第一篇:不等式证明方法探讨
不等式证明方法
1.比较法 比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。
2.综合法 利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2 B3„ BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。
3.分析法 分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。用分析法证明AB的逻辑关系为:BB1B1 B3 „ BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有„,这只需证明B2为真,从而又有„,„„这只需证明A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件。
4.反证法 有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B。凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法。
5.换元法 换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一
个参数表示。此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ,y=sinθ;②若x2+y2≤1,可设x=rcosθ,
y=rsinθ(0≤r≤1);③对于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。
6.放缩法 放缩法是要证明不等式A
(3)同分子(分母)异分母(分子)的两个分式大小的比较。常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③应用均值不等式进行放缩。[1]
编辑本段重要不等式
柯西不等式
对于2n个任意实数x1,x2,„,xn和y1,y2,„,yn,恒有
(x1y1+x2y2+„+xnyn)^2≤(x1^2+x2^2+„+xn^2)(y1^2+y2^2+„+yn^2)
柯西不等式的几种变形形式
1.设aiÎR,bi>0 (i=1,2,„,n)则,当且仅当bi=lai
(1£i£n)时取等号
2.设ai,bi同号且不为零(i=1,2,„,n),则,当且仅当b1=b2=„=bn时取等
柯西不等式的一般证法有以下几种: ①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2. 我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2) 则我们知道恒有 f(x) ≥ 0. 用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0. 于是移项得到结论。 ②用向量来证. m=(a1,a2......an) n=(b1,b2......bn)
mn=a1b1+a2b2+......+anbn=(a1^+a2^+......+an^)^1/2乘以
(b1^+b2^+......+bn^)^1/2乘以cosX. 因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^+a2^+......+an^)^1/2乘以
(b1^+b2^+......+bn^)^1/2 这就证明了不等式. 柯西不等式还有很多种,
这里只取两种较常用的证法. 【柯西不等式的应用】 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。 巧拆常数: 例:设a、b、c 为正数且各不相等。 求证: (2/a+c)+(2/b+c)+(2/c+a)>(9/a+b+c) 分析:∵a 、b 、c 均为正数 ∴为证结论正确只需证:2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b) 又 9=(1+1+1)(1+1+1)
证明
2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]=[(a+b)+(a+c)+(b+c)][1/a+b)+(1/b+c)+(1/c+a)]≥(1+1+1)(1+1+1)=9 又 a、b 、c 各不相等,故等号不能成立 ∴原不等式成立。 [2]
排序不等式
对于两组有序的实数x1≤x2≤„≤xn,y1≤y2≤„≤yn,设yi1,yi2,„,yin是后一组的任意一个排列,
记S=x1yn+x2yn-1+„+xny1,M=x1yi1+x2yi2+„+xnyin,L=x1y1+x2y2+„+xnyn,那么恒有S≤M≤L。
编辑本段其他重要不等式
琴生不等式
均值不等式绝对值不等式权方和不等式赫尔德不等式闵可夫斯基不等式贝努利不等式
第二篇:不等式的证明方法
中原工学院
1 常用方法
1.1比较法(作差法)[1]
在比较两个实数a和b的大小时,可借助ab的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等. 例1 已知:a0,b0,求证:证明 ab2ab2ab.
b)2abab2ab2ab2ab(a20,
故得 1.2作商法
. 在证题时,一般在a,b均为正数时,借助作商——变形——判断(大于1或小于1). 例2 设ab0,求证:aabbabba. 证明 因为 ab0, 所以 而
abaab1或
ab1来判断其大小,步骤一般为:
1,ab0.
baababbabab1,
故 aabbabba. 1.3分析法(逆推法)
从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆. 例3 求证:57115. 证明 要证351941557115,即证1223516215,即
35215,,41516,154,1516. 由此逆推即得 57115. 1.4综合法
1 [2]
中原工学院
证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法. 例4 已知:a,b同号,求证:证明 因为a,b同号, 所以 则
ababba2.
ab0,baabbaab0, ba2ba2,
即 1.5反证法[3]
2. 先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的. 例5 已知ab0,n是大于1的整数,求证:nanb. 证明 假设 nanb, 则 n即
baba1,
1,
故 ba, 这与已知矛盾,所以nanb. 1.6迭合法
把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证. 例6 已知:a1a2an1,b1b2bn1,求证: a1b1a2b2anbn1. 222222[4]证明 因为a1a2an1,b1b2bn1, 所以 a1a2an1,b1b2bn1. 由柯西不等式
a1b1a2b2anbna1a2an222222222222222b1b2bn111,
222中原工学院
所以原不等式获证. 1.7放缩法[5]
在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的.值得注意的是“放”、“缩”得当,不要过头.常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法. 例7 求证: 21345656999910000999910000220.01. ,则 证明 令pp2123412234225622999910000121232241999910000221110001110000,
所以 p0.01. 1.8数学归纳法[6]
对于含有n(nN)的不等式,当n取第一个值时不等式成立,如果使不等式在nk(nN)时成立的假设下,还能证明不等式在nk1时也成立,那么肯定这个不等式对n取第一个值以后的自然数都能成立. 例8 已知:a,bR,nN,n1,求证:anbnan1babn1. 证明 (1)当n2时,a2b2abab2ab,不等式成立; (2)若nk时,akbkak1babk1成立,则
ak1bk1a(ab)abkkkbk1a(ak1babk1)abkbk1
=akbabk(a2bk12abkbk1)akbabkbk1(ab)2akbabk, 即ak1bk1akbabk成立. 根据(1)、(2),anbnan1babn1对于大于1的自然数n都成立. 1.9换元法
在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化. 例9 已知:abc1,求证:abbcca13.
中原工学院
证明 设a13t,b13at(tR),则c13(1a)t,
111111abbccatatat(1a)tt(1a)t33333313(1aa)t22
13,
13所以 abbcca1.10三角代换法
. 借助三角变换,在证题中可使某些问题变易. 例10 已知:a2b21,x2y21,求证:axby1. 证明 设asin,则bcos;设xsin,则ycos 所以 axbysinsincoscoscos()1. 1.11判别式法
通过构造一元二次方程,利用关于某一变元的二次三项式有实根时判别式的取值范围,来证明所要证明的不等式. 例11 设x,yR,且x2y21,求证:yax1a2. 证明 设myax,则yaxm 代入x2y21中得 x2(axm)21, 即 (1a2)x22amx(m21)0 因为x,yR,1a20,所以0,
即 (2am)24(1a2)(m21)0, 解得 m1a2,故yax1a2. 1.12标准化法[8]
形如f(x1,x2,,xn)sinx1sinx2sinxn的函数,其中0xi,且
x1x2xn为常数,则当xi的值之间越接近时,f(x1,x2,,xn)[7]
的值越大(或不变);当x1x2xn时,f(x1,x2,,xn)取最大值,即
中原工学院
nf(x1,x2,,xn)sinx1sinx2sinxnsinx1x2xnnAB2. 标准化定理:当AB为常数时,有sinAsinBsin证明:记ABC,则
f(x)sinAsinBsin22.
AB2sinAsin(CA)sin2C2, 求导得 f(A)sin(C2A), 由f(A)0得 C2A,即AB. 又由 f(A)cos(BA)0, 知f(A)的极大值点必在AB时取得. 由于当AB时,f(A)0,故得不等式. 同理,可推广到关于n个变元的情形. 例12 设A,B,C为三角形的三内角,求证:sin证明 由标准化定理得, 当ABC时, sinA2sinB2sinA2sinC2B2sin12C2A2sinB2sinC218.
, 取最大值,
8181故 sin1.13等式法
. 应用一些等式的结论,可以巧妙地给出一些难以证明的不等式的证明. 例13(1956年波兰数学竞赛题)、a,b,c为ABC的三边长,求证:
2ab2ac2bcabc222222444.
12(abc)证明 由海伦公式SABC两边平方,移项整理得
16(SABC)2p(pa)(pb)(pc),其中p.
