第一篇:活塞连杆机构设计
活塞连杆机构的外文和翻译
Modeling and Simulation of the Dynamics of Crankshaft- Connecting Rod-Piston-Cylinder Mechanism and a Universal Joint Using The Bond Graph Approach
Abstract This paper deals with modeling and simulation of the dynamics of two commonly used mechanisms, (1) the Crankshaft – Connecting rod – Piston – Cylinder system,and (2)the Universal Joint system, using the Bond Graph Approach. This alternative method of for mulation of system dynamics, using Bond Graphs, offers a rich set of features that include, pictorial representation of the dynamics of translation and rotation for each link of the mechanism in the inertial frame, representation and handling of constraints at joints, depiction of causality,obtaining dynamic reaction forces and moments at various locations in the mechanism, algorithmic derivation of system equations in the first order state-space or cause and effect form, coding for simulation directly from the Bond Graph without deriving system equations,and so on.
Keywords: Bond Graph, Modeling, Simulation, Mechanisms.
1 Modeling Dynamics of two commonly used mechanisms, (1) the Crankshaft – Connecting rod – Piston – Cylinder system,and (2) the Universal Joint system, are modeled and simulated using the Bond Graph Approach. This alternative method of formulation of system dynamics, using Bond Graphs, offers a rich set of features [1, 2]. These include, pictorial representation of the dynamics of translation and rotation for each link of the mechanism in the inertial frame, depiction of cause and effect relationship,representation and handling of constraints at joints, obtaining the dynamic reaction forces and moments at various locations in the mechanism, derivation of system equations in the first order state-space or cause and effect form, coding for simulation directly from the Bond Graph without deriving system equations.Usually the links of mechanisms are modeled as rigid bodies.
In this work, we develop and apply a multibond graph model representing both translation and rotation of a rigid body for each link. The links are then coupled at joints based on the nature of constraint [3-5]. Both translational and rotational couplings for joints are developed and integrated with the dynamics of the connecting links. A problem of differential causality at link joints arises while modeling. This is rectified using additional stiffness and damping elements. It makes the model more realistic, bringing in effects of compliance and dissipation at joints, within definable tolerance limits.Multibond Graph models for the Crankshaft – Connecting rod – Piston – Cylinder system, and, the Universal Joint system [6], are developed using the BondGraph Approach. Reference frames are fixed on each rigid link of the mechanisms using the Denavit-Hartenberg convention [7]. The translational effect is concentrated at the center of mass for each rigid link.Rotational effect is considered in the inertial frame itself,by considering the inertia tensor for each link about its respective center of mass, and expressed in the inertial frame. The multibond graph is then causaled and coding in MATLAB, for simulation, is carried out directly from the Bond Graph. A sketch of the crankshaft mechanism is shown in Fig.1, and its multibond graph model is shown in Fig.2. A sketch of the Universal joint system is shown in Fig.3, and its multibond graph model is shown in Fig.4. Results obtained from simulation of the dynamics of these mechanisms are then presented.
1.1 CrankshaftPiston-Cylinder Mechanism Fig. 1 shows the sketch of the “Crankshaft – Connecting rod – Piston – Cylinder system.”
Fig. 1: Crankshaft-Connecting Rod-Piston-Cylinder Mechanism. The individual components are considered as rigid links,connected at joints. The first moving link is the crank,the second link is the connecting rod and the third link is the piston. A frame is fixed on each link. Thus frame 1 is fixed on link 1, frame 2 on link 2, and frame 3 on link 3. A fixed inertial frame 0, whose origin coincides with frame 1, is chosen. However, it will neither rotate nor translate. C1, C2 and C3 are centres of mass of respective links. The frames are fixed on respective links using the Denavit-Hartenberg convention [4].
Dynamics of the system of Fig. 1 is modeled in the multibond graph shown in Fig. 2. The model depicts rotation as well as translation for each link in the system. The left side of the bond graph shows the rotational part and right part shows the translational part. We restrict any motion between the origin of inertial frame O and point on the link 1 that is O1 by applying source of flow Sf as zero. Similarly we restrict any relative motion at point A, distinguished by A1 on link 1 and A2 on link 2, by applying source of flow Sf as zero. The piston which is link 3, is constrained to translate only along the X0 direction. Translation along Y0 and Z0 direction is constrained by applying source of flow Sf as zero for these components. Differential causality is eliminated by making the K(1,1) element of the stiffness matrix [K] between link 2 and link 3 as zero.
Additional stiffness and damping elements used for eliminating differential causality make the model more realistic, bringing in effects of compliance and dissipation at joints, within definable tolerance limits. These viscoelastic elements are represented in the bond graph by using C and R elements.
We have a source of effort Se at link 3, which is the pressure force acting on the piston, although this force is also acting only in X direction.
Fig. 2: Multibond graph model for the Crankshaft – Connecting rod – Piston – Cylinder system of Fig. 1. 1.2 Universal Joint Mechanism The Fig. 3 shows the sketch of the “ Universal Joint” mechanism.
Fig. 3: Universal Joint Mechanism. It has three rigid links, two are yokes which are attached to rotating shafts and the middle one is the cross connecting the two yokes. The inertial frame is numbered 0,and it is fixed. Frame 1 is on link 1, frame 2 on the cross which is link 2, and frame 3 on the right yoke which is link 3. Origin of the inertial frame coincides with that of frame 1 of link 1. The links 1 and 2 are connected with each other at two coincident end points points AB1 on link 1 and B2 on link 2. Similarly links 2 and 3 are connected at two points DE2 on link 2 and E3 on link 3.
Link 1 rotates about Z axis with respect to the inertial frame. The frame 2 is located at the centre of mass of the link 2. Link 2 rotates with respect to the link 1 in direction Z2 as shown in Fig. 3. Frame 3 also coincides with frame 2 but it is located on the link 2. The frame 3 on link 3 rotates with respect to the link 2, about Z3, as shown in Fig. 3. The bond graph for this system is shown in Fig. 4.
Fig. 4: Multibond graph for the Universal Joint system of Fig. The issue of differential causality arises for this mechanism also. It is eliminated using additional stiffness and damping elements. As discussed earlier, this makes the model more realistic, bringing in effects of compliance and dissipation at joints, within definable tolerance limits. The relative motion between the links at joints, along certain directions, is restrained by applying the source of flow Sf as zero. The constraint relaxation is tuned by changing the values of stiffness and damping at corresponding joints. Here we restrict the motion of the link 3 in two directions Y and Z, and allow motion in X direction by resolving the source of flow in three parts and by putting Sf as zero in Y and Z directions only. For the simulation, an excitation torque is applied to link 1 about the Z direction 2 Simulation The results of computer simulation for the crankshaft mechanism of Fig. 1 are discussed first. The initial position of the crankshaft is at 1 θ = 60o with the X0 axis. It is then released under the effect of gravity. The force of gravity also acts on the connecting rod. No force due to gas pressure is considered for the simulation as it is not the main issue under focus for this paper. The upper row in Fig. 5 shows the displacement of the centre of mass C1, as observed and expressed in Frame 0. It moves in a circular arc about the Z0 axis. The first figure in the lower row of Fig. 5 shows the oscillation of the crankshaft about the Z0 axis through change in orientation of the unit vectors of Frame 1. The second figure in the second row shows the oscillation of the centre of mass C1 with time. This could perhaps be ascribed to the nonlinearity imposed due to coupling with the connecting rod.
