安全生产评估方法

关键词: 评价

安全生产评估方法(通用6篇)

篇1:安全生产评估方法

区域消防安全评估方法

一、评估目的

对区域进行火灾风险评估,是分析区域消防安全状况、查找当前消防工作薄弱环节的有效手段。根据不同的火灾风险级别,部署相应的消防救援力量,建设消防基础设施,使公众和消防员的生命、财产的预期风险水平与消防安全设施以及火灾和其他应急救援力量的种类和部署达到最佳平衡,为今后一段时期政府明确消防工作发展方向、指导消防事业发展规划提供参考依据。

二、评估原则

(一)系统性原则

评估指标应当构成一个完整的体系,即全面地反映所需评价对象的各个方面。为此应按照安全系统原理来建立指标体系。该指标体系由几个子系统构成,且呈一定的层次结构,每个子系统又可以单独作为一个有机的整体。区域火灾风险评估指标体系应力求系统化、理论化、科学化,所包含的内容力求广泛,应能涉及到影响区域火灾的各个因素,既包括内部因素,也包括外部因素,还包括管理因素。

(二)实用性原则

评估指标必须与评价目的和目标密切相关。开展区域火灾风险评估指标体系的研究,是为了更好地用于指导防火实践,是为实践需求服务的。因此,它既是一个理论问题,又必需时刻把握其实用性。

(三)可操作性原则

构建区域火灾风险评估指标体系要有科学的依据和方法,要充分收集资料,并运用科学的研究手段。评估指标体系应具有明确的层次结构,每一个子指标体系应相对独立,建立评估指标体系时需注意风险分级的明确性,以便于操作。

三、评估内容

(一)分析区域范围内可能存在的火灾危险源,合理划分评估单元,建立全面的评估指标体系;

(二)对评估单元进行定性及定量分级,并结合专家意见建立权重系统;

(三)对区域的火灾风险做出客观公正的评估结论;

(四)提出合理可行的消防安全对策及规划建议。

四、评估范围

整个区域范围内存在火灾危险的社会面、建筑群和交通路网。

五、评估流程

区域火灾风险评估可按照以下六个步骤来进行。

(一)信息采集

在明确火灾风险评估的目的和内容基础上,收集所需的各种资料,重点收集与区域安全相关的信息,可包括:评估区域内人口、经济、交通等概况、区域内消防重点单位情况、周边环境情况、市政消防设施相关资料、火灾事故应急救援预案、消防安全规章制度等。

(二)风险识别

火灾风险源是指能够对目标对象的评估结果产生影响的所有来源。通过资料分析和现场勘察,查找评估对象的火灾风险来源,确定其存在的部位、方式以及发生作用的途径和变化规律。然后,根据所采集的信息,分析与区域火灾风险相关的各种影响因素。火灾风险源一般分为客观因素和人为因素两类。

1.客观因素

1)气象因素引起火灾

火灾的起数与气象条件密切相关,影响火灾的气象因素主要有大风、降水、高温以及雷击。

(1)大风。大风是影响火灾发生的重要因素。大风不但可能吹倒建筑物、刮倒电线杆或者吹断电线,引起火灾,而且它还可作为火的传播媒介,导致火场扩大,或产生新的火源,造成异地火灾。此外,大风也是助长火势蔓延的一个重要因素。

(2)降水。降水对火灾的影响作用可以分为两个方面。一方面,降水增加了可燃物的含水量,潮湿的可燃物遇火不易燃烧,火势也不易蔓延,所以降水是火灾发生、蔓延的抑制因素。另一方面,降水大小对自燃物质也有显著的影响。由于降水增加了空气湿度,使自燃物质的湿度加大,一定的水分能起到催化剂的作用,可加速自燃物质的氧化而引发自燃。同时,如果出现暴雨,由于暴雨具有突发性、来势猛、强度大及局地性强的特点,会在短时间内积聚大量的雨水,在排水不畅时,可能造成局部积水,严重时甚至会形成局部洪涝,使电气线路和设备短路,引起火灾。

(3)高温。在高温环境下,生产生活用电负荷将增大,使电气线路处于满负载状态,加速了电气线路的老化。同时,对于存在自燃起火危险的物品,高温环境将有利于其自然氧化。气象上把最气温高于35℃定义为高温天气;把日平均气温高于30℃(或日最低气温高于25℃)定义为高温闷热天气。

(4)雷电。在雷雨天气中,如果建筑物防雷击设施不够齐备,在受到雷击时,电气线路容易发生故障、出现燃烧,或者建筑物内部电器设备受到雷的直击发生爆炸,引起火灾。严重时可能直接击中人体,造成人员伤亡。

2)电气引起火灾

在全国的火灾统计中,由各种诱因引发的电气火灾,一直居于各类火灾原因的首位。根据以往对电气火灾成因的分析,电气火灾原因主要有以下几种:

(1)接头接触不良导致电阻增大,发热起火;

(2)可燃油浸变压器油温过高导致起火;

(3)高压开关的油断路器中由于油量过高或过低引起气体爆炸起火;

(4)熔断器熔体熔断时产生电火花,引燃周围可燃物;

(5)使用电加热装置时,不慎放入高温时易爆物品导致爆炸起火;

(6)机械撞击损坏线路导致漏电起火;(7)设备过载导致线路温度升高,在线路散热条件不好时,经过长时间的过热,导致电缆起火或引燃周围可燃物;

(8)照明灯具的内部漏电或发热引起燃烧或引燃周围可燃物。

3)易燃易爆物品引起火灾

爆炸一般是由易燃易爆物品引起。可燃液体的燃烧实际上是可燃液体蒸气的燃烧。柴油属于丙类火灾危险性可燃液体,其闪点为60-120℃,爆炸极限为1.5%~6.5%。柴油的电阻率较大,易于积聚静电。柴油的爆炸可分为物理爆炸和化学爆炸。如果存放柴油的油箱过满,没有预留一定的空间,则在高温环境下,柴油受热鼓胀发生爆炸。另外,如果油箱密封不严,造成存放的柴油泄漏挥发,或油箱内的柴油蒸气向外挥发,在储油间内的柴油蒸气达到其爆炸极限的情况下,遇到明火、静电或金属撞击形成的火花时,都会产生爆炸。