2ab2ac2bcabc222222444
而SABC0, 所以 2a2b22a2c22b2c2a4b4c4. 1.14分解法
按照一定的法则,把一个数或式分解为几个数或式,使复杂问题转化为简单易解的基
中原工学院
本问题,以便分而治之,各个击破,从而达到证明不等式的目的. 例14 n2,且nN,求证:1证明 因为 11213112131nn(nn11).
111n(11)111n23n
2324312n1n13n1nn23243n1nnnn1. 所以 11.15构造法[9-10]
n(nn11). 在证明不等式时,有时通过构造某种模型、函数、恒等式、复数等,可以达到简捷、明快、以巧取胜的目的. 例15 已知:x2y21,a2b22,求证:b(x2y2)2axy2. 证明 依题设,构造复数z1xyi,z2abi,则z11,z22 所以 z12z2(xyi)2(abi)[a(x2y2)2bxy][b(x2y2)2axy]i
b(xy)2axyIm(z1z2)z12222z22
故 b(x2y2)2axy1.16排序法[11]
利用排序不等式来证明某些不等式.
2. 排序不等式:设a1a2an,b1b2bn,则有
a1bna2bn1anb1a1bt1a2bt2anbtna1b1a2b2anbn,
其中t1,t2,,tn是1,2,,n的一个排列.当且仅当a1a2an或b1b2bn时取等号. 简记作:反序和乱序和同序和.
例16 求证:a2b2c2d2abbccdda. 证明 因为a,b,c,dR有序,所以根据排序不等式同序和最大, 即 a2b2c2d2abbccdda. 1.17借助几何法[12]
中原工学院
借助几何图形,运用几何或三角知识可使某些证明变易. 例17 已知:a,b,mR,且ab,求证:
ambmab. 证明 (如图1.17.1)以b为斜边,a为直角边作RtABC. 延长AB至D,使BDm,延长AC至E,使EDAD,过C作AD的平行线交DE于F,则ABC∽ADE,令CEn, 所以 aABam
又CECF,即nm, 所以
bACbnamabmambnb.
EnFCbDmBaA
图1.17.1
中原工学院
2 利用函数证明不等式
2.1函数极值法
通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的. 例18 设xR,求证:4cos2x3sinx2证明 f(x)cos2x3sinx12sin当sinx3218.
231x3sinx2sinx2
48时, f(x)max2;
481当sinx1时,
f(x)min4. 故 4cos2x3sinx22.2单调函数法[13-14]
当x属于某区间,有f(x)0,则f(x)单调上升;若f(x)0,则f(x)单调下降.推广之,若证f(x)g(x),只须证f(a)g(a)及f(x)g(x),(x(a,b))即可. 例 19 证明不等式
ex1x,x0.
证明 设f(x)ex1x,则f(x)ex1.故当x0时,f(x)0,f严格递增;当x0,f(x)0,f18. 严格递减.又因为f在x0处连续,
则当x0时,
f(x)f(0)0,
从而证得
ex1x,x0
2.3中值定理法
利用中值定理:f(x)是在区间[a,b]上有定义的连续函数,且可导,则存在,ab,满足f(b)f(a)f()(ba)来证明某些不等式,达到简便的目的.
中原工学院
例20 求证:sinxsinyxy. 证明 设 f(x)sinx,则sinxsiny(xy)sin(xy)cos 故 sinxsiny(xy)cosxy. 2.4利用拉格朗日函数
例 21 证明不等式
3(1a1b1c)13abc, 其中a,b,c为任意正实数. 证明 设拉格朗日函数为对
L(x,y,z,)xyz(1x1y1z1r).
对L求偏导数并令它们都等于0,则有
Lxyzx20,
Lyzxy20,
Lzxyx20,
L1x1y1z1r0.
由方程组的前三式,易的
1x1y1zxyz.
把它代入第四式,求出13r.从而函数L的稳定点为xyz3r,(3r)4.
1x1y1z1r为了判断f(3r,3r,3r)(3r)3是否为所求条件极小值,我们可把条件看作隐函数zz(x,y)(满足隐函数定理条件),并把目标函数f(x,y,z)xyz(x,y)F(x,y)看作f与zz(x,y)的复合函数.这样,就可应用极值充分条件来做出判断.为此计算如下:
zxzx22,zyzy22,
Fxyzyzx2,Fyxzxzy2,
中原工学院
F2yz3,Fzz2z22z3,
xxx3xyyxxy2xz3Fyyy3.
当xyz3r时,
Fxx6rFyy,Fxy3r,
F2xxFyyF27r20.
xy由此可见,所求得的稳定点为极小值点,而且可以验证是最小值点.这样就有不等式xyz(3r)3(x0,y0,z0,111xyz1r).
令xa,yb,zc,则r(111abc)1,代入不等式有
abc[3(11a1b1c)]3
或 3(111ab1c)3abc(a0,b0,c0).
中原工学院
3 利用著名不等式证明
3.1利用均值不等式[15-16]
设a1,a2,,an是
n个正实数,则
a1a2anna1a2an,当且仅当
na1a2an时取等号.
nn例22 证明柯西不等式 (a22nibi)(ai)(b2i).
i1i1i1证明 要证柯西不等式成立,只要证
nnn aa2ibiib2i (1)
i1i1i1nn令 a2iA2,b2iB2, (2)
i1i1n式中A0,B0,则(1)即 aibiABi1
naibi即
i1AB1 (3)
a2b22211下面证不等式(3),有均值不等式,
a1b1A2B2A2B22,
2即
2a1b1a21ABA2b1B2,
2a22b22a22a2ABA2b2nbna2同理
nB2, ,
ABA2bnB2. 将以上各式相加,得
nn2na2ib2i(abi11ABii)2i2i1AB (4)
中原工学院
根据(2),(4)式即
2AB(aibi)2.
i1n因此不等式(3)成立,于是柯西不等式得证. 3.2利用柯西不等式[17-18]
n例23 设aiR,i1,2,„,n.求证:i11n2aiai.
ni12证明 由柯西不等式
nnnn2n22aiai1ai1nai.
i1i1i1i1i122两边除以n即得.
说明:两边乘以1n后开方得
1niani11n2iani1.当ai为正数时为均值不等式中的算术平均不大于平方平均. 3.3利用赫尔德不等式[19] 例24 设a,b为正常数,0xab2,nN,求证:
n22n22 nansinxcosx2bn22
n2bn2bn2aa22证明 n= sinxcosxn2 nnnsinxcosxsinxcosx2a nsinx2n2sinx22nn22bncosxn2cosx2nn2
即
asinxn= an2bn2
n2ancosxb2n2bn222
3.4利用詹森不等式[20] 例 25 证明不等式
abc(abc)3abc, 其中a,b,c均为正数.
abc证明 设 f(x)xlnx,x0.由f(x)的一阶和二阶导数
f(x)lnx1,f(x)1x
中原工学院
可见,f(x)xlnx在x0时为严格凸函数.依詹森不等式有
f(abc3)13(f(a)f(b)f(c)),
从而
abcabc3ln313(alnablnbclnc),
即
(abccbc3)abaabc.
又因3abcabc3,所以
abc (abc)3aabbcc.
