关键词:
圆柱与圆锥奥数提高题(精选3篇)
篇1:圆柱与圆锥奥数提高题
六年奥数综合练习题
(二)一、有一个圆柱形面包,要切一刀把它分成两块,截面会是什么形状的图形?
二、用铁皮做一个如图所示的工件(单位:厘米),需用铁皮多少平方厘米?
三、一个圆锥的底面周长是18.84厘米,高是4厘米。从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?
1)切开后 表面积增加了2个三角形截面 截面底边长为底面直径,高为圆锥高
则 底面直径=18.84/3.14=6分米
半径为6/2=3分米 则高=(25/2)*2/6=25/6分米
则体积=3.14*3*3*(25/6)/3=39.25立方分米
四、在一个边长为4厘米的正方体的前后、上下、左右面的中心位置挖去一个底面半径为1厘米,高为1厘米的圆柱,求挖去后物体的表面积。正方体原来的表面积为
4*4*6=96平方厘米 挖去圆柱后 增加6个圆柱的侧面积,则 圆柱侧面积=3.14*1*2*1=6.28平方厘米
最后为
96+6.28*6=133.68平方厘米五、一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积增加25.12平方厘米,求原来圆柱的表面积是多少平方厘米?
六、七、把一个横截面是正方形的长方体木料切削成一个最大的圆柱体,此圆柱的表面积是32.97平方厘米,底面直径与高的比是1:3,原长方体的表面积是多少平方厘米?
八、如图,在一个底面积为324平方厘米的正方体铸铁中,以相对的两面为底,挖出一个最大的圆柱,然后在剩下的铸铁表面涂上油漆,求涂油漆的面积是多少?
九、图中是个柱体,高30厘米,底面是一个半径10厘米,圆心为270°的扇形,求这个柱体的表面积和体积。
十、如图上半部是个半圆柱,下半部是一个长方体,它的表面积是多少平方厘米?
十一、如图在一个圆柱上挖了一个边长为2厘米的方形的孔,现在这个物体的表面积是多少平方厘米?
十一、如图是一个半径为4厘米,高为4厘米的圆柱,在它的中间依次向下挖去半径分别为3厘米,2厘米,1厘米,高分别为2厘米,1厘米,0.5厘米的圆柱,最后得的立体图形表面积是多少平方厘米?
十二、如图一块长方体铁皮,利用图中的阴影部分刚好能做成一个圆柱形油桶(接头处忽略不计),求这个油桶的容积?
16.56厘米
大长方形的长是16.56,由小长方形的长a加上圆的直径d得到,小长方形的宽b等于两个等圆直径之和,也就是2d, 小长方形是圆柱侧面展开图,所以其一边长应等于圆周长πd=3.14d, b=2d,所以b是高h,a=3.14d, a+d=16.56,3.14d+d=16.56,d=4cm,r=d/2=2cm h=b=2d=8cm,因此圆柱体积是V=πr^2*h=3.14*4*8=100.48cm^3 由于没有说铁皮厚度,所以油桶的容积就是圆柱体积。
设圆柱的直径为a厘米,则阴影长方形的长为3.14a,大长方形长为3.14a+a=16.56,则a=4 圆柱体积=()2×3.14×8=100.48(立方厘米)十三、一个圆柱体木块切成四块(如图一),表面积增48平方厘米;切成三块(如图二)表面积增加50.24平方厘米;削成一个最大的圆锥体(如图三),体积减少了多少立方厘米?
十四、有一饮料瓶的瓶身如图所示,容积是3立方分米。现在它里面装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米,问瓶内现有饮料多少立方分米?
装有饮料
=3×【20÷(20+5)】 =3×5分之4 =5分之12 =2.4升
3升=3000毫升=3000立方厘米,饮料瓶的底面积:
3000÷(20+5)=120(平方厘米); 瓶内现有饮料:
120×20=2400(立方厘米)=2.4(升). 答:瓶内现有饮料2.4升.
十五、直角三角形,直角边分别为4厘米,3厘米,以一条直角边为轴旋转,得到一个圆锥,体积最大是多少? 十六、一张长方形纸,长为18.84厘米,宽为6.28厘米,把它卷成圆柱体,(不许剪裁,接头处忽略不计),体积最大是多少?