Simulation results for the Universal joint system are presented in Fig. 8. A constant torque is applied to the driving shaft about its axis. The driven shaft makes an angle of 5° with the axis of the driving shaft. The First row shows the response of the driving shaft which is the first link. The component of angular momentum of the driving shaft about its axis increases linearly, which is as expected. The first two figures of the second row show the change in orientation of the cross, which is link 2. Angular motion about all three axes is clearly visible. The driven shaft follows the motion of the driver shaft as is clear from the third row in Fig. 8.
3 Conclusions The Bond Graph approach is used to model dynamics of two commonly used mechanisms, (1) the Crankshaft – Connecting rod – Piston – Cylinder system, and (2) the Universal Joint system. Pictorial representation of the dynamics of translation and rotation for each link of the mechanism in the inertial frame, representation and handling of constraints at joints, depiction of cause and effect relationships, coding for simulation directly from the Bond Graph without deriving system equations, have been explained in this work. MATLAB based simulations have been presented and interpreted for both the systems.
曲轴连杆活塞机构及使用键合图法的万向联轴器的
动力学仿真建模
摘要
本文论述了与常用的两种机制的动力学仿真模型,(1)曲轴连杆活塞–缸系统,及(2)万向接头系统,使用的键合图方法。这种替代方法的系统动力学仿真,采用键合图,提供了丰富的功能集,包括,对惯性系的机构的各个环节的平移和旋转的动态图形表示,表示和约束节点处理,描述的因果关系,在不同的位置获取动态反应的机理力和力矩,算法的系统方程的推导在第一阶状态空间或因果形式编码进行了仿真,直接从键合图没有导出系统方程,等等。
关键词:键合图,建模,仿真,机制。
1 建模
常用的两种机制的动态,(1)曲轴连杆活塞–––缸系统,及(2)万向接头系统,进行了建模和模拟使用的键合图方法。这个系统的动力学方程的替代方法,采用键合图,提供了丰富的功能集[ 1,2 ]。这些措施包括,对惯性系的机构的各个环节的平移和旋转的动态图形表示,因果关系,描述表示和约束缝隙处理,在不同的位置获取机制动态反应力和力矩,系统方程的推导在第一阶段状态对空间或原因形式及影响编码进行了仿真,没有直接从键合图导出系统方程。通常机制的链接被建模为刚性体。
在这项工作中,我们开发和应用一个多元图模型的每一个环节都要翻译和刚体的转动。环节进行耦合基于约束[3-5]自然关节。平移和旋转接头的开发和集成的动态连接。在建模的时候连接接头是一个问题。这能纠正使用附加的刚度和阻尼元件。它使模型更逼真,使合规和耗散在关节的影响,定义在公差范围内。多元图模型的曲轴连杆活塞–––缸系统,和万向接头系统[ 6 ],采用键合图方法。每一刚性连接的机制参考框架固定在采用Denavit-Hartenberg公约[ 7 ]。翻译的影响主要集中在质量中心的每个刚性连接。旋转效应是惯性框架本身考虑,通过考虑每个环节对各自质心惯性张量,并在惯性坐标系的表达。然后使 多元图的编码在MATLAB中,仿真,进行直接从键合图。一种曲轴机构示意图如图所示,其多元图模型如图2所示。一种万向接头系统示意图如图3所示,其多元图模型如图4所示。从这些机制的动力学仿真得到的结果。
1.1曲轴-连杆-活塞缸机构 图1显示了“曲轴连杆活塞–––缸系统示意。”
单个组件被视为刚性连接,连接的接头。第一个移动连接曲柄,第二连杆是连杆、第三连杆是活塞。一架固定在每一个环节。因此,框架1固定链接1,框架2和框架3上连接2,连接3。一个固定的惯性坐标系0,其起源与1帧被选择。然而,它既不旋转也没有翻译。C1,C2和C3是各环节质量中心。该框架固定在各自的链接采用Denavit-Hartenberg公约[ 4 ]。
图1的系统动力学是在图2所示的多元图模型。该模型描述了旋转以及在系统中的每个环节的翻译。键合图的左边显示的转动部分和右侧部分显示平移部分。我们限制任何运动的惯性帧O点起源之间的链路上的流量是1,O1 SF应用源为零。同样,我们限制在任何点的相对运动,由A1和A2链接1链接2,通过流量SF应用源为零。活塞是链接3,是约束沿X0方向。这些组件沿Y0和Z0方向翻译是受流SF应用源为零。微分因果关系是使K消除(1,1)的刚度矩阵[k]之间的联系2和链接3元为零。
附加的刚度和阻尼元件用于消除微分因果关系,使模型更逼真,使合规和耗散在关节的影响,定义的公差范围内。这些粘弹性元件中的键合图用C和R元素。
我们有一个硒在链接3源,这是作用在活塞的压力,尽管这力量也只有在x方向。
图2:为曲轴连杆活塞–––缸液压系统图1多元图模型。
1.2万向节机构
图3显示了素描的“万向节”机制。
它有三个刚性连接,两个线圈被连接到两个轭,旋转轴与中间一个是交叉连接。惯性帧编号为0,它是固定的。1帧是1帧2连接,在十字架上,连接2和3帧,右边的轭是链接3。惯性坐标系的原点重合的链接1 1机架。链接1和2在两个重合点相互连接的链接1和A2链接2B1和B2链接1链接2。同样的联系2和3连接在两个点DE2和E3链接2链接3。
链接1绕Z轴相对于惯性帧。框架2位于2链路质量中心。链接2相对于方向Z2,如图3所示的链接1转动。3帧也恰逢框架2但它位于链接2。框架3连杆3相对于链接2,关于Z3转动,如图3所示。这个系统的键合图如图4所示。。
图4:为万向节多元图系统图
该机构还有微分因果关系出现的问题。它是使用额外的刚度和阻尼元件消除。如前面所讨论的,这使模型更逼真,使合规和耗散在关节的影响,定义在公差范围内。在节点的链接之间的相对运动,沿着一定的方向,运用流SF源为零的约束。约束松弛是通过改变刚度值和相应的关节阻尼调整。在这里,我们限制的链接3在两个方向上运动的Y和Z,并允许通过解决三个部分流源在x方向的运动,将SF为零,Y和Z方向。对于仿真,励磁转矩施加链接1关于Z方向