第三篇:不等式证明方法讲义
不等式的证明方法
一、比较法
1. 求证:x2 + 3 > 3x
2. 已知a, b, m都是正数,并且a < b,求证:ama bmb
ab
23. 已知a, b都是正数,并且a b,求证:a5 + b5 > a2b3 + a3b2作商法1.设a, b R,求证:ab(ab)+ababba
二、综合法
1.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明2.用综合法证明不等式的逻辑关系是:AB1B2BnB
3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证例题:已知a,b,c是不全相等的正数,求证:a(bc)b(ca)c(ab)6abc
例题:已知a,b,c都是正数,且a,b,c成等比数列,求证:abc(abc)
例题:a , b, cR,求证:1(abc)(22222222221111119)92(abc)() abcabbcca
2三、分析法
例题: 求证37
2例题:已知a,b,c,d∈R,求证:ac+bd≤(ab)(cd)
例题:用分析法证明下列不等式:
(1)求证:571(2)求证:x1
(3)求证:a,b,c∈R,求证:2(+2222x2x3x4(x≥4) ababcab)3(abc) 2
3四、换元法 三角换元:
若0≤x≤1,则可令x = sin (0
22)或x = sin2 (222若xy1,则可令x = cos , y = sin (02 代数换元:“整体换元”,“均值换元”,例题: 求证:11xx2 2
2例题: 已知x > 0 , y > 0,2x + y = 1,求证:11322 xy
2例题:若xy1,求证:|x2xyy|2222
五、放缩法与反证法
abcd2 abdbcacdbdac
1111例题:求证:22222 123n例题:若a, b, c, dR+,求证:1
例题:(用反证法)设0 < a, b, c < 1,求证:(1 a)b, (1 b)c, (1 c)a,不可能同时大于
例题:已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0
1
4六、构造法
22222222例题:已知0 < a < 1,0 < b < 1,求证:ab(a1)ba(b1)(a1)(b1)2
2习题精选精解
例题:正数x,y满足x2y1,求1/x1/y的最小值。
例题:设实数x,y满足x(y1)1,当xyc0时,求c的取值范围。
例题:已知函数f(x)axbx(a0)满足1f(1)2,2f(1)5,求f(3)的取值范围。
例题:已知abc,求证:abbccaabbcca
例题:
222222222
例题:设fxxx13,实数a满足xa1,求证:fxfa2a1 2
注:式的最后一步省略了对a
0,a0,a0的详细分析,正式解题时不能省。分析过程用 a,b同号|ab||a||b|||a||b|||ab|;a,b异号|ab||a||b|||a||b|||ab| 例题:a、b、c(0,),abc1,求证:
例题:xy1,求证:2xy
例题:已知1≤x+y≤2,求证:
2222a2b2c213 2 122≤x-xy+y≤3. 22
第四篇:不等式的一些证明方法
数学系数学与应用数学专业2009级年论文(设计)
不等式的一些证明方法
[摘
要]:不等式是数学中非常重要的内容,不等式的证明是学习中的重点和难点,本文除总结不等式的常规证明方法外,给出了不等式相关的证明方法在具体实例中的应用. [关键词] 不等式; 证明; 方法; 应用
不等式在数学中占重要地位,由于其本身的完美性及证明的困难性,使不等式成为各类考试中的热点试题,证明不等式的途径是对原不等式作代数变形,在初等数学中常用的方法有放缩法、代换法、归纳法、反证法等等.因而涉及不等式的问题很广泛而且处理方法很灵活,故本文对不等式的证明方法进行一些探讨总结.
一、中学中有关不等式的证明方法 1.1中学课本中的四种证明方法 1.1.1理清不等式的证明方法
(1)比较法:证明不等式的基本方法,适应面宽. ①相减比较法—欲证AB,则证AB0. ②相除比较法—欲证A>B(A>0,B>0),则证>1. (2)综合法:利用平均不等式、二次方程根的判别式、二项式定理、数列求和等等。此方法灵活性大,需反复练习. (3)分析法:当综合法较困难或行不通时,可考虑此法,但不宜到处乱用.
第1页(共13页)
AB
数学系数学与应用数学专业2009级年论文(设计) (4)数学归纳法:凡与自然数n有关的不等式,可考虑此法,但有时使用起来比较困难,应与前面几种方法配合应用. 1.1.2选择典型范例,探求解题途径
例1.1.1 求证 12x42x3x2
分析 用相减比较法证明AB0.一般应将AB变形为[f(x)]
2、(f(x)g(x),其中f(x),g(x)同号),或变形为多个因子的[f(x)]2[g(x)]
2、乘积、平方式.本题可化为两个完全平方式的和或化为一个完全平方式与一个正因式的积. 证: 2x42x3x212x3(x1)(x1)(x1)
(x1)(2x3x1)(x1)(2x32xx1)
132(x1)2[(x)2]
442x42x3x210
当xR时,即 12x42x3x2
例1.1.2 证明 n(n1)n1.... (n1). 分析 题中含n,但此题用数学归纳法不易证明,通过变形后可采用平均不等式来证. 11111(11)(1)(1)23n2n nn34n12n>n23.4...n1=nn1(再变形) =2323nn11111n1....(11)(1)....(1)23n2n
证:
nnn11n12131n第2页(共13页)
数学系数学与应用数学专业2009级年论文(设计)
2 1n34n1....23nn234....n1nn1
n23n131n所以 n(n1)n1....
例1.1.3 求证:
1112+
11+„+>n (n1,n为自然数) 2n 分析 与自然数有关的问题,可考虑用数学归纳法.设nK时成立,需证nK1时也成立,需证明K+K+
1>K1,可采用“凑项”的方法: K1KK11KK1K11=>==K1
K1K1K1K1111221222,右边2,所以, 2 证: (1) 当n2时,左边左边右边. (2) 假设nK时, 1111+
11+„+>K成立,则当nK1时, 2K+
1111+„++ K+
K12K1KKK11K1 =>
KK1K1K1K1K1
综上所述: 1.2关于不等式证明的常规方法 (1)利用特殊值证明不等式
11+
11+„+>n 2n特殊性存在于一般规律之中,并通过特例表现出来.如果把这种辩证思想用于解题之中,就可开阔解题思路.
第3页(共13页)
数学系数学与应用数学专业2009级年论文(设计) 例1.2.1 已知ab,b0,ab1.求证(a+)(b+)≥
121a1b25. 412112211125只需证明当ab时,(a+)(b+)≥.故可设ax
ab2411b x,(|x|且x0) 22证:考虑a与b都去特殊值,既当ab时有(2)(2)=
25 4则
a21b21(a21)(b21)(ab1)2111(a+)(b+)=== abababab33(x2)21(x2)2125=4>4=. 114x244故原不等式得证. (2)利用分子有理化证明不等式
分母有理化是初中数学教材中重要知识,它有着广泛的应用,而分子有理化也隐含于各种习题之中,它不但有各种广泛的作用,而且在证明不等式中有它的独特作用. 例1.2.2[1] 求证13-12<12-11. 证:利用分子有理化易得:13-12=1312>12+11 1131211312,12-11=
11211, <
11211
即 13-12<12-11. (3)应用四种“平均”之间的关系证明不等式
四种“平均”之间的关系,既调和平均数H(a)≤几何平均数G(a)≤
第4页(共13页)
数学系数学与应用数学专业2009级年论文(设计) 算数平均数A(a)≤平方平均数Q(a). 写得再详细些就是:若a1,a2,a3,an都是正实数,则:
111aa121≤na1a2an≤
a1a2ann≤
a21a2ann22
an (注:这一串不等式在不等式证明中起着举足轻重的作用.) 例1.2.3 已知ab,求证a+证:a+
1≥3 (ab)b111=(ab)+b +≥3×3(ab)b3
(ab)b(ab)b(ab)b(4)充分利用一些重要结论,使解题简捷
①对实数a,b,c,d有
a2b2≥2ababba; a2b2c2abbcca; a2b2c2d2abbccdda. ②若a,b同号,则≥2;
若a,b,c均为正数,则≥3.