篇2:圆柱与圆锥奥数提高题
古希腊的几何学家对圆、球、柱、锥进行研究, 而且还对其他的多种曲线如椭圆、抛物线、双曲线等等的性质进行研究, 获得杰出的成果。[1]这三类曲线统称为圆锥曲线, 是数学研究的重要对象。小学生认识圆柱与圆锥, 学习相关的测量, 为进一步研究圆锥曲线的性质打下基础。下面从概念引入、转化方法与学生理解三个方面, 讨论教材的设计, 比较不同教材的编排方式, 分析学生的理解与掌握情况。
一、概念的引入:分类与抽象
不同教材引入圆柱与圆锥的方式大致可以分成两类:一类是从图形的分类中引入, 一类是从实物的抽象中引入。
从分类中引入。教材提供众多的直柱体与正锥体, 让学生按一定的标准进行分类, 在分类的活动中认识圆柱与圆锥区别于其他柱体与锥体的特征。如韩国2006年修订的《数学课程标准》, 在小学六年级图形的教学内容中, 安排了角柱 (棱柱, 下同) 与角锥 (棱锥, 下同) 的性质、圆柱与圆锥的性质, [2]在认识棱柱与棱锥的基础上学习圆柱与圆锥。台湾版《国民小学数学课本》第十一册 (南一书局企业股份有限公司, 2002年8月版) , 以“角柱与角锥”为单元标题, 先是提供了各种各样的直棱柱与正棱锥, 按照是否有尖顶分成柱体和锥体, 再根据底面形状把柱体分成圆柱与角柱。如下图:
无论是研究问题还是认识图形, 分类都是重要的。通过以上两级分类, 学生可以把柱体与锥体、圆柱与棱柱清晰地区分开来。认识图形不仅仅是为了让学生知道哪一种图形叫什么名字, 学会区别图形, 更重要的是让学生学会对图形分类, 认识某种具体图形的教学只是个案, 只有让学生理解图形的分类才使教学具有一般性。[3]分类的核心是建立分类的标准, 只有那些可以作为分类标准的性质才是图形的重要特征。在分类的过程中, 既要关注图形的共性, 也要关注图形的差异, 而共性和差异都是抽象的结果, 是抽象的具体体现。[4]因此, 分类不仅是学生认识图形的手段, 也是培养学生抽象能力的途径。
从抽象中引入。从实物图形中抽象出几何体, 也是认识几何图形的重要方法。这个抽象的过程, 舍弃了图形的颜色、材质等物理属性, 只保留空间、大小、位置等数学属性。国内的教材大多采用这种方式来引入圆柱与圆锥。如人教版教材 (下左图) 与北京版教材 (下右图) :
不过, 抽象似乎并没有确切的定义, 从实物图抽象到几何图, 究竟哪些属性应当保持不变, 不同教材其处理的方式也有差异。以上两个版本的教材, 实物图与几何图形的大小是一致的, 或者说抽象前后基本保持1 ∶ 1的大小比例关系。以前的教材似乎并不注意这一点。如下图:
笔者的理解是数学中的抽象也是分层次的。如果从不同大小的实物图形中抽象出一个几何图形, 属于比较高层次的抽象, 这时抽象得到的几何图形具有“类”的特征。换句话说, 从大小不同的实物中抽象得到的几何图形, 只是数学研究的对象, 在现实世界中并不真实存在。
二、转化的方法:立体与平面
认识立体图形的基本思路是转化为平面图形。我国《义务教育数学课程标准 (2011年版) 》要求:通过观察、操作, 认识圆柱与圆锥, 认识圆柱的展开图。[5]这些观察、操作的活动主要是图形的观察比较, 图形的展开折叠, 平面图形的旋转, 立体图形的截面, 等等。从教材的呈现上看, 包括看一看、比一比、转一转、做一做、截一截。
看一看。观察是认识图形最重要也是最基本的方法。如下图人教版教材:
学生在认识图形的过程中, 积累了许多观察图形的经验, 比如分析平面直线图形可以观察它的边与角, 分析长方体可以观察棱和面的大小与位置关系, 这些经验不容易直接迁移到认识圆柱的活动中来, 教材需要设计更加直观与丰富的活动。
