则总有一个抽屉里至少有商+1个物体。

(课件展示)拓展练习:

1、一幅扑克,拿走大、小王后还有52张牌,任意抽出其中的5张,总会有至少两张牌的花色相同,为什么?

2、我们班共65人,至少几个人的属相相同?为什么?(任选一个你喜欢的做)这一节课你有哪些收获?

套餐作业:(课件展示)A:课本P70“做一做” B:课本P73“练习十二”

篇5:《抽屉原理》教案

《抽屉原理》教案

一、教学内容

人教版小学数学六年级下册教材第68~69页。

二、教材分析

“数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“抽屉原理”,即把n+1个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。关于这类问题,学生在现实生活中已积累了一定的感性经验。教学时可以充分利用学生的生活经验,放手让学生自主思考,先采用自己的方法进行“证明”,然后再交流,在交流中引导学生对“枚举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。让学生通过本内容的学习,帮助学生加深理解学会利用“抽屉问题”解决简单的实际问题。在此过程中,让学生初步经历“数学证明”的过程。实际上,通过“说理”的方式来理解“抽屉原理”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。还

要注意培养学生的“模型”思想,这个过程是将具体问题“数学化”的过程,能从纷繁的现实素材中找出最本质的数学模型,是体现学生数学思维和能力的重要方面。

三、学情分析

抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。

1.年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

2.思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。

四、教学目标

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。3.通过“抽屉原理”的灵活应用感受数学的魅力。

五、教学方法

1.适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。

2.引导学生构建解决抽屉原理类问题的模式:明确“待分的物体”→哪是“抽屉”→平均分 →商+1

六、教学重难点

重点:经历抽屉原理的探究过程,初步了解抽屉原理。难点:理解抽屉原理,并对一些简单的实际问题加以模型化。

七、教学准备 课件、学习单

八、教学过程

(一)创设情境 提出问题; 1.游戏导入

师:我们先来玩一个小游戏,有3本书放进2个抽屉里,怎样放?有几种放法?想想看。

生:有两种,一种是3本放在一个抽屉里。师:3本放在一个抽屉里,那么另外一个抽屉?

生:另外一个抽屉是空的。还有一种是一个抽屉放1本,另外一个抽屉放2本。

课件演示。

师:假设我们没有书,也没有课件,那我们应该怎么来思考这个问题呢?

生:画图„„

师画示意图,一起观察分析,得出3本书放进2个抽屉,不管怎么放,总有一个抽屉里至少有2本书。

抽屉原理是一种很神奇规律,因为它能够帮助我们解决很多生活中的问题,大家想了解它吗?

师:谁能解释一下总有和至少这两个词的意思? 生:总有就是肯定有,至少就是不少于的意思。„„ 2.揭示课题

师:刚才这个小游戏展示了抽屉原理中最简单的一种问题。抽屉原理很神奇,我们用它可以解决很多有趣的的问题,想弄明白这个原理吗?这节课我们就一起来探究这种神秘的原理。板书课题《抽屉原理》

(二)探究原理 建立模型 1.出示学习目标,全班齐读。

2.出示探究任务,先独立思考,再小组合作交流谈论。

用实物或画图的方法列举出,把4枝铅笔放进3个笔筒中,一共有()种情况,从中发现不管怎么放,总有一个笔筒里至少放进去()枝铅笔。

利用假设法把4枝铅笔平均放进3个笔筒里,每个笔筒里只能放()枝铅笔,剩下的()枝铅笔还要放进其中一支笔筒里,所以至少有()枝铅笔放入同一个笔筒。用一个有余数的除法算式表示。3.汇报展示

4.师生一起探究交流。

课件演示,利用列举法和假设法进行验证。6.学以致用(问题二)

1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

2)把5本书进2个抽屉中,不管怎么放,总有一个抽屉至少放进3本书。这是为什么?

3)把7本书进2个抽屉中,不管怎么放,总有一个抽屉至少放进多少本书?为什么?

4)把9本书进2个抽屉中,不管怎么放,总有一个抽屉至少放进多少本书?为什么?

5)8只鸽子飞回3个鸽舍,至少有()只鸽子要飞进同一个鸽舍。为什么? 7.归纳小结

“抽屉原理”类问题解决模式:明确“待分物体”—确定“抽屉”—平均分—商+1 8.抽屉原理简介

(三)有效训练

一副扑克牌(除去大小王)52张中有四种花色,从中随意抽5张牌,无论怎么抽,为什么总有两张牌是同一花色的?

(四)总结提升

这节课你有哪些收获?可以从知识上、学习方法上、数学小知识上进行总结。

1.自我检测 1)把13本书分给4名学生,不管怎么分,总有一个学生至少分得()本书。

2)四(1)班有学生38人,同一个月份出生的学生至少有()人。

3)在某班学生中,有8个人都订阅了《小朋友》、《少年报》、《少年报》三种报刊中的一种或者几种,这8个人中至少有()个人所订的报刊种类相同。

4)给正方体的6个面涂上红色或蓝色,不管怎么涂,至少有()个面的颜色相同。

2.课后延伸

1)给6名学生分书,肯定有一个学生至少分到5本书,这些书至少有()本。

2)请你任意写出4个自然数,在这4个自然数中,必定有这样的两个数,它们的差是3的倍数,试一试,想一想,为什么?