2模拟
首先对图1的曲轴机构的计算机仿真结果进行了讨论。曲轴的初始位置是在1θ= 60o与X0轴。然后,在重力的作用下释放。重力也作用于连杆。由于气体压力没有力考虑为仿真不是主要问题,本文的焦点。观察图5中的上行显示的质量中心位移C1在0帧的表达。它移动到Z0轴圆弧。在图5的下行的第一个图显示了曲轴的振动通过对1帧的单位矢量方向变化。在第二排第二个数字表明C1中心随时间振荡。这也许可以归因于非线性造成的耦合与连杆。
为万向接头系统的仿真结果如表8所示。恒转矩被施加到驱动轴的轴。使驱动轴与驱动轴的轴线成 5° 角度。第一行显示驱动轴的第一环节的响应。角动量的驱动轴的轴线呈线性增加的成分,这是预料之中的。第二行的前两个数字显示的横方向的变化,这是链接2。所有三个轴的角运动是清晰可见的。驱动轴的驱动轴的运动:从图8中的第三行是明确的。
3结论
键合图的方法是使用两个常用机构动力学模型,(1)曲轴连杆活塞–––缸系统,及(2)万向接头系统。对惯性系的机构各环节的平移和旋转的动态图形表示,表示和约束节点处理,因果关系的描述编码进行了仿真,直接从键合图没有导出系统方程,一直在这工作了。基于MATLAB的仿真结果进行介绍和解释的系统。
出处:
http:///NaCoMM-2009/nacomm09_final_pap/DVAM/DVAMAV3 .pdf
第二篇:CATIA活塞连杆设计实例教程
第三章 零件设计------活塞、连杆、汽缸组件
本章是设计活塞、连杆与汽缸的三维模型。进一步熟悉绘制草图、拉伸成形、旋转成形、拉伸切除、旋转切除、钻孔、倒(圆)角等命令,同时增添混成、特征的阵列等命令。读者在使用过程中注意将各种命令穿插应用。领会各个命令的用法。
3.1
Loft(混成)特征
混成实体特征不仅应用非常广泛,而且其生成方法也非常丰富、灵活多变。Loft(混成)特征分为两种:Loft(混成实体)和Removed Loft (混成切除)。它们形成的方式是一样的。主要区别在于:Loft(混成实体)是增料特征,Removed Loft (混成切除)是减料特征。
3.1.1. Loft(混成实体) 混成实体指的是利用两个或两个以上的截面(或者说是轮廓),以逐渐变形的方式生成实体。也可以加入曲线或折线作为导引线,使用导引线可以更好的控制外形轮廓之间的过渡。
操作过程举例如下:
1.在窗口中建立三个平行平面,绘制三个截面
左键单击左边模型树中的xy plane平面,单击工具栏中的Plane (平面)图标 ,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选择 Offset from plane (偏移平面);在Offset 一栏中输入20 mm ;预览生成的平面,如图3.1所示。
图3.1 同样再以刚才生成的平面作为参考面,再生成一个偏移10 mm的新平面,预览生成的平面,如图3.2所示。
图3.2 左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标
,进入草图绘制模式。
图标,绘制一个椭圆,圆心在原点。左
,标注椭圆的尺寸, ,进入零件实体设单击工具栏中的Ellipse(椭圆)键单击工具栏中Auto Constraint (自动标注尺寸)图标 如图3.3所示。
绘制完草图之后,单击工具栏中的退出工作台图标 计模式。
图3.3 同样,利用草图中的圆功能在新建的平面1和平面2上分别绘制直径为6和直径为15的圆,如图3.4所示,如图3.5所示。
图3.4 图3.5 2.以渐进曲线混成实体 左键单击Loft(混成实体)图标
,弹出对话框,提供混成参数的设定。在第一栏中分别选择上述绘制的三个草图,作为混成的截面,混成的图形预览如图3.6所示。
图3.6 点击确定。混成的模型如图3.7所示。保存为part3-1 。
图3.7
3.以样条曲线混成实体
上述模型省略了导引线,实际上它的导引线是渐进的曲线,我们也可以给它们建立导引线。
删去模型树中的混成特征
,左键单击左边模型树中的yz plane
,进入草参考平面,再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。
按住Ctrl键,分别选择三个截面,点击工具栏中的Project 3D Elements (3D实体转换)图标 ,使之成三条直线,再单击Spline(样条曲线)
图标,鼠标左键分别选择三条直线的三个端点,绘制一条曲线。双击鼠标左键结束样条曲线,如图3.8所示。
图3.8
绘制完草图之后,单击工具栏中的退出工作台图标 计模式。
左键单击Loft(混成实体)图标
,进入零件实体设
,弹出对话框,提供混成参数的设定。在第一栏中分别选择前面绘制的三个草图,作为混成的截面;在第二栏中选择刚才绘制的样条曲线作为导引线;混成的图形预览如图3.9所示。
图3.9
点击确定。混成的模型如图3.10所示。保存为part3-2 。
图3.10
4.以连续折线混成实体
我们再将导引线变成折线来比较混成的实体不同,鼠标左键双击模型树中的样条曲线草图,进入草图绘制模式,编辑草图。
单击Profile(连续折线)
图标,鼠标左键分别选择样条曲线中的三个控制点,绘制一条折线。双击鼠标左键结束连续折线,再利用剪切功能将样条曲线删去,如图3.11所示。
图3.11
绘制完草图之后,单击工具栏中的退出工作台图标 计模式。
左键单击Loft(混成实体)图标
,进入零件实体设
,弹出对话框,提供混成参数的设定。在第一栏中分别选择前面绘制的三个草图,作为混成的截面;在第二栏中选择刚才绘制的连续折线作为导引线;混成的图形预览如图3.12所示。
图3.12
点击确定。混成的模型如图3.13所示,保存为part3-3 。与前两个相比较,就会发现模型随着导引线的不同而变化着。
图3.13
3.1.2. Removed Loft (混成切除) 混成切除指的是在实体上利用两个或两个以上的截面(或者说是轮廓),以逐渐变形的方式切除实体。也可以加入曲线或折线作为导引线,使用导引线可以更好的控制外形轮廓之间的过渡。
操作过程举例如下: 1.拉伸实体,建立基准面
左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标
,进入草图绘制模式。
,绘制一个圆,圆心在原点。鼠标左键单击工具栏中的Circle (圆)图标 单击 constraint(尺寸限制) 图标 图3.14所示。
,标注出圆的直径为30,修改尺寸后如
图3.14 绘制完草图之后,单击工具栏中的退出工作台图标 计模式。
在工具栏中单击pad(拉伸成形)图标
,进入零件实体设
,弹出对话框,提供拉伸成形参数的设定。在Type 一栏中选择Dimension,指定尺寸为50 mm ;在Selection一栏中选择刚才绘制的草图;如图3.15所示。
图3.15 左键单击左边模型树中的xy plane平面,单击工具栏中的Plane (平面)图标 ,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选
择 Offset from plane (偏移平面);在Offset 一栏中输入25 mm ;预览生成的平面,如图3.16所示。
图3.16
同样再以刚才生成的平面作为参考面,再生成一个偏移40 mm的新平面,预览生成的平面,如图3.17所示。
图3.17
左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标
,进入草图绘制模式。 单击工具栏中的Hexagon(正六边形)尺寸后如图3.18所示。