比一比。圆柱与圆锥联系密切, 同底等高的圆柱体与圆锥体的体积存在确定的倍数关系。通过对这两类立体图形进行比较, 学生容易找到它们的相同点与不同点。北师大版教材把认识圆柱与圆锥安排在同一课时, 使比较成为认识图形的现实途径。如下图:
转一转。由平面图形旋转得到立体图形, 这是旋转体独有的特征, 这种特征体现了平面与立体的奇妙关系, 也为学生认识立体图形的特征提供了新的视角。许多教材都安排了将平面图形进行旋转的活动, 浙教版教材在要求学生观察想象的同时, 还要进一步思考平面图形的边长与立体图形底面半径的关系。如下图:
做一做。把立体图形转化为平面图形进行研究, 比较直观的方式就是展开与折叠。人教版教材在学生初步认识圆柱的特征之后, 通过展开与折叠的活动, 发现立体图形的组成元素与平面展开图之间的关系, 为学习表面积计算打下基础。如下图:
截一截。用一个平面去截立体图形, 也是认识立体图形性质的一种途径。如下图北师大版教材:
朗文出版社出版的《小学数学》, 在6A学段呈现了丰富多样的圆柱或圆锥截面。如下图:
对于圆柱, 用一个垂直于旋转轴的平面去切割, 所得的截痕是一个圆, 如果割面和转轴不垂直, 则截痕是一个椭圆。对于圆锥, 用一个垂直于旋转轴的平面去切割, 所得的截痕也是一个圆, 如果割面和转轴不垂直, 则截痕是椭圆、抛物线或双曲线。
三、学生的理解:特征与反例
为了解学生对圆柱特征的理解水平, 笔者对浙江省某城镇小学六年级两个班的113名学生进行了测查。教学使用北师大版教材, 两个班由同一个教师执教。测查安排在上完“面的旋转”这节新课之后进行, 时间20分钟。测查题目为北师大版教材第4页的一道练习题, 如下图:
测查的问题是:上面的图形哪些是圆柱体, 哪些不是?想一想圆柱有什么特点, 用自己的话写下来。
主要从两个方面进行分析:一是学生对图形特征的描述是否完备?二是反例是否支持学生改善特征描述?
圆柱的组成元素包括底面、侧面、高等, 这些元素包括形状、大小、空间关系。这项研究主要考查学生从哪些角度描述圆柱特征, 研究的方法是对学生描述的特征进行归类分析。主要包括: (1) 底面是形状一样、大小相同的圆; (2) 侧面是曲面, 展开是长方形; (3) 有无数条高, 这些高都相等; (4) 由长方形旋转得到, 是圆平移的轨迹。结果如下:
可见, 对于底面的特征学生比较容易把握, 而对于圆柱的动态形成过程印象并不深刻。其中, 特征描述中包含 (1) (2) (3) 这三项的有34人, 占30.1%。可以这样说, 这部分学生对于圆柱特征的描述比较完备。或者说, 与那些“顾此失彼” (只描述一项或两项) 的描述相比, 约1/3的学生对圆柱特征的描述比较完备, 可以理解为他们对图形特征的掌握比较好。
正例与反例对于概念学习有各自不同的价值, 正例用于概括, 反例推动反思。调查时先让学生独立写下圆柱的特征, 然后提示学生:再想一想, 你写的话有没有把上面不是圆柱的例子排除在外, 如果没有排除外, 应当怎样修改你写的话。对113名学生进行分析, 描述中包含了许多错误或不够清晰、严谨的地方, 但在教师提示学生对照反例后, 对描述作了修改的有23人, 占20.4%。这样看来, 反例对学生改善图形特征的描述所起的作用比较小, 这是在教学时需要引起注意的地方。
“透过现象看本质”是一句至理名言, 它对数学概念教学也有启示意义。教材提供的实物或几何图形, 各种属性是混杂在一起的, 它是“现象”。抽象、分类、转化与概括正例、思考反例, 这些活动就像一个个筛子, 把本质属性与非本质属性分离开来, 帮助学生“看透”概念的本质, 形成对图形特征的理解。
参考文献
[1]项武义著.几何学的源起与演进[M].北京:科学出版社, 1983:130~131.