2.人为因素

1)用火不慎引起火灾 用火不慎主要发生在居民住宅中,主要表现为:用易燃液体引火;用液化气、煤气等气体燃料时,因各种原因造成气体泄漏,在房内形成可燃性混合气体,遇明火产生爆炸起火;家庭炒菜时油锅过热起火;未完全熄灭的燃料灰随意倾倒引燃其他可燃物;夏季驱蚊,蚊香摆放不当或点火生烟时无人看管;停电使用明火照明,不慎靠近可燃物,引起火灾;烟囱积油高温起火。

2)不安全吸烟引起火灾 吸烟人员常常会出现随便乱扔烟蒂、无意落下烟灰、忘记熄灭烟蒂等不良吸烟行为,一部分可能会导致火灾。由香烟引起的火灾,以引燃固体可燃物,尤其是引燃床上用品、衣服织物、室内装璜、家具摆设等居多。据美国加利福尼亚消防部门试验,烧着的烟头的温度范围从288℃(不吸时香烟表面的温度)到732℃(吸烟时香烟中心的温度)。有的资料还介绍,一支香烟停放在一个平面上可连续点燃24分钟。炽热的香烟温度,从理论上讲足以引燃大多数可燃固体以及易燃液体和气体。

3)人为纵火

(三)评估指标体系建立

在火灾风险源识别的基础上,进一步分析影响因素及其相互关系,选择出主要因素,忽略次要因素,然后对各影响因素按照不同的层次进行分类,形成不同层次的评估指标体系。区域火灾风险评估,一般分为二层或三层,每个层次的单元根据需要进一步划分为若干因素,再从火灾发生可能性和火灾危害等方面来分析各因素的火灾危险度,各个组成因素的危险度是进行系统危险分析的基础,在此基础上确定评估对象的火灾风险等级。

区域火灾风险评估可选择以下几个层次的指标体系结构。

1.一级指标

一般包括火灾危险源、区域基础信息、消防力水平和社会面防控能力等。

2.二级指标

包括客观因素、人为因素、城市公共消防基础设施、灭火救援能力、消防管理、消防宣传教育、灾害抵御能力等。

3.三级指标

包括易燃易爆危险品、燃气管网密度、加油加气站密度、电气火灾、用火不慎、放火致灾、吸烟不慎、温度、湿度、风力、雷电、建筑密度、人口密度、经济密度、路网密度、重点保护单位密度、消防车通行能力、消防站建设水平、消防车通道、消防供水能力、消防装备配置水平、消防员万人比、消防通信指挥调度能力、多种形式消防力量、消防安全责任制落实情况、应急预案完善情况、重大隐患排查整治情况、社会消防宣传力度、消防培训普及程度、多警联动能力、临时避难区域设置、医疗机构分布及水平等相关内容。

(四)风险分析与计算

根据不同层次评估指标的特性,选择合理的评估方法,按照不同的风险因素确定风险概率,根据各风险因素对评估目标的影响程度,进行定量或定性的分析和计算,确定各风险因素的风险等级。

1.风险因素量化及处理

考虑到人的判断的不确定性和个体的认识差异,评分值的设计采用一个分值范围,由参加评估的团队人员,运用集体决策的思想,根据所建立的指标体系,按照对安全有利的情况,越有利得分越高,进行了评分,从而降低不确定性和认识差异对结果准确性的影响。然后根据模糊集值统计方法,通过计算得出一个统一的结果。

2.模糊集值统计

对于指标,专家 依据其评估标准和对该指标有关情况的了解给出一个特征值区间[ ],由此构成一集值统计系列:[ ],[ ],…,[ ],…,[ ]表示。

3.指标权重确定

目前国内外常用评估指标权重的方法主要有专家打分法(即Delphi法)、集值统计迭代法、层次分析法等、模糊集值统计法。本课题采用专家打分法确定指标权重,这种方法是分别向若干专家(一般以10~15名为宜)咨询并征求意见,来确定各评估指标的权重系数。

设第 个专家给出的权重系数为:

若其平方和误差在其允许误差 范围内,即

(4-1-2)

(4-1-3)

为满意的权重系数集,否则,对一些偏差大的 再征求有关专家意见进行修改,直到满意为止。

4.风险等级判断

根据基本指标的分值范围,可以通过下述公式计算上层指标的风险分值。

(4-1-4)

式中 =1,2,…,; =1,2,…。

最终应用线性加权方法计算火灾风险度:

R=(4-1-5)

式中:R—上层指标火灾风险;

Wi—下层指标权重;

Fi—下层指标评估得分。

根据R值的大小可以确定评估目标所处的风险等级。

5.风险分级

根据区域火灾防控实际,在设定量化范围的基础上结合公安部2007年下发的《关于调整火灾等级标准的通知》中的火灾事故等级分级标准,将火灾风险分为四级。如下表所示:

表4-1-2 风险分级量化和特征描述

风险等级 名称 量化范围 风险等级特征描述

Ⅰ 级 低风险 [85,100] 几乎不可能发生火灾,火灾风险性低,火灾风险处于可接受的水平,风险控制重在维护和管理。

Ⅱ 级 中风险 [65,85] 可能发生一般火灾,火灾风险性中等,火灾风险处于可控制的水平,在适当采取措施后可达到接受水平,风险控制重在局部整改和加强管理。

Ⅲ 级 高风险 [25,65] 可能发生较大火灾,火灾风险性较高,火灾风险处于较难控制的水平,应采取措施加强消防基础设施建设和完善消防管理水平。

Ⅳ 级 极高风险 [0,25] 可能发生重大或特大火灾,火灾风险性极高,火灾风险处于很难控制的水平,应当采取全面的措施对建筑的设计、主动防火设施进行完善,加强对危险源的管控、增强消防管理和救援力量。

火灾风险分级和火灾等级的对应关系为:

1)极高风险 / 特别重大火灾、重大火灾 特别重大火灾是指造成30人以上死亡,或者100人以上重伤,或者1亿元以上直接财产损失的火灾;

重大火灾是指造成10人以上30人以下死亡,或者50人以上100人以下重伤,或者5000万元以上1亿元以下直接财产损失的火灾;

2)高风险 / 较大火灾 是指造成3人以上10人以下死亡,或者10人以上50人以下重伤,或者1000万元以上5000万元以下直接财产损失的火灾;