图标,绘制一个正六边形,标注
图3.18 同样,利用草图中的正六边形功能在新建的平面1和平面2上分别绘制两个正六边形,单击 constraint(尺寸限制) 图标 的参数。如图3.19所示,如图3.20所示。
,分别标注出两个正六边形
图3.19
图3.20 2.混成切除实体
左键单击 Removed Loft(混成切除)图标
,弹出对话框,提供混成切除参数的设定。在第一栏中分别选择前面绘制的三个正六边形草图,作为混成切除的截面;混成切除的图形预览如图3.21所示。
图3.21
点击确定。混成切除的模型如图3.22所示,保存为part3-4 。
3.22 3.2
特征的阵列
特征的阵列就是将一定数量的几何元素或实体按照一定的方式进行规则有序的排列。将特征进行有规律排列的过程就是特征的阵列。
特征的阵列非常适合于有规律地重复创建数量众多的特征。它分为圆形阵列和矩形阵列。
3.2.1 圆形阵列
圆形阵列就是选择一个特征作为基本特征,以圆形数组方式重复应用这个基本特征。
操作过程举例如下: 1.拉伸实体和切除孔
左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标
,进入草图绘制模式。
,绘制一个圆,圆心在原点。单击 单击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标
,标注出圆的直径为100。如图3.23所示。
图3.23
绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标 件实体设计模式。
在工具栏中单击pad(拉伸成形)图标
,进入零
,弹出对话框,提供拉伸成形参数的设定。在Type 一栏中选择Dimension,指定尺寸为20 mm ;在Selection一栏中选择刚才绘制的草图;模型预览如图3.24所示。
图3.24 点击OK,生成的模型如图3.25所示。
图3.25 选择实体上表面作为草图参考平面,单击一下右边工具栏中的sketch(草图设计)图标 ,进入草图绘制模式。
,绘制一个圆,圆心在原点。单击 单击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标
,标注出圆的直径为100。如图3.26所示。
图3.26 绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标
,进入零件实体设计模式。
2.阵列孔特征
鼠标左键选择窗口模型树中的上一步骤中的孔特征,在工具栏中单击Circular Pattern (圆形阵列)图标 定。如图3.27所示。
,弹出对话框,提供圆形阵列参数的设
图3.27
在Parameters 一栏中选择Instance(s) or total angle (数量与总角度),在Instance(s) 一栏中输入7;在Total angle一栏中输入360度;在Reference element (参考元素)一栏中选择实体的上表面,在Object一栏中选择孔特征,单击OK,生成的孔阵列如图3.28所示。
图3.28
在上述对话框中还有一个菜单,这个菜单是Crown Definition (环绕定义),它可以定义圆形阵列的圈数,双击模型树中的圆形阵列的特征,重新编辑圆形阵列的参数。如图3.29所示。
图3.29 在Axial Reference 菜单中,所有参数不变;左键单击Crown Definition菜单,在Parameters 一栏中选择Circle(s) or Circle spacing (圆的数量和圆的间距),在Circle(s) 一栏中输入2;在Circle spacing一栏中输入-20 mm ;方向朝外为正,反之为负,这里选择负方向才有解。在Object一栏中选择孔特征,单击OK,生成的孔阵列如图3.30所示。
图3.30
3.2.2矩形阵列
矩形阵列就是选择一个特征作为基本特征,以矩形数组方式重复应用这个基本特征。
操作过程举例如下: 1.拉伸实体和切除槽
左键单击左边模型树中的xy plane 参考平面,再单击一下右边工具栏中的sketch(草图设计)图标
,进入草图绘制模式。
,在草图模式中绘制出一个矩单击工具栏中retangent (矩形)图标 形,标注尺寸后如图3.31所示。
图3.31
绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标 件实体设计模式。
在工具栏中单击pad(拉伸成形)图标 的设定。如图3.32所示。
,进入零
,弹出对话框,提供拉伸成形参数
图3.32 在Type 一栏中选择Dimension,指定尺寸为10 mm ;在Selection一栏中选择刚才绘制的草图;点击OK。生成的模型如图3.33所示。
图3.33
选择实体上表面作为草图参考平面,单击一下右边工具栏中的sketch(草图设计)图标 ,进入草图绘制模式。
,绘制两个圆,双击Bi-Tangent 双击工具栏中的Circle (圆)图标 Line (切线)图标
,分别点击两圆的左右两个侧面,生成左右两条平行的切线。再利用剪切功能将多余的线段剪切掉,标注和修改尺寸后的草图如图2.34所示。
图2.34
绘制完草图之后,鼠标左键单击工具栏中的退出工作台图标
,进入零件实体设计模式。
2.阵列槽特征
鼠标左键选择窗口模型树中的上一步骤中的槽特征,在工具栏中单击Rectangular Pattern (矩形阵列)图标 的设定。如图3.35所示。
,弹出对话框,提供矩形阵列参数
图3.35
在Parameters 一栏中选择Instance(s) or Spacing (数量与间距),在Instance(s) 一栏中输入8;在Spacing一栏中输入20 mm;在Reference element (参考元素)一栏中选择实体的上表面,预览图形中的阵列特征,如果阵列的特征不在实体上,则选择Reverse (反向)选项,在Object一栏中选择槽特征。点击OK。生成的模型如图3.36所示。
图3.36
在上述对话框中还有一个菜单,这个菜单是Second Direction(第二方向)菜单),它可以定义矩形阵列的另一个方向,双击模型树中的矩形阵列的特征,重新编辑矩形阵列的参数。如图3.37所示。
图3.37 在First Direction(第一方向)菜单中,所有参数不变;鼠标左键单击Second Direction(第二方向)菜单, 在Parameters 一栏中选择Instance(s) or Spacing (数量与间距),在Instance(s) 一栏中输入2;在Spacing一栏中输入45 mm;在Reference element (参考元素)一栏中选择实体的上表面,如果有必要,选择Reverse (反向)选项,在Object一栏中选择孔特征。单击OK,生成的孔阵列如图3.38所示。
图3.38 3.3
活塞的创建
1. 进入软件,拉伸活塞本体 在桌面双击 图标(CATIA),或者从[开始] →[程序]中点击CATIA软件,进入 CATIA软件。选择[开始] →[机械设计] →[part design] 命令,进入零件模块设计。
左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 草图绘制模式。
单击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标 所示。
,绘制一个圆,圆心在原点。单击
,即进入
,标注出圆的直径为50,修改尺寸后如图3.