九、板书设计

抽屉原理

列举法 假设法 至少

3(3,0)4÷3=1„„1

明确“待分物体” 3(2,1)7÷5=1„„2

确定“抽屉” 4(4,0,0)5÷2=2„„1

平均分 4(3,1,0)7÷2=3„„1

商+1 4(2,2,0)8÷3=2„„2

篇6:集体备课教案《抽屉原理》

集体备课教案《抽屉原理》

集体备课《抽屉原理》 一、备课内容:人教版六年级下册数学广角――抽屉原理 (例1、例2)。组内教师研究教材及相关材料。 二、集中讨论 1、确定教学目标: (1)初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。 (2)通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 (3)经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 (4)通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 2、教学重点:抽屉原理的理解和应用。 3、教学难点:判断谁是待分物体,谁是抽屉。 4、讨论教学环节 ▲怎样导入新知? 1、观点(一)创设一个与“抽屉原理”直接相关的生活情境,让新知与生活紧密联系。 观点(二)游戏形式进入。 2、执教者卢老师:游戏形式“抢板凳”。5个同学4把椅子。引导学生思考:要让每个人有椅子坐,必定会出现什么情况?师生小结:不管怎么坐,总有一把椅子上至少坐了两个同学。揭题. ▲怎样展开教学? 观点:例题的教学建议先引导学生猜测想象“3根小棒放进2个杯子”可以怎样放?再通过动手操作充分感受:不管怎么放,总有一个杯子里至少有2根小棒。 结合执教者思路确定: 出示题目:把3根小棒放进2个杯子里,可以怎么放?有几种不同 的放法?大家摆摆看,看看有什么发现? 学生活动,得出结论:总有一个杯子里至少有2。 依此推想,把4根小棒放进3个杯子里,可怎么放?有什么发现?得出结论。 理解“总有” “至少”的意思。 除了用一一列举的.方法,能不能想出一种更简洁的办法直接来证明?同桌讨论,共同得出:用除法来计算。 用这种方法把7根小棒放进6个杯子里会怎样呢?理由是什么? 把10根小棒放进9个杯子里会怎样呢? 把100根小棒放进99个杯子里会有什么结果呢……有什么发现? 小结:刚才研究的都是小棒的根数比杯子个数多1,如果小棒的根数比杯子个数多2,多3,多5,是不是也会有这样的结果呢? ①5根小棒放进3个杯子里会怎样?板书:5÷3=1……2 2 ②7根小棒放进4个杯子里呢?板书:7÷4=1……3 2 ③9根小棒放进4个杯子里呢?板书:9÷4=2……1 3 ④15根小棒放进4个杯子里呢?板书:15÷4=3……3 4 研究到这儿,看看有什么规律? 讨论:是“商+余数”呢还是“商+1”呢?(再突出:至少) 根据算式得出:小棒数,抽屉数。 归纳:“小棒数÷杯子数=商……余数”,不管怎么放,总有一个抽屉里至少有“商+1”根小棒。 数学小知识(课件播放) ▲巩固练习的安排 观点:练习的过程中应让学生感受:把谁当抽屉,把谁当物体。 结合执教者意见确定:课后两个基础题 一个拓展题 一个小游戏 小游戏:一副扑克牌,拿走两个王。 ①从52张扑克牌中,任意抽出5张,至少有几张是同花色的。说说为什么? ②若是再增加一副除掉两个王的扑克牌共104张中,任意抽5张,至少有几张是同花色的呢?你是怎样思考的?(指出52张牌、104张牌都是干扰条件。) ▲课堂总结。 三、执教者整理

篇7:抽屉原理的应用

定理:如果将n+1个物体放进n个抽屉, 那么至少有一个抽屉中包含两个或更多的物体.

证明:如果这n个盒子中的每一个至多包含有一个物体, 那么物体的总数最多是n, 既然我们有n+1个物体, 于是某个盒子中就必然包含至少两个物体.

2.抽屉原理应用举例

例1:给定m个整数a1, a2, …, am, 存在0≤k

解:为了深入这个问题, 考虑m个和

a1, a1+a2, a1+a2+a3, …, a1+a2+a3+…+am

如果这些和当中的任意一个可被m整除, 那么结论就成立.因此, 我们可以设这些和中的每一个除以m都有一个非零余数, 余数等于1, 2, …, m-1.由于存在m个和而只有m-1个余数, 则必然有两个和数除以m有相同的余数.因此, 存在整数k和l, k

a1+a2+…+ak=bm+r, a1+a2+…+al=cm+r

二式相减, 我们发现ak+1+…+al= (c-b) m, 从而ak+1+…+al能够被m整除.