3)中风险 / 一般火灾 是指造成3人以下死亡,或者10人以下重伤,或者1000万元以下直接财产损失的火灾。

(五)确定评估结论

根据评估结果,明确指出建筑设计或建筑本身的消防安全状态,提出合理可行的消防安全意见。

(六)风险控制

根据火灾风险分析与计算结果,遵循针对性、技术可行性、经济合理性的原则,按照当前通行的风险归避、风险降低、风险转移以及风险自留等四种风险控制措施,根据当前经济、技术、资源等条件下所能采用的控制措施,提出消除或降低火灾风险的技术措施和管理对策。

六、注意事项

进行区域火灾风险评估时,应注意收集相关消防基础设施建设的情况,如消防站、市政消防水源等。

根据住建部和国家发改委联合发布的《城市消防站建设标准》(建标152-2011)标准的要求,消防站建设“普通消防站不宜大于7Km2;设在近郊区的普通消防站不应大于15Km2。也可针对城市的火灾风险,通过评估方法确定消防站辖区面积”,为确保城市服务经济发展和市民生活的功能实现,新建消防站应重点布局在人口稠密区、产业功能区、新城和副中心以及消防设施相对薄弱的城乡结合部和农村地区。随着消防部门职能的拓展,还应加强消防站对于高层救援、交通事故救援、化学灾害抢险、危险品事故处理、地震和建筑物倒塌等紧急事件的处置能力。因此,进行区域火灾风险评估时,及时了解消防站等基础设施的建设情况,既有助于合理安排消防站布局,又可通过评估确定消防站辖区面积,有利于推进消防站的建设。

我国市政消防水源建设,普遍处于滞后的状态。主要原因是市政消火栓建设是根据市政道路建设和供水管网铺设确定的,缺乏明确的规划和建设标准。进行火灾风险评估时,可将消防水源建设作为评价指标之一,可解决远郊区县村庄和住宅小区绝大部分没有规划建设公共消防水源,消防水源匮乏问题比较严重的问题,杜绝“扑救小火建筑内部有设施,扑救大火室外无水源”的现象。

篇2:安全生产评估方法

本节主要介绍火灾风险评估的目的、原则、内容、范围、流程以及评估注意事项等内容,为城火灾风险评估提供有效的评估方法。

一、评估目的

对区域进行火灾风险评估,是分析区域消防安全状况、查找当前消防工作薄弱环节的有效手段。根据不同的火灾风险级别,部署相应的消防救援力量,建设消防基础设施,使公众和消防员的生命、财产的预期风险水平与消防安全设施以及火灾和其他应急救援力量的种类和部署达到最佳平衡,为今后一段时期政府明确消防工作发展方向、指导消防事业发展规划提供参考依据。

二、评估原则

(一)系统性原则

评估指标应当构成一个完整的体系,即全面地反映所需评价对象的各个方面。为此应按照安全系统原理来建立指标体系。该指标体系由几个子系统构成,且呈一定的层次结构,每个子系统又可以单独作为一个有机的整体。区域火灾风险评估指标体系应力求系统化、理论化、科学化,所包含的内容力求广泛,应能涉及到影响区域火灾的各个因素,既包括内部因素,也包括外部因素,还包括管理因素。

(二)实用性原则 评估指标必须与评价目的和目标密切相关。开展区域火灾风险评估指标体系的研究,是为了更好地用于指导防火实践,是为实践需求服务的。因此,它既是一个理论问题,又必需时刻把握其实用性。

(三)可操作性原则

构建区域火灾风险评估指标体系要有科学的依据和方法,要充分收集资料,并运用科学的研究手段。评估指标体系应具有明确的层次结构,每一个子指标体系应相对独立,建立评估指标体系时需注意风险分级的明确性,以便于操作。

三、评估内容

(一)分析区域范围内可能存在的火灾危险源,合理划分评估单元,建立全面的评估指标体系;

(二)对评估单元进行定性及定量分级,并结合专家意见建立权重系统;

(三)对区域的火灾风险做出客观公正的评估结论;

(四)提出合理可行的消防安全对策及规划建议。

四、评估范围

整个区域范围内存在火灾危险的社会面、建筑群和交通路网。

五、评估流程

区域火灾风险评估可按照以下六个步骤来进行。

(一)信息采集

在明确火灾风险评估的目的和内容基础上,收集所需的各种资料,重点收集与区域安全相关的信息,可包括:评估区域内人口、经济、交通等概况、区域内消防重点单位情况、周边环境情况、市政消防设施相关资料、火灾事故应急救援预案、消防安全规章制度等。

(二)风险识别

火灾风险源是指能够对目标对象的评估结果产生影响的所有来源。通过资料分析和现场勘察,查找评估对象的火灾风险来源,确定其存在的部位、方式以及发生作用的途径和变化规律。然后,根据所采集的信息,分析与区域火灾风险相关的各种影响因素。火灾风险源一般分为客观因素和人为因素两类。

1.客观因素

1)气象因素引起火灾

火灾的起数与气象条件密切相关,影响火灾的气象因素主要有大风、降水、高温以及雷击。

(1)大风。大风是影响火灾发生的重要因素。大风不但可能吹倒建筑物、刮倒电线杆或者吹断电线,引起火灾,而且它还可作为火的传播媒介,导致火场扩大,或产生新的火源,造成异地火灾。此外,大风也是助长火势蔓延的一个重要因素。(2)降水。降水对火灾的影响作用可以分为两个方面。一方面,降水增加了可燃物的含水量,潮湿的可燃物遇火不易燃烧,火势也不易蔓延,所以降水是火灾发生、蔓延的抑制因素。另一方面,降水大小对自燃物质也有显著的影响。由于降水增加了空气湿度,使自燃物质的湿度加大,一定的水分能起到催化剂的作用,可加速自燃物质的氧化而引发自燃。同时,如果出现暴雨,由于暴雨具有突发性、来势猛、强度大及局地性强的特点,会在短时间内积聚大量的雨水,在排水不畅时,可能造成局部积水,严重时甚至会形成局部洪涝,使电气线路和设备短路,引起火灾。

(3)高温。在高温环境下,生产生活用电负荷将增大,使电气线路处于满负载状态,加速了电气线路的老化。同时,对于存在自燃起火危险的物品,高温环境将有利于其自然氧化。气象上把最气温高于35℃定义为高温天气;把日平均气温高于30℃(或日最低气温高于25℃)定义为高温闷热天气。