1图3.1 绘制完草图之后,单击工具栏中的退出工作台图标 计模式。
在工具栏中单击pad(拉伸成形)图标 的设定。如图3.2所示。
,进入零件实体设
,弹出对话框,提供拉伸成形参数
图3.2 在Type 一栏中选择Dimension,指定尺寸为44 mm ;在Selection一栏中选择刚才绘制的草图;点击确定。生成的模型如图3.3所示。
图3.3
2.旋转切除活塞内部
左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。
单击工具栏中Axis (轴)图标
,先绘制一轴线,为下一步的旋转切除
,绘制草图,双击草图
,进入草作准备,再单击工具栏中 Profile (自由折线)图标 的终点即结束自由折线。绘制的草图如图3.4所示。
图3.4
鼠标左键单击工具栏中Corner(倒圆角)图标 圆角尺寸的数值,修改圆角值为R5。
双击 constraint(尺寸限制) 图标 栏中单击
,标注草图上所需尺寸。之后在工具
,在草图上倒圆角,双击 (选择)图标,进行尺寸编辑。最后完成草图的绘制和修改。修改尺寸后的草图如图3.5所示。
图3.5 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。
在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.6所示。
,弹出对话框,提供旋转切除 ,退出草图模式,进入零件
图3.6 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;则下面的轴线选择一栏中会自动选择草图中的轴线,点击OK。生成的模型如图3.7所示。
图3.7 3.拉伸凸台
我们先从活塞内部创建一个平面。单击工具栏中的Plane (平面)图标
,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选择 Offset from plane (偏移平面);在Reference一栏中选择 yz plane (从窗口的目录树上或工作台中选择,也可以在点击创建平面图标之前先选择该平面);在Offset 一栏中输入10 mm ;如果有必要,可以选择Reverse Direction(反向);预览生成的平面,如图3.8所示。
图3.8 点击确定,创建的平面如图3.9所示。
图3.9 鼠标左键单击创建的新平面,再单击一下右边工具栏中的sketch(草图设计)图标 ,进入草图绘制模式。
,绘制一个圆,单击 constraint(尺单击工具栏中的Circle (圆)图标 寸限制) 图标
,标注出圆的直径为16,修改尺寸后如图3.10所示。
图3.10 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。
在工具栏中单击pad(拉伸成形)图标 的设定。如图3.11所示。
,弹出对话框,提供拉伸成形参数
,退出草图模式,进入零件
图3.11 在Type 一栏中选择Up to next; 在Offset(偏移)一栏中输入0 mm (通常默认状态都是0);在Selection一栏中选择刚才绘制的草图;点击OK。生成的模型如图3.12所示。
图3.12 左键点击一下左边模型树中上述刚完成的拉伸成形凸台的特征,再单击工具栏中的Mirror(镜像)图标
,弹出对话框,提供镜像参数的设置。如图3.13所示。
图3.13 在Mirroring element(镜像元素)一栏中选择yz平面,点击OK。镜像的特征如图3.14所示。
图3.14 选择其中一个凸台的上表面作为草图参考平面,单击一下右边工具栏中的sketch(草图设计)图标
,进入草图绘制模式。
,绘制一个圆,单击 constraint(尺单击工具栏中的Circle (圆)图标 寸限制) 图标 ,标注出圆的直径为10,修改尺寸后如图3.15所示。
图3.15 在工具栏中单击Pocket (拉伸切除)图标 参数的设定。如图3.16所示。
,弹出对话框,提供拉伸切除
图3.16 在Type 一栏中选择Dimension,指定尺寸为40 mm ,在Selection一栏中选择刚才绘制的草图;再选择Mirrored extent(镜像) 选项;点击OK。生成的模型如图3.17所示。
图3.17 4.旋转切除槽
左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。
单击工具栏中 Profile (自由折线)图标
,在活塞的右上侧绘制草图,
,进入草双击草图的终点即结束自由折线。绘制的草图如图3.18所示。
图3.18 双击 constraint(尺寸限制) 图标 栏中单击
,标注草图上所需尺寸。之后在工具 (选择)图标,进行尺寸编辑。最后完成草图的绘制和修改。修改尺寸后的草图如图3.19所示。
图3.19
鼠标左键单击工具栏中的退出工作台图标 实体设计模式。
在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.20所示。
,弹出对话框,提供旋转切除 ,退出草图模式,进入零件
图3.20 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;在Axis Selection 一栏中选择窗口中的V轴,也可以选择活塞本体上的圆柱,系统自动出现圆柱的轴线,此轴线跟V轴平行。作用是一样的。点击OK。生成的模型如图3.21所示。
图3.21 5.钻孔
单击活塞上部的小平面作为钻孔表面,如图3.22所示。
图3.22 单击工具栏中的Hole (钻孔)图标
,弹出对话框,提供钻孔参数的设定。在对话框中先打开Extension 菜单,在第一栏中选择Up To Next(成型到下一面)类型;在Diameter(直径)一栏中输入2 mm ;在Offset(偏移)一栏中输入0 mm (通常默认状态都是0);单击右边的Positionning Sketch (草图位置)图标
,进入孔的草图模式状态,约束草图位置。
,标注孔的中心到H轴的距离为3.5;双击 constraint(尺寸限制) 图标
标注孔的中心与V轴在同一直线上,注意鼠标一定要点击上孔的中心,否则标注的尺寸不会正确。如图3.23所示。
图3.23 鼠标左键单击工具栏中的退出工作台图标 定义对话框。如图3.24所示。
,退出草图模式,返回孔的
图3.24 再打开Type菜单,在第一栏中选择Simple选项;再打开一下Thread Definition 菜单,察看一下是否取消了Threaded 选项,如果未取消则取消这个选项,通常默认状态是未选择的。至此,孔的定义已经完成。点击OK,生成的孔如图3.25所示。
图3.25 鼠标左键选择窗口模型树中的上一步骤中的孔特征,在工具栏中单击Circular Pattern (圆形阵列)图标 定。如图3.26所示。
,弹出对话框,提供圆形阵列参数的设