为了解释上面的论断, 令m=7, 并令整数为2, 4, 6, 3, 5, 5, 6.计算上面的和得到2, 6, 12, 15, 20, 25, 31, 其中当被7除时余数分别为2, 6, 5, 1, 6, 4, 3.有两个等于6的余数, 这意味着结论:6+3+5=14可被7整除.

例2:一位国际象棋大师有11周的时间备战一场锦标赛, 他决定每天至少下一盘棋, 但为了不使自己过于疲劳他还决定在每周不能下棋超过12盘.证明:存在连续若干天, 期间这位大师恰好下了21盘棋.

解:令a1是在第一天所下的盘数, a2是在第一天和第二天所下的总盘数, 而a3是在第一天、第二天和第三天所下的总盘数, 等等.由于每天至少要下一盘棋, 故数值序列a1, a2, …, a77是一个严格递增序列.此外, a1≥1, 而且由于每周下棋最多是12盘, a77≤12×11=132.

因此, 我们有

1≤a1

序列a1+21, a2+21, …, a77+21也是一个严格递增序列:

22≤a1+21

于是, 这154个数

a1, a2, …, a77, a1+21, a2+21, …, a77+21

中的每一个都是1到153之间的一个整数.由此可知, 它们中间有两个是相等的.既然a1, a2, …, a77中没有相等的数, 并且a1+21, a2+21, …, a77+21中也没有相等的数, 因此必然存在一个i和一个j使得ai=aj+21.从而, 这位国际象棋大师在第j+1, j+2, …, j+i天总共下了21盘棋.

例3:从整数1, 2, …, 200中, 我们选择101个整数.证明:在所选的这些整数之间存在两个这样的整数, 其中的一个可被另一个整除.

通过分解出尽可能多的2因子, 我们看到, 任一整数都可以写成2^k×a的形式, 其中k≥0并且a是奇数.对于1到200之间的一个整数, a是100个数1, 3, 5, …, 199中的一个.因此, 在所选的101个整数中存在两个整数, 当写成上述形式时这两个数具有相同的a值.令这两个数是2^r×a和2^s×a.如果rs, 那么第一个数就能被第二个数整除.

注意, 例3在这种意义下是最好的可能:从1, 2, …, 200中可以选择这样的100个数, 其中没有一个能被另一个整除, 比如, 101, 102, …, 199, 200就是这样的整数.

我们以另外的, 来自数论中的应用来结束本段.首先我们回忆, 如果两个正整数m和n的最大公约数为1, 我们就称它们为互数.

于是, 12和35互数, 而12和15则否, 因为3是12和15的公因子.

3.问题的总结

通过上述三个例题, 我们看到, 利用抽屉原理能够解决看起来很复杂的问题, 而得出解决问题的关键是为后面巧妙地构造抽屉.

参考文献

[1]Richard.Brualdi著.罗平等译.组合数学.北京:机械工业出版社, 2005.2.

篇8:《抽屉原理与电脑算命》教案

《抽屉原理与电脑算命》教案

“电脑算命”看起来挺玄乎,只要你报出自己出生的年、月、日和性别,一按按键,屏幕上就会出现所谓性格、命运的句子,据说这就是你的“命”。

其实这充其量不过是一种电脑游戏而已。我们用数学上的抽屉原理很容易说明它的荒谬。

抽屉原理又称鸽笼原理或狄利克雷原理,它是数学中证明存在性的一种特殊方法。举个最简单的例子,把3个苹果按任意的方式放入两个抽屉中,那么一定有一个抽屉里放有两个或两个以上的苹果。这是因为如果每一个抽屉里最多放有一个苹果,那么两个抽屉里最多只放有两个苹果。运用同样的推理可以得到:

原理1把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

原理2把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。

如果以70年计算,按出生的年、月、日、性别的不同组合数应为70×365×2=51100,我们把它作为“抽屉”数。我国现有人口11亿,我们把它作为“物体”数。由于1.1×=21526×51100+21400,根据原理2,存在21526个以上的人,尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的“命”,这真是荒谬绝伦!

在我国古代,早就有人懂得用抽屉原理来揭露生辰八字之谬。如清代陈其元在《庸闲斋笔记》中就写道:“余最不信星命推步之说,以为一时(注:指一个时辰,合两小时)生一人,一日生十二人,以岁计之则有四千三百二十人,以一甲子(注:指六十年)计之,止有二十五万九千二百人而已,今只以一大郡计,其户口之数已不下数十万人(如咸丰十年杭州府一城八十万人),则举天下之大,自王公大人以至小民,何啻亿万万人,则生时同者必不少矣。其间王公大人始生之时,必有庶民同时而生者,又何贵贱贫富之不同也?”在这里,一年按360日计算,一日又分为十二个时辰,得到的.抽屉数为60×360×12=259200。

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:两种计数原理教案 下一篇:高中数学计数原理教案