(4)雷电。在雷雨天气中,如果建筑物防雷击设施不够齐备,在受到雷击时,电气线路容易发生故障、出现燃烧,或者建筑物内部电器设备受到雷的直击发生爆炸,引起火灾。严重时可能直接击中人体,造成人员伤亡。

2)电气引起火灾 在全国的火灾统计中,由各种诱因引发的电气火灾,一直居于各类火灾原因的首位。根据以往对电气火灾成因的分析,电气火灾原因主要有以下几种:

(1)接头接触不良导致电阻增大,发热起火;(2)可燃油浸变压器油温过高导致起火;

(3)高压开关的油断路器中由于油量过高或过低引起气体爆炸起火;

(4)熔断器熔体熔断时产生电火花,引燃周围可燃物;(5)使用电加热装置时,不慎放入高温时易爆物品导致爆炸起火;

(6)机械撞击损坏线路导致漏电起火;

(7)设备过载导致线路温度升高,在线路散热条件不好时,经过长时间的过热,导致电缆起火或引燃周围可燃物;

(8)照明灯具的内部漏电或发热引起燃烧或引燃周围可燃物。3)易燃易爆物品引起火灾

爆炸一般是由易燃易爆物品引起。可燃液体的燃烧实际上是可燃液体蒸气的燃烧。柴油属于丙类火灾危险性可燃液体,其闪点为60-120℃,爆炸极限为1.5%~6.5%。柴油的电阻率较大,易于积聚静电。柴油的爆炸可分为物理爆炸和化学爆炸。如果存放柴油的油箱过满,没有预留一定的空间,则在高温环境下,柴油受热鼓胀发生爆炸。另外,如果油箱密封不严,造成存放的柴油泄漏挥发,或油箱内的柴油蒸气向外挥发,在储油间内的柴油蒸气达到其爆炸极限的情况下,遇到明火、静电或金属撞击形成的火花时,都会产生爆炸。

2.人为因素

1)用火不慎引起火灾 用火不慎主要发生在居民住宅中,主要表现为:用易燃液体引火;用液化气、煤气等气体燃料时,因各种原因造成气体泄漏,在房内形成可燃性混合气体,遇明火产生爆炸起火;家庭炒菜时油锅过热起火;未完全熄灭的燃料灰随意倾倒引燃其他可燃物;夏季驱蚊,蚊香摆放不当或点火生烟时无人看管;停电使用明火照明,不慎靠近可燃物,引起火灾;烟囱积油高温起火。

2)不安全吸烟引起火灾 吸烟人员常常会出现随便乱扔烟蒂、无意落下烟灰、忘记熄灭烟蒂等不良吸烟行为,一部分可能会导致火灾。由香烟引起的火灾,以引燃固体可燃物,尤其是引燃床上用品、衣服织物、室内装璜、家具摆设等居多。据美国加利福尼亚消防部门试验,烧着的烟头的温度范围从288℃(不吸时香烟表面的温度)到732℃(吸烟时香烟中心的温度)。有的资料还介绍,一支香烟停放在一个平面上可连续点燃24分钟。炽热的香烟温度,从理论上讲足以引燃大多数可燃固体以及易燃液体和气体。

3)人为纵火

(三)评估指标体系建立

在火灾风险源识别的基础上,进一步分析影响因素及其相互关系,选择出主要因素,忽略次要因素,然后对各影响因素按照不同的层次进行分类,形成不同层次的评估指标体系。区域火灾风险评估,一般分为二层或三层,每个层次的单元根据需要进一步划分为若干因素,再从火灾发生可能性和火灾危害等方面来分析各因素的火灾危险度,各个组成因素的危险度是进行系统危险分析的基础,在此基础上确定评估对象的火灾风险等级。

区域火灾风险评估可选择以下几个层次的指标体系结构。1.一级指标

一般包括火灾危险源、区域基础信息、消防力水平和社会面防控能力等。

2.二级指标

包括客观因素、人为因素、城市公共消防基础设施、灭火救援能力、消防管理、消防宣传教育、灾害抵御能力等。

3.三级指标

包括易燃易爆危险品、燃气管网密度、加油加气站密度、电气火灾、用火不慎、放火致灾、吸烟不慎、温度、湿度、风力、雷电、建筑密度、人口密度、经济密度、路网密度、重点保护单位密度、消防车通行能力、消防站建设水平、消防车通道、消防供水能力、消防装备配置水平、消防员万人比、消防通信指挥调度能力、多种形式消防力量、消防安全责任制落实情况、应急预案完善情况、重大隐患排查整治情况、社会消防宣传力度、消防培训普及程度、多警联动能力、临时避难区域设置、医疗机构分布及水平等相关内容。

(四)风险分析与计算

根据不同层次评估指标的特性,选择合理的评估方法,按照不同的风险因素确定风险概率,根据各风险因素对评估目标的影响程度,进行定量或定性的分析和计算,确定各风险因素的风险等级。

1.风险因素量化及处理

考虑到人的判断的不确定性和个体的认识差异,评分值的设计采用一个分值范围,由参加评估的团队人员,运用集体决策的思想,根据所建立的指标体系,按照对安全有利的情况,越有利得分越高,进行了评分,从而降低不确定性和认识差异对结果准确性的影响。然后根据模糊集值统计方法,通过计算得出一个统一的结果。

2.模糊集值统计

对于指标,专家 依据其评估标准和对该指标有关情况的了解给出一个特征值区间[ ],由此构成一集值统计系列:[ ],[ ],„,[ ],„,[ ]表示。

3.指标权重确定

目前国内外常用评估指标权重的方法主要有专家打分法(即Delphi法)、集值统计迭代法、层次分析法等、模糊集值统计法。本课题采用专家打分法确定指标权重,这种方法是分别向若干专家(一般以10~15名为宜)咨询并征求意见,来确定各评估指标的权重系数。

设第 个专家给出的权重系数为: 若其平方和误差在其允许误差 范围内,即(4-1-2)则(4-1-3)

为满意的权重系数集,否则,对一些偏差大的 再征求有关专家意见进行修改,直到满意为止。

4.风险等级判断

根据基本指标的分值范围,可以通过下述公式计算上层指标的风险分值。

(4-1-4)

式中 =1,2,„,; =1,2,„。最终应用线性加权方法计算火灾风险度: R=(4-1-5)