图3.26 在Parameters 一栏中选择Instance(s) or total angle (数量与总角度),在Instance(s) 一栏中输入5;在Total angle一栏中输入360度;在Reference element (参考元素)一栏中选择活塞的上表面,在Object一栏中选择孔特征,单击OK,生成的孔阵列如图3.27所示。
图3.27 6. 倒(圆)角
在工具栏中单击 Chamfer (倒角)图标
,弹出对话框,提供倒角参数的设定。
在Mode 一栏中选择Length1/Angle ;在Length1一栏中输入1.5 mm ;在Angle一栏中输入60度;在Object(s) to Chamfer 一栏中选择活塞的上表面的外边线;在Propagation一栏中选择Tangency选项。图形预览如图3.28所示。
图3.28 在工具栏中单击 Chamfer (倒角)图标
,弹出对话框,提供倒角参数的设定。
在Mode 一栏中选择Length1/Angle ;在Length1一栏中输入2 mm ;在Angle一栏中输入45度;在Object(s) to Chamfer 一栏中选择活塞的上表面的内边线;在Propagation一栏中选择Tangency选项。图形预览如图3.29所示。
图3.29 在工具栏中单击 Edge Fillet (倒圆角)图标
,弹出对话框,提供倒圆角参数的设定。
在Radius一栏中输入2 mm ,在Object(s) to fillets一栏中分别选择两个凸台底部的边线,在Propagation一栏中选择Tangency选项,图形预览如图3.30所示。
图3.30 在工具栏中单击 Edge Fillet (倒圆角)图标
,弹出对话框,提供倒圆角参数的设定。
在Radius一栏中输入0.5 mm ,在Object(s) to fillets一栏中分别选择活塞槽的上下面的边线、活塞底面、活塞内边线,在Propagation一栏中选择Tangency选项,图形预览如图3.31所示。
图3.31 至此,活塞模型已全部完成。隐藏所有参考面后的模型如图3.80所示。保存为huo sai 。
图3.32 3.4
连杆的创建
1. 进入软件,绘制连杆的一端草图 在桌面双击 图标(CATIA),或者从[开始] →[程序]中点击CATIA软件,进入 CATIA软件。选择[开始] →[机械设计] →[part design] 命令,进入零件模块设计。
左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 草图绘制模式。
双击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标 如图3.1所示。
,绘制两个圆,圆心都在原点。双击
,即进入
,标注出两个圆的直径20和27,修改尺寸后
图3.1
绘制完草图之后,单击工具栏中的退出工作台图标 计模式。
2.拉伸成形本体
,进入零件实体设进入零件实体设计模式之后,在工具栏中单击pad(拉伸成形)图标 出对话框,提供拉伸成形参数的设定。如图3.2所示。
,弹
图3.2
在Type 一栏中选择Dimension,指定尺寸为12mm;在Selection一栏中选择刚才绘制的草图;再选择Mirrored extent(镜像) 选项;点击确定。生成的模型如图3.3所示。
图3.3 2. 绘制连杆的另一端
左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 草图绘制模式。
双击工具栏中的Circle (圆)图标 constraint(尺寸限制) 图标
,绘制两个同心圆。双击
,即进入
,标注出两个圆的直径10和15,圆心到原点的距离是86。修改尺寸后如图3.4所示。
单击工具栏中的退出工作台图标 中单击pad(拉伸成形)图标 3.5所示。
图3.4
,进入零件实体设计模式。在工具栏
,弹出对话框,提供拉伸成形参数的设定。如图
图3.5 在Type 一栏中选择Dimension,指定尺寸为9mm;在Selection一栏中选择刚才绘制的草图;再选择Mirrored extent(镜像) 选项;点击确定。生成的模型着色如图3.6所示。
图3.6 4.建立基准面
左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标
,进入草图绘制模式。
左键选取大圆柱的外圆边线,单击工具栏中的Project 3D Elements (3D实体转换)图标 ,则在xy平面产生与圆柱外圆一样大小的圆。如图3.7所示。
图3.7 点击工具栏中Line (直线)图标
,在圆的中间绘制一条与V轴平行的直线;单击Intersection Point(交点)图标 两个交点。如图3.8所示。
,分别点击圆和直线产生
图3.8 单击 constraint(尺寸限制) 图标 图3.9所示。
,标注圆上两交点的距离为25mm,如
图3.9 双击工具栏中的 Quick Trim (快速剪切)图标
,鼠标左键点击要剪除的线段,将草图剪切成如图3.10所示的草图。这个草图将为下一步建立平面作基础。
图3.10 单击工具栏中的退出工作台图标
,退出草图模式。同理,再在xy平面用上述同样的方法在小圆柱上绘制如图3.11所示的草图。
图3.11 单击工具栏中的Plane (平面)图标
,弹出对话框,提供创建平面的参数的设定。在Plane type 一栏中选择 Angle/Normal to plane ;在Rotation axis 一栏中选择上一步在大圆柱上绘制的直线草图; 在Reference一栏中选择 yz plane (从窗口的目录树上或工作台中选择,也可以在点击创建平面图标之前 先选择该平面)。如图3.12所示。
图3.12 点击确定,创建的平面plane.1如图3.13所示。
图3.13 同理,利用在小圆上绘制的直线和yz平面建立同样类型的平面plane.2,如图3.14所示。
图3.14 5.混成连杆中段
先绘制两个草图作为混成的截面。左键单击左边模型树中的plane.1 参考平面,或在窗口中央选择三平面中的plane.1平面。再单击一下右边工具栏中的sketch(草图设计)图标
,即进入草图绘制模式。
,在草图模式中画出一个矩形,
,标注矩形的尺寸,如图3.15单击工具栏中Rectangle (矩形)图标
在工具栏中双击 constraint(尺寸限制) 图标 所示。
图3.15 单击工具栏中的退出工作台图标
,退出草图模式。左键单击左边模型树中的plane.2参考平面,或在窗口中央选择三平面中的plane.2平面。再单击一下右边工具栏中的sketch(草图设计)图标 图3.16所示的草图。
,进入草图绘制模式,绘制出如
图3.16 单击工具栏中的退出工作台图标 Loft(混成)图标