a2b2ab2 ③若是正数,则≥≥ab≥ (当且仅当ab时等号
1122abbaabbacbac成立)
a2b2c2abc3 若a,b,c是正数,则≥3abc≥
11133abc (当且仅当abc时等号成立)
例1.2.4 若a,b,c0,且abc1,求证 9
第5页(共13页)
1a1b1c
数学系数学与应用数学专业2009级年论文(设计) 分析 证法较多,但由abc1与之间的联系,考虑算术平均与调和平均的关系式简便. 证:由算术平均数和调和平均的关系可知
abc3 1113abc1a1b1c所以 abc99, 又abc1得 1
111111abcabc1a1b1c即 9. (5)利用式的对称性证明不等式
形如xy,a2b2c2的式子中任意两个量交换位置后结果仍不变,这就是“式”对称,可以用对称关系来解决一些不等式的证明. 例1.2.5 设a,b,c,d是正数,且满足abcd1,求证 4a14b14c14d16
证:由4a1944a12942a13
8 注意到对称有:
94(abcd)1317(4a14b14c14d1)
422即 4a14b14c14d16 故原命题得证. (6)用“双十字法”证明不等式
例1.2.6 已知x,y0并且xy1 求证:
x23xy2y22xy32x221xy11y24x21y2
证:因 x23xy2y22xy3(x2y)(xy)2xy3
第6页(共13页)
数学系数学与应用数学专业2009级年论文(设计) =(x2y3)(xy1)0 类似的,2x221xy11y24x21y2(2xy2)(x11y1)0 故结论成立. (7)用恒等变形推导
例1.2.7[2] 求证:对于任意角度,都有58cos4cos2cos3≥0
证:58cos4cos2cos3
=58cos4(2cos21)(4cos33cos)
=15cos8cos24cos3(1cos)(4cos24cos1) =(1cos)(2cos1)20
(8)分解为几个不等式的和或积
例1.2.8[2] 已知a,b,c是不全相等的正数,求证:
a(b2c2)b(c2a2)c(a2b2)6abc
证: b2c22bc,a0,a(b2c2)2abc
2222b(ca)2abc,c(ab)2abc. 同理
a,b,c不全相等,所以上述三式中,等号不能同时成立.把三式相加
得
a(b2c2)b(c2a2)c(a2b2)6abc
(注:这里把不等式的各项分别考虑,然后利用不等式的性质和推论,证得所求不等式.)
例1.2.9 设是锐角,求证: (111)(1)5. sincos 证: 是锐角,0sin1,0cos1,0sin21, 这时 1121,1,2. sincossin2第7页(共13页)
数学系数学与应用数学专业2009级年论文(设计) (111112)(1)15. sincossincossin2(9)利用极限证明不等式
例1.2.10[2]证明:当x2(1+2)时,有
(2x1)2(2x3)3(2x5)....xx3
证: 在x0的情况下讨论,令
f(x)(2x1)(2x3)3(2x5)....x,g(x)x3
则 f(x)x(x1)(2x1),
6x(x1)(2x1)f(x)16于是 lim limxg(x)x3x3按极限的定义,对于,取2(12)当|x|2(12)有
f(x)11 , g(x)3414即 0f(x)71 从而f(x)g(x),故结论成立. 12g(x)12(10)利用平分法证明不等式
例1.2.11 若x0,i1,2,3,且xi1,则
i1311127 2221x11x21x310 证:因为12111911x时有,所以,且当 x1ii22331xi1xi101119273 222101x11x21x310故
1.3关于不等式证明的非常规方法 (1)换元法
这种方法多用于条件不等式的证明,换元法主要有三角代换和均值代
第8页(共13页)
数学系数学与应用数学专业2009级年论文(设计) 换两种.三角代换时已知条件特征明显.在结构上必须和三角公式相似. 例1.3.1 已知x2y21,求证:| x2+2xy-y2|≤2. 证:令xrcos,yrsin
则 | x2+2xy-y2|=|r2(cos22sincossin2| =r2|cos2sin2| = r2|2sin(2450)|≤12×1=2
例1.3.2[4]设a,b,cR 且abc1,求证:a2b2c2≥. 证:a=+α,b=+β,c=+γ, 因为abc1,所以 0
于是有a2b2c2=+()+(222)≥. (2)反证法
先假设所要证明的不等式不成立,即要证的不等式的反面成立,然后从这个假设出发进行正确的推理,最终推出与已知条件或已知真命题相矛盾的结论,从而断定假设错误,进而确定要证明的不等式成立. 例1.3.3[5]求证:由小于1的三个正数a,b,c所组成的三个积(1-a)b,(1-b)c,(1-c)a,不能同时大于
证:(反证法)假设(1-a)b,(1-b)c,(1-c)a都大于
则有(1-a)b(1-b)c(1-c)a>
21313131313231314141 ① 641aa1但由01-a)a≤条件,即有,0(1-a)a≤.
24同理有0(1-b)b≤,0(1-c)c≤. 即 (1-a)b(1-b)c(1-c)a≤
1 ② 64
1414第9页(共13页)
数学系数学与应用数学专业2009级年论文(设计) ①与②产生矛盾,从而原命题成立. (3)构造法
在证明不等式时,有时通过构造某种模型、函数、恒等式、向量、对偶式等,完成不等式的证明. 例1.3.4 求证 证: 设A=1212342n11. 2n2n132n1242n,B=,
352n142n12342n12n由于,,,,因此AB,
23452n2n113242n1242n2n1)()A, 2n352n12n12n1所以A2AB(故 (4)判别式法
12342n11 2n2n1适用于含有两个或两个以上字母不等式,而另一边是关于某字母的二次式时,这时可考虑用判别式法. 例1.3.5[6]x2x113求证:≤2≤.
x122x2x1 证: 设f(x)y2,则(1y)x2x1y0,所以xR,
x1当y1时,Δ=b24ac≥0,即14(1y)2≥0,
所以 |y1|≤,即≤y≤. 又当y1时,方程的解x0,
x2x113故 ≤2≤.
x122121232(5)放缩法
第10页(共13页)
数学系数学与应用数学专业2009级年论文(设计) 为了证明不等式的需要,有时需舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性达到目的.
例1.3.6[5]设a,b为不相等的两个正数,且a3-b3=a2b2.求证1ab. 证: 由题设得a3-b3=a2b2a2abb2ab, 于是 (ab)2 a2abb2ab,则 (ab)1,又(ab)24ab,
(ab)2 而(ab)a2abbababab
422243即 (ab)2ab,所以(ab), 综上所述, 1ab (6)向量法
向量这部分知识由于独有的形与数兼备的特点,使得向量成了数形结合的桥梁,在方法和理论上是解决其他一些问题的有利工具. 对于某些不等式的证明,若借助向量的数量积的性质,可使某些不等式较易得到证明. 例1.3.7 求证:求证1≤ 1x2x≤2
9.
三、小结
证明不等式的途径是对原不等式作代数变形,在初等数学中常用的
第11页(共13页)
1a1b1c
数学系数学与应用数学专业2009级年论文(设计) 方法大致有放缩法、代换法、归纳法、反证法等等.然而涉及不等式的问题很广泛而且处理方法很灵活,仅在中学教科书上就有很多方法,但还不足以充分开拓人们的思维,为此,我们要进一步探究不等式的证明方法,并给出了在实例中的应用.
参考文献
[1] 段明达.不等式证明的若干方法[J].教学月刊(中学版),2007(6). [2] 彭军.不等式证明的方法探索[J].襄樊职业技术学院学报,2007(4). [3] 周兴建.不等式证明的若干方法[J].中国科教创新导刊,2007(26). [4] 郭煜,张帆不等式证明的常见方法[J].高等函授学报(自然科学版),2007(4). [5] 王保国.不等式证明的六种非常规方法[J].数学爱好者(高二版),2007(7). [6] 赵向会.浅谈不等式的证明方法[J].张家口职业技术学院学报,2007(1). [7] 豆俊梅.高等数学中几类不等式的证明[J].中国科技信息,2007(18). [8] 刘玉琏,傅佩仁. 数学分析讲义[M].北京:高等教育出版
第12页(共13页)
数学系数学与应用数学专业2009级年论文(设计) 社,1988,P201-211. [9] 牛红玲.高等数学中证明不等式的几种方法[J].承德民族师专学报,2006(2). [10] 王喜春.不等式证明常用的技巧[J].数学教学研究,1995(2).