式中:R—上层指标火灾风险; Wi—下层指标权重; Fi—下层指标评估得分。

根据R值的大小可以确定评估目标所处的风险等级。5.风险分级

根据区域火灾防控实际,在设定量化范围的基础上结合公安部2007年下发的《关于调整火灾等级标准的通知》中的火灾事故等级分级标准,将火灾风险分为四级。如下表所示:

表4-1-2 风险分级量化和特征描述

风险等级 名称 量化范围 风险等级特征描述

Ⅰ 级 低风险 [85,100] 几乎不可能发生火灾,火灾风险性低,火灾风险处于可接受的水平,风险控制重在维护和管理。

Ⅱ 级 中风险 [65,85] 可能发生一般火灾,火灾风险性中等,火灾风险处于可控制的水平,在适当采取措施后可达到接受水平,风险控制重在局部整改和加强管理。

Ⅲ 级 高风险 [25,65] 可能发生较大火灾,火灾风险性较高,火灾风险处于较难控制的水平,应采取措施加强消防基础设施建设和完善消防管理水平。

Ⅳ 级 极高风险 [0,25] 可能发生重大或特大火灾,火灾风险性极高,火灾风险处于很难控制的水平,应当采取全面的措施对建筑的设计、主动防火设施进行完善,加强对危险源的管控、增强消防管理和救援力量。火灾风险分级和火灾等级的对应关系为:

1)极高风险 / 特别重大火灾、重大火灾 特别重大火灾是指造成30人以上死亡,或者100人以上重伤,或者1亿元以上直接财产损失的火灾;

重大火灾是指造成10人以上30人以下死亡,或者50人以上100人以下重伤,或者5000万元以上1亿元以下直接财产损失的火灾;

2)高风险 / 较大火灾 是指造成3人以上10人以下死亡,或者10人以上50人以下重伤,或者1000万元以上5000万元以下直接财产损失的火灾;

3)中风险 / 一般火灾 是指造成3人以下死亡,或者10人以下重伤,或者1000万元以下直接财产损失的火灾。

(五)确定评估结论

根据评估结果,明确指出建筑设计或建筑本身的消防安全状态,提出合理可行的消防安全意见。

(六)风险控制

根据火灾风险分析与计算结果,遵循针对性、技术可行性、经济合理性的原则,按照当前通行的风险归避、风险降低、风险转移以及风险自留等四种风险控制措施,根据当前经济、技术、资源等条件下所能采用的控制措施,提出消除或降低火灾风险的技术措施和管理对策。

六、注意事项

进行区域火灾风险评估时,应注意收集相关消防基础设施建设的情况,如消防站、市政消防水源等。

根据住建部和国家发改委联合发布的《城市消防站建设标准》(建标152-2011)标准的要求,消防站建设“普通消防站不宜大于7Km2;设在近郊区的普通消防站不应大于15Km2。也可针对城市的火灾风险,通过评估方法确定消防站辖区面积”,为确保城市服务经济发展和市民生活的功能实现,新建消防站应重点布局在人口稠密区、产业功能区、新城和副中心以及消防设施相对薄弱的城乡结合部和农村地区。随着消防部门职能的拓展,还应加强消防站对于高层救援、交通事故救援、化学灾害抢险、危险品事故处理、地震和建筑物倒塌等紧急事件的处置能力。因此,进行区域火灾风险评估时,及时了解消防站等基础设施的建设情况,既有助于合理安排消防站布局,又可通过评估确定消防站辖区面积,有利于推进消防站的建设。

篇3:小水库渗漏安全评估方法

柠檬坑水库位于珠海市香洲区南屏镇西南部, 西江磨刀门出口左岸, 东与蛇地坑水库一山坳之隔, 西靠洪东村, 北靠将军山下, 南望洪湾水闸。水库上坝公路长1.78公里, 交通十分便利。水库始建于1984年11月。地处低洼丘陵区, 库区表面为粉质粘土覆盖, 山体植被较好。水库为均质土坝, 集雨面积0.67平方公里, 为小 (二) 型水库。最大坝长为97米, 坝顶高程64.40米, 防浪墙顶高程64.80米, 溢洪道堰顶高程62.40米, 净宽8.00米。200年一遇校核洪水位63.80米, 总库容54万立方米;20年一遇设计洪水位63.35米, 正常水位62.40米, 正常库容45.30万立方米。

工程建成至今已有20多年的历史, 经过了多次工程处理, 取得了一定的效果, 但也存在不少问题。几次工程措施包括: (1) 于1994年对坝体进行灌浆防渗处理。 (2) 于1995年将原700×1200的浆砌石方涵套装DN400压力钢管, 本次工程处理最初目的是用于当地居民、工厂及中珠联围洪湾水闸职工用水为主。涵内灌注混凝土防渗堵漏。并在迎水坡进行了干砌石面浇筑混凝土防渗。 (3) 2002年发现坝脚原沟有渗漏逸出点, 并且在库水深8米左右时尤为明显。于同年12月再次对坝体进行劈裂灌浆防渗堵漏;对大坝背水坡进行修补坝坡, 铺植草皮;建管理房一栋, 二层, 面积95平方米, 同时搞好库区周围环境, 再配套建设了水位尺竿等观测设施。工程效益达到年供水量45.30万立米。

2 坝体现状渗漏情况

2.1 现场观测数据

2009年8月21日现场观测, 在大坝下游反滤体坡脚正对直角三角形量水堰位置的防渗反滤体上有杯口粗的水流涌出, 其左右两侧还有两处有较大的水流渗出, 但渗漏水均水质清澈, 无带动泥砂的迹象。上游库水位为60.40m, 直角三角形量水堰堰上水头为5.8cm。从近一个月的观测来看, 量水堰堰上水头均有5cm左右的水头差, 详细数据见表1所示。

根据《土石坝安全监测技术规范-SL60-94》附录D提供的直Á角三角形量水堰流量计算公式:

式中:Q-渗流量, m3/s;

H-堰上水头, m;

计算数值采用当天的观测数据:H=5.8cm, 得:

2.2 现场实验数据

实验器材包括:秒表一只;大容量容器一个;接水漏斗一个;电子称一台。

实验步骤:先称出容器的重量, 然后安装好接水漏斗, 安装漏斗时必须保证所有从量水堰上流出的水均汇集到容器里面。于60秒为一个时间段进行实验, 每隔60秒取出容器, 用电子称称出重量。最后测得平均值为70kg。

最后实验得出:

2.3 坝体渗漏数据的确定

尽管上述理论渗流量与实验渗流量较接近, 究竟哪个数据更具代表性呢?现作如下分析:《土石坝安全监测技术规范-SL60-94》规定:“4.5.3.2 (1) 量水堰应设在排水沟直线段的堰槽段。该段应采用矩形断面, 两侧墙应平行和铅直。槽低和侧墙应加砌护, 不漏水, 不受其他干扰。”但现场观察的结果是, 堰槽内淤积了相当的泥砂, 同时槽低和侧墙也没有相应的进行砌护。由于多年的锈蚀和当初施工安装的可能误差, 量水堰已经有些不规则, 而量水堰铁皮也已经生锈剥落, 这些因素均会影响到观测数据的准确性。而本次实验是实测的实际渗流量。所以现状渗漏数据取实验值, 即:Q实验=1.17×10-3m3/s。

3 坝体理论渗流量计算

在坝与水库失事事故的统计中, 有25%是由于渗流问题引起的。所以渗流问题在水库运行过程中有着相当大的危害性, 应给予足够的重视, 以确保水库安全、高效地运行, 同时创造更大的经济效益。

渗流分析的内容包括: (1) 、确定浸润线的位置; (2) 、确定渗流量。

3.1 计算原理

从工程实际来看, 本工程属于“均质坝, 有堆石滤水坝趾, 下游无水情况”, 计算公式参照《土坝设计》———水利水电出版社。

根据上游坡率m1及水头与渗径的比值可求得β值, 但为了更加精确起见, 采用电拟试验数值的相关数据计算求得β值, 确定△1, △1=βH。

堆石滤水坝趾上游脚处的浸润线高度a0:

式中:q-单宽渗流量, m2/s;

k-渗流系数, cm/s;

坝体浸润线位置按下式确定:

单宽渗流量q:

3.2 计算参数的选取

由于本次渗漏安全评估缺少必要的地质资料和观测资料, 只有2002年对坝体灌前进行的堤坝勘测报告书和竣工验收资料等极少的资料。

基于以上原因, 计算水位采用2009年8月21日现场试验时候的库水位60.4m, 下游水位为0.0m。同时选取2002年对坝体灌浆前进行的地质勘测报告、竣工验收报告两组地质参数及设计规范要求的最大渗透系数进行计算。

3.3 详细计算

3.3.1库水位60.4m, 下游水位为0.0m, 地质参数选自2002年3月《珠海市香洲区南屏镇水利管理所柠檬坑水库堤坝勘察报告书》

a.计算参数:

水库大坝最大坝长为97米, 对应的坝顶高程为64.40米, 同时大坝横剖面为“V”型结构, 而计算水位60.40m对应的坝面长度只有90米左右, 所以综合考虑取大坝计算长度为90.0m。

b.计算过程:

堆石滤水坝趾上游脚处的浸润线高度a0:

坝体浸润线方程:单宽渗流量q:

渗流量:

c.计算结果:

(2) 库水位60.4m, 下游水位为0.0m, 地质参数选自2003年6月《柠檬坑水库加固工程竣工资料———坝体劈裂灌浆》

a.计算参数:

水库大坝最大坝长为97米, 对应的坝顶高程为64.40米, 同时大坝横剖面为“V”型结构, 而计算水位60.40m对应的坝面长度只有90米左右, 所以综合考虑取大坝计算长度为90.0m。

b.计算过程:

根据上游坡率m1=2.5及水头与渗径的比值H1=1542..46=2.77, 查β值表得β=0.234

堆石滤水坝趾上游脚处的浸润线高度a0:

坝体浸润线方程:

单宽渗流量q:

渗流量:

c.计算结果:

(3) 库水位60.4m, 下游水位为0.0m, 渗透系数取规范规定的最大值

a.计算参数:

水库大坝最大坝长为97米, 对应的坝顶高程为64.40米, 同时大坝横剖面为“V”型结构, 而计算水位60.40m对应的坝面长度只有90米左右, 所以综合考虑取大坝计算长度为90.0m。

《碾压式土石坝设计规范》SL274-2001“4.1.5渗透土料应满足下列要求:1渗透系数:均质坝不大于1×10-4cm/s, ……”所以取规范规定的最大渗透系数1×10-4cm/s进行复核验算。

b.计算过程:

堆石滤水坝趾上游脚处的浸润线高度a0:

坝体浸润线方程:

单宽渗流量q:

渗流量:

c.计算结果:

4 渗漏安全评估结论

柠檬坑水库坝体为均质土坝, 自竣工投入使用至今已有20多年的历史, 为珠海市的居民引水作出了巨大的贡献, 特别是为当地居民、工厂及中珠联围洪湾水闸职工用水提供了保障。

在接到珠海市香洲区水利局的委托任务后, 我院高度重视, 在院总工的带领下到现场察看, 并进行现场实验。回到单位立即落实任务。

经计算, 无论是取2002年对坝体灌浆前进行的地质勘测报告参数、竣工验收报告中的地质参数还是规范要求的防渗安全最大渗透系数等三方面进行计算, Q理论均小于Q试验, 即现状渗流量偏大, 并超出允许值, 比规范要求的渗透系数不大于1×10-4cm/s对应的渗透量大5倍。

所以初步认为, 坝体的渗流量是不正常的, 是偏大的, 长期运行下去对坝体是不安全的。坝体可能由于长期的渗流而形成渗流通道或管涌, 对坝体构成极大的安全隐患。因此建议对坝体进行防渗加固措施。加固措施包括:对坝体地质、地形进一步勘察, 提供地质参数后对坝体及坝基进行充填灌浆, 以确保水库安全、高效的运行。同时建议选择灌浆方面较强的单位进行施工, 以杜绝灌浆后没几年又需复灌的情况。

摘要:本文结合柠檬坑水库工程实例, 结合现场观测数据、实验数据等有关资料, 对水库坝体渗漏情况进行分析, 提出坝体理论渗流量计算原理, 渗漏安全评估结论做出阐述。

关键词:坝体渗漏,计算参数,评估

参考文献

篇4:起重机械安全评估方法分析

关键词:起重机械;安全评估;事故分析

0.引言

起重机安全性评价的原理就是通过对起重机械的危险有害因素的区分,运用恰当的安全性评价方法,比如安全检查表,事故树分析法,风险分析法等形式,得出起重机危险程度等级,并提出合理可行的措施,指导危险源监控和事故预防,使起重机械安全状况达到可接受的安全水平。根据对安全检查中有相关内容的评价,我们可以清楚了解起重机械目前使用和管理水平,从而避免在用起重机械处于一种低水平的管理状态。