,进入零件实体设计模式。左键单击 ,弹出对话框,提供混成参数的设定。在第一栏中分别选择上述绘制的两个矩形草图,作为混成的截面,混成的图形预览如图3.17所示。
图3.17 点击确定。混成的模型如图3.18所示。
图3.18 仔细查看混成的图形,发现混成的图形超出了大孔的范围。因此,要再重新切除多余的部分。单击大圆的上表面作为草图基准面,再单击一下右边工具栏中的sketch(草图设计)图标
,进入草图绘制模式。左键选取大圆柱的内
,则在圆边线,单击工具栏中的Project 3D Elements (3D实体转换)图标 此平面产生与圆柱内圆一样大小的圆。如图3.19所示。
图3.19 单击工具栏中的退出工作台图标 栏中的Pocket (拉伸切除)图标
,退出草图模式。左键单击右边工具
,弹出对话框,提供拉伸切除参数的设定。在Type 一栏中选择up to next ,在Selection一栏中选择刚才绘制的草图;图形预览如图3.20所示。
图3.20 点击OK。生成的模型如图3.21所示。
图3.21 6.拉伸切除连杆中段
单击大圆的上端面作为草图基准面,再单击一下右边工具栏中的sketch(草图设计)图标
,进入草图绘制模式。按住Ctrl键分别选取连杆的边线和两圆柱的外圆边线,单击工具栏中的Project 3D Elements (3D实体转换)图标
,则在此平面产生与原边线相重合的边线。如图3.22所示。
图3.22 双击工具栏中Line (直线)图标
,分别在连杆的中段绘制两条直线(尽量与连杆的边线平行)。按住Ctrl键选取其中一条直线和这一侧的边线。单击工具栏中Constraints Defined in Dialog Box (约束定义)图标
,弹出约束定义的参数对话框。选择Parallelism(平行)选项。如图3.23所示。
图3.23 同样,约束定义另一侧的两条直线平行。在工具栏中双击 constraint(尺寸限制) 图标 ,分别标注两平行直线之间的距离为2.5,如图3.24所示。
图3.24 双击工具栏中的 Quick Trim (快速剪切)图标 的线段,将草图剪切成如图3.25所示的草图。
,鼠标左键点击要剪除
图3.25 单击工具栏中的退出工作台图标 栏中的Pocket (拉伸切除)图标
,退出草图模式。左键单击右边工具
,弹出对话框,提供拉伸切除参数的设定。在Type 一栏中选择Dimension,指定尺寸为9mm ,在Selection一栏中选择刚才绘制的草图;如果方向显示反了,可以选择Reverse Direction(反向);图形预览如图3.26所示。点击OK。生成的模型如图3.27所示。
图3.26
图3.27 左键点击一下左边模型树中上述刚完成的拉伸切除特征,再单击工具栏中的Mirror(镜像)图标
,弹出对话框,提供镜像参数的设置。如图3.28所示。
图3.28 在Mirroring element(镜像元素)一栏中选择xy平面,点击OK。镜像的特征如图3.29所示。
图3.29 7.倒圆角
在工具栏中单击 Edge Fillet (倒圆角)图标
,弹出对话框,提供倒圆角参数的设定。在Radius 一栏中输入3mm ,在Object(s) to fillet 一栏中分别选择连杆中段的的四个角,如图3.30所示的四条边。
图3.30 在Propagation一栏中选择Tangency一项,点击OK。生成的模型如图3.31所示。
图3.31 同样,将连杆中段的另一端及中间的平面分别倒圆角1.5mm,至此,连杆模型已经完成,隐藏各个参考面及草图,完成的模型如图3.32所示。保存为lian gan 。
图3.32
3.5
汽缸的创建 1. 进入软件,绘制汽缸的底板 在桌面双击 图标(CATIA),或者从[开始] →[程序]中点击CATIA软件,进入 CATIA软件。选择[开始] →[机械设计] →[part design] 命令,进入零件模块设计。
左键单击左边模型树中的xy plane 参考平面,或在窗口中央选择三平面中的xy平面。再单击一下右边工具栏中的sketch(草图设计)图标 入草图绘制模式。
单击工具栏中retangent (矩形)图标 形,如图3.33所示。
,在草图模式中绘制出一个矩
,即进
图3.33
下一步准备标注尺寸,由于前面采用的是基本标注尺寸的方法,在这里我再采用另一种标注尺寸的方法。让系统自动标注尺寸和使用方程相互约束尺寸。
左键单击工具栏中Auto Constraint (自动标注尺寸)图标 框。提供自动标注尺寸参数的设置。如图3.34所示。
,弹出对话
图3.34
在第一栏中标注的尺寸元素中分别选择窗口中矩形的长和宽;在第二栏中的参考元素中选择窗口中的V轴,即垂直轴;在第三栏中的对称线中选择H轴,即水平轴;在第四栏中的标注方式中选择Chained (链式)选项;单击确定,标注的尺寸如图3.35所示。
图3.35 鼠标左键单击矩形的一边到V轴距离的那个尺寸(39.815),再单击工具栏中的公式图标 ,弹出对话框,提供方程参数的设置,如图3.36所示。
图3.36 仔细查看要编辑的参数是否是刚才选中的尺寸,如果不是的话,就在参数框中再选择一次,单击框中的添加公式选项,弹出对话框,提供公式编辑框。在公式编辑框中的第一栏中,系统自动出现上面所选的尺寸;在第二栏中输入方程,鼠标左键在窗口中单击矩形上对应刚才所选尺寸的那条边,方程中即出现这个尺寸的代表式,再输入除号,再输入数字2,这个方程就定义了刚才的尺寸是矩形中这个对应单边尺寸的一半,以后只要改变矩形的这个边长,对应方程的尺寸就会自动定义为矩形这个边长尺寸的一半。同理,如果输入的方程式改变了,则对应的尺寸就会依照方程的定义而改变。如图3.37所示。
图3.37 点击确定,方程定义已经完成。同理,再编辑矩形的另一条边到H轴的距离是矩形对应边的1/2。完成方程的矩形如图3.38所示。读者注意图中尺寸上出现的(f(x)),代表这个尺寸是用方程定义约束的。
图3.38 鼠标左键分别双击矩形的两条边,在弹出的对话框中输入数值74,定义矩形的两个边长均为74mm ,如图3.39所示。
图3.39 鼠标左键单击工具栏中Corner(倒圆角)图标
,分别给矩形的四个直角倒成圆角,双击圆角尺寸的数值,修改圆角值为R8,如图3.40所示。
图3.40 鼠标左键单击工具栏中Profile (自由折线)图标
,在矩形的右边绘制草图,再利用剪切功能修剪草图,标注尺寸,如图3.41所示。
图3.41 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。
在工具栏中单击pad(拉伸成形)图标 的设定。如图3.42所示。
,弹出对话框,提供拉伸成形参数
,退出草图模式,进入零件
图3.42 在对话框中的Type 一栏中选择Dimension,在Length一栏中输入尺寸为12 mm;在Selection一栏中选择刚才绘制的草图;点击确定。生成的模型如图3.43所示。
图3.43
2.拉伸汽缸本体
单击上述模型的上表面作为草图的工作平面,再单击一下右边工具栏中的sketch(草图设计)图标