第13页(共13页)
第五篇:积分不等式的证明方法
南通大学毕业论文
摘
要
在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结.
关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性
1 南通大学毕业论文
ABSTRACT
When we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics better. Also our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem solving.The paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related content.In this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality, integral mean value theorem, integral property, Taylor formula,double integral and differential mean value theorem.Finally,the full paper is summarized.
Key words: Integral Inequality, Definite Integral,Mean Value Theorem,
Cauchy-Schwarz Inequality, Monotonicty
2 南通大学毕业论文
1.引
言
不等式在数学中有着重要的作用,在数量关系上,尽管不等关系要比相等关系更加普遍的存在于人们的现实世界里,然而人们对于不等式的认识要比方程迟的多.直到17世纪之后,不等式的理论才逐渐的成长起来,成为数学基础理论的一个重要组成部分.众所周知,不等式理论在数学理论中有着重要的地位,它渗透到了数学的各个领域中,因而它是数学领域中的一个重要的内容.其中积分不等式更是高等数学中的一个重要的内容.
实际上关于定积分的概念起源于求平面图形的面积和一些其他的实际问题.有关定积分的思想在古代就有了萌芽,比如在公元前240年左右的古希腊时期,阿基米德就曾经用求和的方法计算过抛物线弓形和其他图形的面积.在历史上,积分观念的形成要比微分早.然而直到17世纪后半期,较为完整的定积分理论还没有能够形成,一直到Newton-Leibniz公式建立之后,有关计算的问题得以解决后,定积分才迅速的建立并成长起来.
本论文研究的积分不等式结合了定积分以及不等式.关于它的证明向来是高等数学中的一个重点及难点.对积分不等式的证明方法进行研究,并使其系统化,在很大程度上为不同的数学分支之间架起了桥梁.深刻的理解及掌握积分不等式的证明方法可以提升我们对其理论知识的理解,同时可以提高我们的创造思维和逻辑思维.
在论文的第三部分中对积分不等式的证明方法进行了详细的阐述.分别从利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用泰勒公式、利用重积分、利用微分中值定理、利用定积分的性质这八个方面给出了例题及证明方法.这样通过几道常见的积分不等式的证明题,从不同的角度,用不同的方法研究、分析了积分不等式的特点,归纳总结出了其证明方法.同时论文中也对有的题目给出了多种证明方法,这启示我们对于同一道积分不等式而言它的证明方法往往不止一种,我们需要根据实际情况采用合适的方法去证明,从而达到将问题化繁为简的目的.
3 南通大学毕业论文
2.几个重要的积分不等式
在高等数学的学习中我们遇到过许多重要的积分不等式,如Cauchy-Schwarz不等式,Young不等式等.它们的形式及证明方法都有很多种,在这一小结中我们将给出这两种积分不等式的证明方法.
2.1 Cauchy-Schwarz不等式
无论是在代数还是在几何中Cauchy-Schwarz不等式的应用都很广泛,它是不同于均值不等式的另一个重要不等式.其形式有在实数域中的、微积分中的、概率空间,F,P中的以及n维欧氏空间中的4种形式.接下来在这一部分中我们将对其在微积分中的形式进行研究.
定理2.1[1] 设f(x), g(x)在[a,b]上连续,则有
[f(x)g(x)dx]2{[f(x)]2dx} {[g(x)]2dx}.
aaabbb证明:要证明原不等式成立,我们只需要证
设Ftt2abaf2xdxat2bbgxdxfxgxdx0成立. a 222tfxdxgxdxfxgxdx,则只要证FbFa成立,
aa由Ft在[a,b]上连续,在a,b内可导,得
Ftf2tg2xdxg2tf2xdx2ftgtfxgxdxaaa2222ftgx2ftgtfxgxgtfxdx atttt
ftgxgtfxdx0.
(2.1) a由(2.1)式可知Ft在[a,b]上递增,由ba,知FbFa,故原不等式成立.
证毕
实际上关于Cauchy-Schwarz不等式的证明方法有很多,这里我们采用的证明方法是较为普遍的辅助函数法,它将要证明的原积分不等式通过移项转变为了判断函数在两个端点处函数值大小的问题.通过观察我们可以进一步发现原Cauchy-Schwarz不等式能够改写成以下行列式的形式 t2 4 南通大学毕业论文
fxfxdxgxfxdx0,
aabbbafxgxdxgxgxdxab由此我们可以联想到是否可以将它进行推广?答案是肯定的.下面我们将给出
CauchySchwarz不等式的推广形式.
定理2.2[2] 设fx,gx,hx在a,b上可积,则
hxfxdxfxgxdxgxgxdxhxgxdx0. fxhxdxgxhxdxhxhxdxaaabbbaaabbbaaabfxfxdxbgxfxdxb 证明:对任意的实数t1,t2,t3,有
bat1fxt2gxt3hxdx
bbbaaa2t12f2xdxt22g2xdxt32h2xdxbbaa
ba2t1t2fxgxdx2t1t3fxhxdx2t2t3gxhxdx0. 注意到关于t1,t2,t3的二次型实际上为半正定二次型, 从而其系数矩阵行列式为
babbaf2xdxbagxfxdxabhxb2fxdx
xfxhfaxgxdxdxbab2agxdxbaxhag0x.d x证毕 xdxgxhxdxh以上的推广是将Cauchy-Schwarz不等式的行列式由二阶推广到了三阶的形式,事实上Cauchy-Schwarz不等式是一个在很多方面都很重要的不等式,例如在证明不等式,求函数最值等方面.若能灵活的运用它则可以使一些较困难的问题得到解决.下面我们会在第三部分给出Cauchy-Schwarz不等式及其推广形式在积分不等式证明中的应用.
除了Cauchy-Schwarz不等式之外还有很多重要的积分不等式,例如Young不等式,相较于Cauchy-Schwarz不等式我们对Young不等式的了解比较少,实际上它也具有不同的形式且在现代分析数学中有着广泛的应用.接着我们将对Young不等式进行一些研究.
2.2 Young不等式
Young不等式,以及和它相关的Minkowski不等式,HÖlder不等式,这些都是在现代分
5 南通大学毕业论文
析数学中应用十分广泛的不等式,在调和函数、数学分析、泛函分析以及偏微分方程中这三个不等式的身影随处可见,是使用得最为普遍,最为平凡的知识工具.下面我们将给出积分形式的Young不等式的证明.
定理2.3[3] 设f(x)在[0,c](c0)上连续且严格递增,若f(0)0,a[0,c]且b[0,f(c)],则0f(x)dx0f1(x)dxab,其中f1是f的反函数,当且仅当bf(a)时等号成立.
证明:引辅助函数g(a)abf(x)dx,
(2.2)
0aab把b0看作参变量,由于g(a)bf(a),且f严格递增,于是
当 0af1(b)时,g(a)0;当 af1(b)时,g(a)0;当 af1(b)时,g(a)0. 因此 当af1(b)时,g(a)取到g的最大值,即
gamaxgxgf1b
(2.3)
由分部积分得
f1(b)f1(b)0g(f(b))bf(b)作代换yf(x),上面积分变为
11f(x)dx0xdf(x),
g(f1(b))f1(y)dy,
(2.4)
0b将(2.2)式和(2.4)式代入(2.3)式得
abf(x)dxf(y)dyf1(x)dx,
000ab1b即f(x)dxf1(x)dxab. 证毕
00ab 6 南通大学毕业论文
3.定积分不等式常见的证明方法
关于积分不等式的证明方法较为繁多,难度及技巧性也较大,因此对其进行系统的归纳总结是很有必要的.在这一部分中我们将归纳出利用辅助函数、微分中值定理、重要积分不等式及积分中值定理等证明积分不等式的方法.