1.安全检查表

安全检查表是将一系列项目列出检查表进行分析,以确定系统、场所的状态这些项目可以包括场地、周边环境、设施、设备、操作和管理等各方面。

目前,安全检查表有3种类型:定性检查表、半定量检查表和否决型检查表。定性安全检查表是列出检查要点逐项检查,检查结果以“对”、“否”表示,检查结果不能量化;半定量检查表是给每个检查要点赋以分值,检查结果以总分表示,有了量的概念,这样,不同的检查对象也可以相互比较,但缺点是检查要点的准确赋值比较困难,而且个别十分突出的危险不能充分地表现出来;否决型检查是给一些特别重要的检查要点作出标记,这些检查要点如不满足,检查结果视为不合格,即具一票否决的作用,这样可以做到重点突出。

检查表有各种形式,不论何种形式的检查表,总体的要求是第一内容必须全面,以避免遗漏主要的潜在危险。第二要重点突出,简明扼要,否则的话,检查要点太多,容易掩盖主要危险,分散人们的注意力,反而使评价不确切。为此,重要的检查条款可作出标记,以便认真查对。

2.故障树分析法

故障树分析又称事故树分析为或事故逻辑分析,它是对系统安全性进行定性与定量分析评价的一种科学的和先进的方法,已被广泛地运用到现代设计的多个领域之中。事故树分析评价是运用由事件符号和逻辑符号组成的一种图形模式,来分析人机系统中导致灾害事故的各种因素之间的因果关系和逻辑关系,从而判明系统运行当中,各种事故发生的途径和重点环节,为有效地控制,提供一个简洁而形象的途径。在作业过程中,由于人的失误、机器故障、环境影响,随时都有可能发生不同程度的事故。为了不使这些事故导致灾害性后果就要对系统中可能发生事故的各种不安全因素进行分析和预测,以采取相应的措施和手段来防止和消除危险。因此一个系统的事故分析应包括:系统可能发生灾害事故,也称为顶上事件;系统内固有的或潜在的事故因素,包括人、机器、环境因素;各个子系统及各因素之间的相互联系与制约关系,即输入—输出的因果逻辑关系,并用专门的符号表示;计算系统的顶上事件的发生概率,进行定量分析与评价。

从系统的角度来说,故障既有因设备中具体部件(硬件)的缺陷和性能恶化所引起的,也有因软件,如自控装置中的程序错误等引起的。此外,还有因为操作人员操作不当或不经心而引起的损坏故障。显然,故障树分析法也存在一些缺点。其中主要是构造故障树的多余量相当繁重,难度也较大,对分析人员的要求也较高,因而限制了它的推广和普及。在构造故障树时要运用逻辑运算,在其未被一般分析人员充分掌握的情况下,很容易发生错误和失察。例如,很有可能把重大影响系统故障的事件漏掉;同时,由于每个分析人员所取的研究范围各有不同,其所得结论的可信性也就有所不同。

3.结构安全评估法

对于金属结构的安全评估技术的研究,美国、德国、法国和俄罗斯等国在这一领域的工作开展己久,并有多项科研成果公布,这些成果在汽车、航空等工业领域有成功的应用。

疲劳破坏是起重机金属结构失效的主要形式,而起重机金属结构作为一个承载结构系统,它的失效不仅使起重机失去功能,而且容易导致断臂等重大事故。引起起重机金属结构失效的故障主要有裂纹、局部或整体变形、折断、锈蚀、刚度不足等,其中裂纹是目前起重机械金属结构的主要故障形式,在门座起重机的转柱、门架、人字架、小拉杆、大拉杆、象鼻梁、臂架等主要构件上经常出现。裂纹主要出现在焊缝或焊缝附近的母材上,它在一定的变化载荷作用下往往会扩展,致使金属结构出现故障。

使用较频繁的、工作较繁重的建筑起重机械的金属结构、各工作机构的主要受力部件, 如吊臂上、下弦杆与斜拉杆的焊缝和热影响区,吊臂销接座及销接头与上、下弦杆的对接焊缝, 吊臂、平衡臂拉杆焊缝;标准节和顶升套架的焊缝和热影响区等部位,短则3、5年,长则10年在无损检测中都发现过有不同程度的疲劳裂纹存在。这种疲劳裂纹比较细小,大多出现在工件表面,仅凭肉眼较难发现。在裂纹形成的初期,对于设备的正常使用无任何影响,不会出现异常状况导致结构破断。但是对于使用年限较长的起重机,主要受力构件的焊缝及其热影响区长期受到交变应力的作用。疲劳裂纹会大量增加并不断扩展,当结构疲劳损伤积累到一定程度后, 遇到超载、超力矩, 大风等偶发事件,细小的疲劳裂纹就可能迅速扩展,造成主要受力构件的焊缝或热影响区撕裂,导致受力截面减小,当缺陷处承受的最大应力超过其抗拉强度时,就会引发突然断裂的事故。建筑起重机械的安全技术性能评估,就是针对使用年限较长的建筑起重机械的金属结构、各工作机构、重要零部件、电气元器件、安全保护装置等,根据国家或行业相关标准进行检验、检测与评定。

4.模糊综合评价方法

模糊综合评价方法是模糊数学中应用的比较广泛的一种方法。在对某一事务进行评价时常会遇到这样一类问题,由于评价事务是由多方面的因素所决定的,因而要对每一因素进行评价;在每一因素作出一个单独评语的基础上,如何考虑所有因素而作出一个综合评语,这就是一个综合评价问题。模糊综合评价是对受多种因素影响的事物做出全面评价的一种十分有效的多因素决策方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。

起重机械的安全一直受到有关部门的密切关注,用模糊综合评价法对起重机械进行安全评价,可以大大提高起重机械的安全使用及管理水平,而且还可以提高对起重机械进行安全管理的效率,是现代化安全管理的发展趋势,同时也是安全系统工程在起重机械安全管理中的应用。模糊综合评价法在应用中其自身也可以逐渐地发展和完善,适应起重机械自身技术的发展。

5.人、机、环境系统

人、机、环境3个方面的因素是事故发生的直接原因,而管理失误是事故发生的本质原因。根据这一原理,结合设备不同危险性和往年发生事故的情况,设备的安全性用下面的公式计算:

式中, K R 为工人素质等级;K S 为机械设备等级;KH 为环境安全等级;K P 为近两年该设备事故统计;λ1为管理效能系数;λ2为机械设备种类相对安全系数; D为安全等级。

该评价方法是根据数学建模的类比原理,结合上海冶金局对安全管理的等效系数安全评价法得到的。在本方法中,把导致伤亡事故发生的人、机、环境看成是并列的3 个直接因素,取它们的几何平均值,再考虑管理方面的因素、设备种类和往年事故对结果的修正, 最终得出的评价结果。

结束语

对于大型起重机械事故,轻则造成财产损失,重则机毁人亡。因此,起重机械的安全评估工作很有价值。通过安全评估,可以及时掌握设备运行过程中存在的隐患,及时进行纠正、整改。同时,对于已经发生的重大事故,在事故责任鉴定方面,本系统也有十分重要的积极意义。

参考文献:

[1]王显政,杨富.安全评价.北京:煤炭工业出版社,2005

[2]刘峰,叶义成,黄勇.系统安全评价方法的研究现状及发展前景.中国水运,2007(1):170-181

篇5:探析啤酒生产企业纳税评估方法

一、评估数据来源

1、综合征管系统中的基础数据。包括基本信息、申报的销售数量、销售收入、应纳税额、各类核定、认定、审批类文书等。

2、相关部门的第三方数据。在采用投入产出和能耗推算等方法进行评估时应注意收集水、电管理部门等外部单位数据用以核对企业申报信息的真实性和准确性。

3、企业的相关账簿、凭证,生产经营的工艺流程,财务核算特点,成本费用核算方式等,以利于更为准确地找到评估切入点。

4、管理员日常征管工作中收集的相关信息。

二、评估方法

1、单位用水量、用汽量推算。

每瓶啤酒90%以上的成份是水,水在啤酒生产过程中起着极为重要的作用,其耗用主要集中在酿造车间和罐装车间(瓶酒车间),二者用水比例基本在1:1,根据成本计算单测算,酿造车间用水单耗2.60吨/千升, 罐装车间(瓶酒车间)用水单耗2.70吨/千升;啤酒生产销售加权平均用水单耗5.6851吨/千升。评估中我们既可以从水资源管理部门取得企业实际用水数据,也可以通过企业取得的相关发票记载的数据进行评估分析。

评估模型

评估期产品产量=评估期水耗用量/单位产品水耗用量

应税产品销售数量=期初库存数量+评估期产品产量-期末库存数量

问题值=测算应税产品销售数量-实际申报销售数量

另外,由于啤酒生产的糊化过程中需要大量蒸汽,企业

一般要向热电公司购买,数量、金额也很大,因此,也可以通过用汽量按上述模型进行评估分析。

2、产品单耗定额分析

啤酒生产过程中消耗的主要材料包括进口麦芽、地产麦芽、小麦芽、大米等粮食,根据测算,以11度啤酒为例,每千升产品上述粮食单耗定额大约为154公斤,根据单耗定额可以大致计算出产量,但由于还需按一定比例折算为8度、10度等不同产品,因此可能会产生较大误差。

评估模型

评估期产品产量=评估期材料耗用量/单位产品材料耗用量

应税产品销售数量=期初库存数量+评估期产品产量-期末库存数量

问题值=测算应税产品销售数量-实际申报销售数量

3、投入产出推算

评估模型

评估期产品产量=评估期原材料投入数量*投入产出率

应税产品销售数量=期初库存数量+评估期产品产量-期末库存数量

问题值=测算应税产品销售数量-实际申报销售数量

由于啤酒生产企业目前已经向大型化、集约化方向发展,每个啤酒生产企业基本形成了高、中、低档酒相互结合的产品结构,品种少则几个,多的达到几十个,不同品种使用的原料又会有所区别,在采用投入产出法进行评估分析时,应注意啤酒生产的中间过程,即酿造车间生产的半成品(清酒液)经罐装车间装瓶后成为产成品。一个啤酒生产企业产品品种可能有几十个,但酒液可能只有几种,因此只要正确区分不同酒液所用原料,分别计算投入产出率推算出不同酒液的产量,再根据期初、期末库存等数据就可以测算出应税产品的销售数量。

以13.5度啤酒为例,大麦浸出率为78.8%,麦汁合理损耗率2%,即100公斤大麦芽可以获得麦汁78.8*98/=77.224公斤,可以生产啤酒77.224/0.135=572.03公斤。

4、能耗推算

电力的消耗基本上贯穿于啤酒生产的每道工序,因此,以电力为基础指标的能耗推算法可以作为啤酒生产企业纳税评估的一种重要方法。以2007年6月为例,**啤酒(**)有限公司生产用电951012千瓦时,产量12795千升,单位电耗74.33千瓦时,经测算,该公司千升酒的平均电耗为70.87千瓦时。

评估模型

评估期产品产量=评估期能(电)耗量/单位产品能耗定额

应税产品销售数量=期初库存数量+评估期产品产量-期末库存数量

问题值=测算应税产品销售数量-实际申报销售数量

5、其他

饮料(酒)类产品共有的瓶、箱、盖等包装物也可以作为评估的参考指标。但从目前啤酒生产企业来看,通过上述指标进行纳税评估比较困难,主要是由于绝大部分啤酒的瓶、箱是以押金形式周转使用的,包装物的管理对于啤酒生产企业本身就是一个管理上的难点,再考虑到毁损、押金期限等问题,很可能会给评估工作造成事倍功半的效果。

三、其他应注意的问题

篇6:安全生产评估方法

电子政务信息安全风险评估方法研究

摘要:电子政务信息系统安全的重要性与日俱增,电子政务信息安全风险评估方法层出不穷.本文对目前主要的电子政务信息安全风险评估方法进行了综述性讨论,在分析了几种重要方法的.优、缺点的基础上,提出了基于主成分BP人工神经网络评估模型,将BP神经网络的动态学习性应用于复杂的电子政务信息安全评估.作 者:雷战波    胡安阳 作者单位:西安交通大学,陕西,西安,710049 期 刊:中国信息界 Journal:CHINA INFORMATION TIMES 年,卷(期):, “”(6) 分类号:X9 关键词:电子政务信息安全    动态评估    主成分分析    BP神经网络   

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:安全员主要工作内容 下一篇:安全的本质是生命