[2]曹一鸣主编.十三国数学课程标准评介[M].北京:北京师范大学出版社, 2012:224.
[3][4]史宁中著.小学数学教学中的核心问题——基本概念与运算法则[M].北京:高等教育出版社, 2013:57.
篇3:圆柱与圆锥易错点的纠正策略
一、问题的提出
每当学到圆柱与圆锥这一单元时,学生就会出现各种问题,而且测试成绩往往不够理想。虽然很多人认为圆柱与圆锥这一单元结合实际演示与操作,应该比较容易理解,但是从理解到综合应用还有很多路要走。根据多年的教学经验,特总结出本单元八个易错点:(1)计算始终是学生的弱点,特别是本单元有“3.14”参与的大量小数计算。(2)圆柱侧面积与体积公式混淆。(3)圆柱与圆锥的三种关系混淆。(4)圆锥体积公式及逆运算不易理解(漏掉三分之一)。(5)圆柱表面积计算(有盖无盖的区分)。(6)圆柱底面积、侧面积、表面积与体积的区分。(7)单位转化问题。(8)等积变形问题。
二、解决的办法
1.在上个学期学习圆的周长和面积的时候,就让学生在反复的计算中记住3.14乘某个数字所得的得数。这一点在学习圆柱和圆锥时尤为重要,并且每天坚持做一些类似于:3.14×1.5,3.14×2.52,3.14×25×40的题目,提高学生的计算能力,让学生熟能生巧。
2.结合实际操作帮学生区分圆柱的侧面积与体积公式。圆柱侧面积公式演示:让学生想象手里拿着一个圆柱,然后用食指尖绕圆柱底面一周,再做火箭发射状,表示底面周长乘高。圆柱体积公式演示:让学生用手面做出摸圆柱底面状再做火箭发射的动作,表示用底面积乘高。
3.数形结合解决圆柱与圆锥的三种关系问题。
(1)等底等体积:因为等底,所以圆锥要想和圆柱等体积,就不能长胖,只能长高,让学生想象在等底等高的基础上,圆锥像竹笋一样“长高”到原来的三倍。 (2)等高等体积:因为等高,所以圆锥要想和圆柱等体积不能长高,只能长胖,让学生想象在等底等高的基础上,圆锥底面积“长胖”到原来的三倍。
4.学生在初步计算圆锥体积时,应严格按照先写公式,后列式的格式书写,而且列式时一定要按照公式的顺序,即先写三分之一,再写乘底面积,最后写乘高,避免学生漏乘三分之一。在已知圆锥体积求高时,一定让学生先写出原来的公式,看着原来的体积公式进行逆运算,即用体积先乘三再除以底面积。
5.应多出一些综合性的题目,提高学生对圆柱不同知识点的区分运用能力。如,一个圆柱形铁皮盒有盖,底面半径2分米,高5分米。
(1)如果在盒子侧面贴一圈商标纸,至少需多少纸?(求侧面积) (2)某工厂要做1000个这样的盒子,至少需多少铁皮?(求表面积) (3)如果用一个铁皮盒装水,最多能装多少毫升?(求体积)
6.多练习上题中第三小题这样的问题,让学生养成做题前先检查单位是否统一的习惯。
7.借助橡皮泥帮助学生理解等积变形问题。先让学生捏出圆柱的形状并测量底面直径和高求出体积,再把刚才的圆柱捏成圆锥,测量底面直径和高求出体积,比较圆柱和圆锥的体积是否相等。在做此练习时,可以顺便复习圆柱与圆锥的三种关系问题。
三、取得的效果
通过有针对性的设计与练习,突破了圆柱与圆锥的难点问题,较好地纠正了学生的易错点,学生计算能力不断提高,综合应用知识的能力显著增强。
相关文章:
奥数教学反思01-06
小学高年级奥数学习方法01-06
一年级奥数学习方法01-06
四年级奥数 奇数与偶数(教师用含答案)01-06
奥数试题01-06
日常生活安全知识标语01-06
安全宣传标语60字01-06
防溺水安全的宣传标语(50句)01-06
安全消防宣传知识标语01-06
三年级奥数精讲与测试01-06