3.1 利用函数的凹凸性
在数学分析以及高等数学中,我们常常会遇到一类特殊的函数—凸函数.凸函数具有重要的理论研究价值和广泛的实际应用,在有些不等式的证明中,若能灵活地利用凸函数的性质往往能够简洁巧妙的解决问题.下面给出一个例子加以说明.
定理3.1 若t定义在间隔m,M内,且t0,则t必为下凸函数.
定理3.2 设fx在[a,b]上为可积分函数,而mf(x)M.又设t在间隔mtM内为连续的下凸函数,则有不等式
1b1bfxdxfxdx. aabababb例3.1[4] 设fx在a,b上连续,且fx0,求证:fxdxaa12dxba. fx证明: 取u112, 因为u20,u30,u0 uuu即在u0时,yu为凸函数,故有
1b1bfxdxfxdx, aabababa即fxdxabba1dxbbfx12dxba.
证毕 ,故fxdxaafxba在上述的题目中我们可以发现在证明中常常先利用导数来判断函数的凹凸性,然后再利用凹(凸)函数的性质来证明不等式.然而对于实际给出的题目,我们往往需要先构造一个凹(凸)函数,然后才能利用其性质来证明我们所要证明的问题.
3.2 辅助函数法
辅助函数法是积分不等式证明中的一种非常重要的方法,往往我们会根据不等式的特点,构造与问题相关的辅助函数,考虑在相同的区间上函数所满足的条件,从而得出欲证明
7 南通大学毕业论文
的结论.在第二部分中我们用辅助函数法对Cauchy-Schwarz不等式进行了证明,下面将对用辅助函数法证明积分不等式进行进一步的探讨.
例3.2.1[5] 设函数fx在区间0,1上连续且单调递减,证明:对a(0,1)时, 有: fxdxaf(x)dx.
00a11x证明:令Fxf(t)dt 0x1,由fx连续,得Fx可导
x0则Fxfxxftdt0xx2 fxxfxfxf , (0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf, 从而Ft0,Fx在(0,1]上单调减少,则对任意a(0,1),有F(a)F(1). 即
a111af(x)dxafxdx. 证毕 a,两边同乘即得f(x)dxfxdx,0000a本题根据积分不等式两边上下限的特点,在区间(0,1)上构造了一个辅助函数,进一步我们可以思考对于一般的情形,该题的结论是否依然成立呢?答案是肯定的. 例3.2.2 设函数fx在区间0,1上连续且单调递减非负,证明:对a,b(0,1),且0ab1时,有: fxdx0aabf(x)dx. ab证明:令FxFx1xf(t)dt,0x1,由fx连续,得Fx可导, 则 x0x0fxxftdtx2 fxxfxfxf , (0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf,从而Ft0,Fx在(0,1]上单调减少,则对任意0ab1,有F(a)F(b),即
1a1b ftdtftdt.
(3.1)
a0b0由f非负,可得fxdxfxdx.
(3.2) 0abb结合(3.1)式和(3.2)式可得 即a1a1bfxdxfxdx. a0ba0abfxdxfxdx.
证毕
babbaa例3.2.3[6] 函数f(x)在[a,b]上连续,且fx0 试证:f(x)dx 8
1dx(ba)2. f(x)南通大学毕业论文
在例3.1中我们给出了本题利用函数的凹凸性证明的过程,在这里我们将给出其利用辅助函数法证明的过程.
证明: 构造辅助函数xftdtaxxadt2xa, 则 ft xfxxaxdt1ftdt2xaftafx
xaxftxfxdtdt2dt
afxaftxfxft2dt0, aftfx
所以x是单调递增的,即ba0,故fxdxabba12dxba. 证毕 fxabbxfxdxfxdx.
2a例3.2.4 设fx在a,b上连续且单调增加,证明:[7]
ba证明: 原不等式即为xfxdx则Fttft1t2a1taftf , a,t.
2abbfxdx0,构造辅助函数 aa2tattFtxfxdxfxdx ,ta,b,
a2atat1fxdxfttaftfxdxa 2 2b因为at,fx单调增加,所以Ft0.故Ft在a,b上单调递增,且Fa0, 所以对x(a,b],有FxFa0.当xb时,Fb0.即
baxfxdxabbfxdx0,故原不等式成立, 证毕 a2通过以上几道题目的观察我们可以发现:
1.当已知被积函数连续时,我们可以把积分的上限或者是下限作为变量,从而构造一个变限积分,然后利用辅助函数的单调性加以证明.
2.辅助函数法实际上是一种将复杂的问题转化为容易解决的问题的方法.在解题时通常表现为不对问题本身求解而是对与问题相关的辅助函数进行求解,从而得出原不等式的结论.
3.3 利用重要积分不等式
在第2部分中我们给出了Cauchy-Schwarz不等式以及它的推广形式的证明过程,实际上Cauchy-Schwarz不等式的应用也很广泛,利用它可以解决一些复杂不等式的证明.在这一小节中我们将通过具体的例子来加以说明它在证明积分不等式中的应用.
9 南通大学毕业论文
例3.3.1[8] 函数fx在0,1上一阶可导,f1f00, 试证明:10112fxdxfxdx.
402证明:由fxftdtf0和fxftdtf10x1x
可得
f2xx0ftdt2xx1112dtf2tdtxf2xdx, (x0,), 0002111112dtf2tdt(1x)f2xdx, (x,1). xx02 f2xxftdt12因此 f2xdx 120112fxdx,
(3.3) 0811
2(3.4) fxdx.8010
112f2xdx将(3.3)式和(3.4)式相加即可以得到f2xdx[2]
112fxdx.
证毕 40b例3.3.2 设fx,gx在a,b上可积且满足:0mfxM,gxdx0,
a则以下两个积分不等式
bafxgxdx2b2f2xdxg2xdxm2bag2xdx及
aaabbb bafxgxdx2MmMmbaaf2xdxg2xdx成立.
ab证明:取hx1,由gxdx0及定理2.2知
babaf2xdxfxgxdxfxdxbagxfxdxfxdx0 gxdxaab2abb0bab bafab2xdxagxdxafxdxagxdxbaafxgxdx22bb2b0.
2因此
bafxgxdx2baf2xdxab1gxdxba2bafxdxgxdx.
(3.5)
2b2a 10 南通大学毕业论文
由mfx可知 bafxdx2b22m2ba,
bb2因而bafxgxdxafxdxagxdxmbaag2xdx.
22MmMm由于0mfxM,因此fx.
22化简得f2xMmMmfx, 两边同时积分得 f2xdxMmbaMmfxdx, aabb22由算数-几何平均值不等式可知
于是2baf2xdxMmbaf2xdxMmba,
abbaabf2xdxbafxdx2Mm4Mm2.
1则ba bafxdxgxdxba2b2abfxdxba2af2xdxbaf2xdxag2xdx
b2Mma4Mmb
(3.6) f2xdxg2xdx.
ab由式(3.5)和式(3.6)可知
bafxgxdx2MmMm2baf2xdxg2xdx.
证毕
ab以上两道题分别利用了Cauchy-Schwarz不等式及其推广形式.我们在证明含有乘积及平方项的积分不等式时应用Cauchy-Schwarz不等式颇为有用,但要注意选取适当的fx与gx,有时还需对积分进行适当的变形.
3.4 利用积分中值定理
积分中值定理展现了将积分转化为函数值,或者是将复杂函数积分转变为简单函数积分的方法.其在应用中最重要的作用就是将积分号去掉或者是将复杂的被积函数转化为相比较而言较为简单的被积函数,从而使得问题能够简化.因此合理的利用积分中值定理能够有效的简化问题.下面将通过两道例题来说明.
定理3.3(积分第一中值定理) 若f(x)在[a,b]上可积且mf(x)M,则存在
11 南通大学毕业论文
u[m,M]使f(x)dxu(ba)成立.特别地,当f(x)在[a,b]上连续,则存在c[a,b],使abbaf(x)dxf(c)(ba)成立.
定理3.4(积分第一中值定理的推广) 若函数fx,gx在区间a,b上可积,fx连续,gx在a,b上不变号,则在积分区间a,b上至少存在一个点,使得下式成立
fxgxdxfgxdx.
aabb定理3.5(积分第二中值定理的推广) 若函数fx,gx在区间a,b上可积,且fx为单调函数,则在积分区间a,b上至少存在一个点,使得下式成立 fxgxdxfagxdxfbgxdx.
aabb例3.4.1 设函数fx在区间0,1上连续单调递减,证明:对a,b(0,1),且0ab1时,有fxdx0aabf(x)dx,其中fx0. ab对于这道题目我们在3.2.2中给出了其利用辅助函数法证明的过程,实际上这道题目还可以用积分第一中值定理来证明,下面我们将给出证明过程.
证明:由积分中值定理知
0afxdxf1a, 10,a; fxdxf2ba,2a,b;
ab因为12,且fx递减,所以有f1f2, 1a1b1bfxdxfxdxfxdx, 0aaababaab故 fxdxfxdx. 证毕
0ba即
例3.4.2 设fx在a,b上连续且单调增加,证明:baabbxfxdxfxdx.
2a同样地,在之前的证明中我们给出了此题利用辅助函数法证明的过程,仔细分析观察这道题目我们还可以发现它可以用积分第
一、第二中值定理的推广形式来证明,接着我们将给出此题在这两种方法下的证明过程.
证法一
bababab2证明: xxfxdxxfxdxabfxdx. aa2222bab 12 南通大学毕业论文
abab由定理3.4可知,分别存在1a,,,b, 222使得 ab2aabab2xfxdxfx1adx, 22abbabab abxfxdxfx2abdx, 2222 babab因此xfxdxa28b2ff,由于fx在0,1单调增加的,且
210121,所以有 f2f10.
ab从而xfxdx0,故原不等式成立, 证毕 a2b证法二
证明:由定理3.5可知:存在a,b,
bababab使得 xfaxdxfbxfxdxdx aa222b fafbab.
由fx单调增加及a,b知fafb0,a0,b0.
bab可得xfxdx0,故原不等式成立, 证毕 a2通过上述两道题目我们可以了解到积分中值定理在实际应用中起到的重要作用就是能够使积分号去掉,或者是将复杂的被积函数转化为相对而言较简单的被积函数,从而使问题得到简化.因此,对于证明有关结论中包含有某个函数积分的不等式,或者是要证明的结论中含有定积分的,可以考虑采用积分中值定理,从而去掉积分号,或者化简被积函数.
3.5 利用积分的性质
关于积分的性质在高等数学的学习中我们已经学到了很多,我们可以利用它来证明许多问题.在这里我们主要利用定积分的比较定理和绝对值不等式等性质对问题进行分析处理.
例3.5.1[9] 设fx在0,1上导数连续,试证:x0,1,
13 南通大学毕业论文
有 fxfxfxdx. 0证明:由条件知fx在0,1上连续,则必有最小值, 1即存在x00,1,fx0fx, 由ftdtfxfx0fxfx0ftdt, x0x0xx fxfx0ftdtfx0x0xxx0ftdtfx0ftdt
0101 fx0dt0110ftdtftdt01ftftftdtdt 0
1fxfxdx.故原不等式成立, 证毕
013.6 利用泰勒公式
在现代数学中泰勒公式有着重要的地位,它在不等式的证明、求极限以及求高阶导数在某些点的数值等方面有着重要的作用.关于泰勒公式的应用已经有很多专家学者对其进行了深入的研究,下面我们将举例说明利用泰勒公式也是证明积分不等式的一种重要方法.
定理3.6(带有拉格朗日型余项的Taylor公式) 设函数f(x)在点x0处的某邻域内具有n1阶连续导数,则对该邻域内异于x0的任意点x,在x0与x之间至少存在一点,使得:
f(x0)fn(x0)2f(x)f(x0)f(x0)(xx0)(xx0)(xx0)nRn(x)
(1)
2!n!f(n1)()其中Rn(x)(xx0)n1(在x与x0之间)称为拉格朗日型余项,(1)式称为泰勒公(n1)!式.
例3.6.1[10] 设fx在a,b上有二阶连续导数,fafb0,Mmaxfx,
xa,b试证明:fxdxabba123M.
证明:对xa,b,由泰勒公式得
f
fafxfbfxf1xax21xbx2faxa,x, , 2fbxx,b, , 2ab122, 两式相加得 fxfxxfaxfbx24 14 南通大学毕业论文
两边积分得 fxdxabbaab1b22dx, fxxdxfaxfbxa24bbbabab其中 fxxdxxdfxfxdx, aaa22于是有 fxdx故 ba1b22dx, faxfbxaa8Mb22dxMba3. 证毕 fxdxaxbx8a12b例3.6.2[6] 设fx在a,b上有二阶导数,且fx0,
ab求证 fxdxbaf. a2b证明:将fx在x0ab处作泰勒展开得到 22ab1abababab, fxffxfxx,.
222222
ababab因为fx0,所以可以得到 fxffx,
222babababb对不等式两边同时积分得到 fxdxfbafxadx. a222bab因为xdx0, 所以有afxdxbaa2babf. 证毕
2通过这两道题目我们大致可以了解到当题目中出现被积函数在积分区间上有意义且有二阶及二阶以上连续导数时,是提示我们用泰勒公式证明的最明显的特征.一般情况下我们选定一个点xo,并写出fx在这个点xo处的展开公式,然后进行适当的放缩或与介值定理相结合来解决问题.
3.7 利用重积分
在一些积分不等式的证明中,由于被积函数的不确定,从而我们不能求出其具体的数值,这时我们可以将定积分转换为二重积分再利用其性质来求解.以下列举了3种利用重积分来证明积分不等式的方法,这种技巧在高等数学中虽然不常见,但却是很重要的,下面我们将通过3道例题来进一步说明.
15 南通大学毕业论文
3.7.1 直接增元法
命题一[11]:若在区间[a,b]上f(x)g(x),则f(x)dxg(x)dx.
aa
bb例3.7.1[11] 设f(x),g(x)在[a,b]上连续,且满足:
xaf(t)dtg(t)dt,x[a,b],af(t)dtag(t)dt,证明:axf(x)dxaxg(x)dx.
axbbbb证明:由题得f(t)dtg(t)dt, aaxx从而可以得到dxf(t)dtdxg(t)dt,即dx[f(t)g(t)]dt0.
aaaaaabxbxbx左式dx[f(t)g(t)]dt [f(t)g(t)]dxdt (其中D{(x,t)|axb,atx}) aaDbx dt[f(t)g(t)]dx (bt)[f(t)g(t)]dt
atabbb b[f(t)dtg(t)dt][tf(t)dttg(t)dt][tf(t)dttg(t)dt]0.
aaaaaabbbbaaaabbbbbb则 tf(t)dttg(t)dt0 , 即xf(x)dxxg(x)dx. 证毕
在本题中我们将一元积分不等式f(x)dxg(x)dx的两边同时增加一个积分变量
aaxxbadx,使得一元积分不等式化为二元积分不等式,然后巧妙的运用转换积分变量顺序的方法达到证明一元积分不等式的方法. 3.7.2 转换法
在利用重积分来证明积分不等式的时候,我们不但可以采用直接增元法,还可以采用转换法.关于转换法又分为将累次积分转换为重积分,以及将常数转换为重积分这两种形式.下面我们将依次来介绍这两种方法. 1.将累次积分转为重积分
命题二[11] 若f(x)在[a,b]上可积,g(y)在[c,d]上可积,则二元函数f(x)g(y)在平面区域D{(x,y)|axb,cyd}上可积,且
Df(x)g(y)dxdyf(x)dxg(y)dyf(x)dxg(x)dx.
acacbdbd其中D{(x,y)|axb,cyd}
例3.7.2[11] 设p(x),f(x),g(x)是[a,b]上的连续函数,在[a,b]上,p(x)0,f(x),g(x)为单调递增函数,试证:
16 南通大学毕业论文
babap(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx.
aaabbbaaabbb
证明:由p(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx可知:
babap(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx0,
aaabbaabbb令Ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx, ab下证I0;
Ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx
aaaabbbb
同理
p(x)dxp(y)f(y)g(y)dyp(x)f(x)dxp(y)g(y)dy
aaaabbbbbabbabp(x)p(y)f(y)g(y)dxdybabap(x)f(x)p(y)gydxdy
aap(x)p(y)g(y)[f(y)f(x)]dxdy.
(3.7) bbbIp(x)dxaabab(p)x(f)x(g)xdxab(p)x(f)xdx()pxgxdx
a
p(y)dybbap()xf()xg()xdxab(p)y(f)ydy(p) xgxdxab p(y)p(x)g(x)[f(x)f(y)]dxdy.
(3.8) aa
(3.7)(3.8) 得
2Ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy, 因为f(x),g(x)同为单调增函数,所以[g(y)g(x)][f(y)f(x)]0 又因为p(x)0,p(y)0,故 2Ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy0,即I0.
证毕
2.将常数转换为重积分的形式
在例3.7.2中我们介绍了将累次积分转换为重积分,在下面的例3.7.3中我们将对常数转换为重积分来进行说明.我们可以发现有这样一个命题,若在二重积分中被积函数f(x,y)k,则可得到kdk(ba)2,其中D{(x,y)|axb,ayb}.
D例3.7.3函数f(x)在[a,b]上连续,且fx0试证:f(x)dx
abba1dx(ba)2. f(x)本题与前面的例3.1以及例3.2.3是同一道题目,在这里我们将利用重积分证明此题. 证明:原题即为 f(x)dxabba1dyd, f(y)D 17 南通大学毕业论文
移项可得(Df(x)1)d0, f(y) 2(Df(x)f(x)f(y)1)d(1)d(1)d0, f(y)f(y)f(x)DDf(x)f(y)f(x)f(y)2)d0,因为f(x)0,f(y)0,所以20. f(y)f(x)f(y)f(x)所以即为证(D故 (Dbbf(x)f(y)12)d0 恒成立,即f(x)dxdx(ba)2成立, 证毕
aaf(x)f(y)f(x)通过以上三道例题我们可以大致了解到,在这一类定积分不等式的证明过程中我们一般先将所要证明的不等式转化为二次积分的形式,进一步再转换为二重积分,最后利用二重积分的性质或其计算方法得出结论.这种方法克服了数学解题过程中的高维数转化为低维数的思维定势,丰富了将二重积分与定积分之间互化的数学思想方法.
3.8 利用微分中值定理
微分中值定理是数学分析中的重要的一个基本定理,它是指罗尔中值定理、拉格朗日中值定理、柯西中值定理以及泰勒中值定理这四种定理.关于微分中值定理的应用也是很广泛的,证明不等式是微分中值定理最基本的应用之一.在这里我们将对利用柯西中值定理及拉格朗日中值定理证明积分不等式进行研究.下面将通过两个例子来具体说明这两个定理在证明积分不等式中的应用,以及不同的微分中值定理在证明不等式时的区别.
例3.8.1[12] 设fa0,fx在区间a,b上的导数连续,证明:
2baa1bfxdx1maxfx. x2a,b证明:应用Lagrange中值定理,a,x,其中axb,使得
fxfafxa, 因为fa0, 所以fxMxa, Mmaxfx,
xa,b从a到b积分得
a bfxdxMbaM2bxadxMxadxx2
aa2bM1122bamaxfxba.即222babafxdx1maxfx. 证毕 x2a,b 18 南通大学毕业论文
例3.8.2[13] 设函数fx在0,1上可微,且当x0,1时,0fx1,f00试证:
fxdxf121003xdx.
证明:令Fxx0ftdt,Gxf3tdt,
02xFx,Gx在0,1上满足柯西中值定理,则
fxdx10210f03xdxF1F0FG1G0G02fftdt0f32ftdt0f2 01
2ftdtftdtf2f0202f11 , 01.
2fff所以 10fxdx2f2xdx.
证毕
01通过以上两道题目可以发现:
1.在应用Lagrange中值定理时先要找出符合条件的函数fx,并确定fx在使用该定理的区间a,b,对fx在区间a,b上使用该定理.若遇到不能用该定理直接证明的,则从结论出发,观察并分析其特征,构造符合条件的辅助函数之后再应用Lagrange中值定理.
2.在研究两个函数的变量关系时可以应用Cauchy中值定理,在应用该定理证明不等式时关键是要对结果进行分析,找出满足Cauchy中值定理的两个函数fx,gx,并确定它们应用柯西中值定理的区间a,b,然后在对fx,gx在区间a,b上运用Cauchy中值定理.
无论是Cauchy中值定理还是Lagrange中值定理在积分不等式的证明中都各具特色,都为解题提供了有力的工具.总之在证明不等式时需要对结论认真的观察有时还需要进行适当的变形,才能构造能够应用中值定理证明的辅助函数,进而利用微分中值定理证明不等式.
19 南通大学毕业论文
4.总
结
我们通过查阅有关积分不等式的文献和资料,并对其中的相关内容进行对比和分析后,将有关的内容加以整理并扩充形成了本文.在论文中给出了两个重要的积分不等式的证明以及总结了八种积分不等式的证明方法.然而由于自己的参考资料面不够广,参考的大多数文献都是仅给出了例题及其证明方法,而并没有给出进一步的分析,同时自己的知识面较窄,能力有限,导致还有很多难度较大的问题尚未解决.例如,在实际的问题中,还有一些证明方法是我们所不知道的,并且还有一些不等式并不能用本文所给出的八种方法来证明,这就需要我们进一步的思考与研究.今后我们应该更多的参考其他资料,充分拓展思路,以便于提出新的观点.
20 南通大学毕业论文
参考文献
[1]王宇,代翠玲,江宜华.一个重要积分不等式的证明、推广及应用[J].荆州师范学院学报(自然科学 版),2000,23(5):106 [2] 张盈.Cauchy-Schwarz不等式的证明、推广及应用[J].高师理科学刊,2014,34(3):34-37 [3] 黄群宾.积分不等式的证明[J].川北教育学院学报,1996,6(4):22-27 [4] 李志飞.积分不等式的证明[J].高等数学研究,2014,17(6):50-51 [5]郝涌,王娜,王霞,郭淑利.数学分析选讲[M].北京:国防工业出版社,2014 [6]张瑞,蒋珍.定积分不等式证明方法的研究[J].河南教育学院学报(自然科学版),2011,20(2):18 [7]林忠.一个积分不等式的几种证明方法[J].成都教育学院学报,2006,20(12):66 [8]刘法贵.证明积分不等式的几种方法[J].高等数学研究,2008,11(1):122 [9] 苏德矿,李铮,铁军.数学强化复习全书[M].北京:中国证法大学出版社,2015 [10] 李小平,赵旭波.定积分不等式几种典型证法[J].高等数学研究,2009,12(6):13-17 [11] 黄云美.重积分在积分不等式证明中的应用[J].杨凌职业技术学院学报,2014,13(3):27-33 [12] 葛亚平.积分不等式证明的再认识[J].河南教育学院学报(自然科学版),2015,24(3):18-20 [13] 王丽颖,张芳,吴树良.积分不等式的证法[J].白城师范学院学报,2007,21(3): 19-22
21 南通大学毕业论文
22
相关文章:
基本不等式的证明方法01-09
不等式证明的基本方法01-09
不等式证明的常见方法01-09
数列不等式证明方法01-09
企业英语培训简析01-09
不等式的几种证明方法01-09
不等式的构造证明方法01-09
2017不等式的证明方法教案01-09
不等式的证明方法论文01-09
不等式证明方法研究01-09