,进入草图绘制模式。
,绘制一个直径为74的圆,圆心在单击工具栏中的Circle (圆)图标 原点,如图3.44所示。
图3.44
鼠标左键单击工具栏中的退出工作台图标 实体设计模式。
在工具栏中单击pad(拉伸成形)图标
,弹出对话框,提供拉伸成形参数
,退出草图模式,进入零件的设定。如图3.45所示。
图3.45 在对话框中的Type 一栏中选择Dimension,在Length一栏中输入尺寸为108 mm;在Selection一栏中选择刚才绘制的草图;点击确定。生成的模型如图3.46所示。
图3.46
3. 旋转切除汽缸本体
左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。
单击工具栏中retangent (矩形)图标 标注尺寸后如图3.47所示。
,在草图模式中绘制出一个矩形,
,进入草
图3.47 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。
在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.48所示。
,退出草图模式,进入零件
,弹出对话框,提供旋转切除
图3.48 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;在Axis Selection 一栏中选择窗口中的V轴。点击确定。生成的模型如图3.49所示。
图3.49 左键单击左边模型树中的yz plane 参考平面,或在窗口中央选择三平面中的yz平面。再单击一下右边工具栏中的sketch(草图设计)图标 图绘制模式。
单击工具栏中 Profile (自由折线)图标 图。双击 constraint(尺寸限制) 图标 如图3.50所示。
,在汽缸本体上部绘制草
,进入草
,标注草图尺寸。修改尺寸后的草图
图3.50 鼠标左键单击工具栏中的退出工作台图标 实体设计模式。
在工具栏中单击Groove (旋转切除)图标 参数的设定。如图3.51所示。
,弹出对话框,提供旋转切除 ,退出草图模式,进入零件
图3.51 在对话框中First angle 一栏中输入360度,在Second angle 一栏中输入0度(通常默认状态也是这样),在Selection一栏中选择刚才绘制的草图;在Axis Selection 一栏中选择窗口中的V轴。点击OK。生成的模型如图3.52所示。
图3.52 4. 钻气缸气孔
鼠标左键选择气缸上表面作为钻孔表面,如图3.53所示。
图3.53
单击工具栏中的Hole (钻孔)图标
,弹出对话框,提供钻孔参数的设定。在对话框中先打开Extension 菜单,在第一栏中选择Blind (盲孔)类型;在Depth (深度)一栏中输入18 mm;在右边关于孔的底部形状参数中选择Flat(平底)。如图3.54所示。
图3.54 再打开Type菜单,在第一栏中选择Simple选项;再打开一下Thread Definition 菜单,选择Threaded (螺纹)选项,在Type(类型)一栏中选择Metric Thin Pitch(公制细螺纹)选项;在Thread Description(螺纹直径) 一栏中选择M12选项 ;在Thread Depth (螺纹深度)一栏中输入14 mm;在 Hole Depth(孔深)一栏中输入18 mm。再选择 Right-Threaded(右旋螺纹)选项,图形预览如图3.55所示。
图3.55 至此螺纹定义完成,点击OK,生成的孔如图3.56所示。
图3.56
鼠标左键选择上述绘制的螺纹孔底面(平底)作为下一个钻孔的表面,如图3.57所示。
图3.57
单击工具栏中的Hole (钻孔)图标
,弹出对话框,提供钻孔参数的设定。在对话框中先打开Extension 菜单,在第一栏中选择Up To Next(成型到下一面)类型;在Diameter(直径)一栏中输入5 mm ;在Offset(偏移)一栏中输入0 mm (通常默认状态都是0);如图3.58所示。
第三篇:普桑发动机活塞连杆组拆装作业标准及相关数据
1、活塞直径﹕标准值80.98㎜,最大偏差0.04㎜于活塞下缘离裙部底边约15㎜处测量。测量前需校准千分尺并计算误差。超过误差应更换合适的活塞。
2、气缸内径﹕标准值81.01㎜,最大偏差0.08㎜,。横向是指曲轴方向。圆度、圆柱度
误差不大于0.005㎜,否则应对气缸进行镗削加工。
3、油膜间隙﹕标准值0.035 ~0.045㎜。将活塞倒装入气缸,用塞尺测量间隙。
4、第一道活塞环∶侧隙0.03 ~0.06㎜,端隙0.30 ~0.45㎜。活塞环位于气缸平面下约15
㎜处测量。若不符合规定应重新选配活塞环。
5、活塞连杆组拆装注意事项∶
①对活塞做标记,打上气缸号及指示发动机前端的箭头。 ②拆卸连杆及连杆轴承盖时应打上气缸号,安装时连杆浇铸标记应朝向发动
机前端。
③安装时连杆螺栓、螺母的螺纹,螺母与轴承盖的接触面,轴承盖与连杆接
触面都需要涂抹机油。螺母的拧紧力矩为30n.m,再转180度。连杆螺
栓必须更换。
④活塞环开口互错120°,有标记面朝上。镀铬的为第一道环。安装顺序为
油环的下刮片→油环的衬簧→油环的上刮片→第二道环→第一道环。
⑤拆装时要对零部件认真细致地进行清洗,正确使用工量具,特别是千分尺
和百分表的调教,不能有丝毫偏差,否则会直接影响测量数据的准确性。⑥熟练翻阅维修手册,合理分配时间,清洁整理工具,文明安全规范作业,
冷静处理突发情况。
第四篇:平面连杆机构教学设计
赵县职教中心
翟伟波
[教材分析] 平面连杆机构能以简单的结构实现复杂的运动规律,而且更以其独特可靠的低副联接形式,倍受广大机械设计人员的瞩目。其在工业、农业、冶金、化工、纺织、食品等机械中的应用实例不胜枚举。如此重要的教学内容,只有探寻一种形式新颖、方法独特的教学方法,才能收到良好的教学效果。
[教学对象分析]
机械制造专业的学生,普遍存在机械常识匮乏与对现实机械现象的有视无睹,该现象严重阻碍了专业课教学的进程和效果。教师在教学过程中,应充分考虑学生的现实情况,采取有效措施,让学生建立机械意识,以思维理念的变化架起理论与实践相结合的桥梁。
[对教师的要求]
教师在熟练掌握教材的基础上,善于运用生活中饶有兴趣的机械现象导入新课,巧妙地制造悬念,激发学生学习新知识的强烈愿望。教师要发挥主导作用,精心设计教学过程,为学生创造一个学习、发现、探索、创造的情境。教师要正确引导学生思维,让学生积极主动地做到理论与实践相结合。
一、教学目标:
知道:铰链四杆机构的组成。 掌握:铰链四杆机构曲柄存在的条件。 熟悉:铰链四杆机构三种基本形式的形成条件。
二、教学重点、难点: 铰链四杆机构曲柄存在的条件。 铰链四杆机构三种基本形式的形成条件。
三、教学方法: 诱趣探求,思维探索。
四、教具:
投影仪和屏幕、软质细杆:6cm(1根)、10cm(1根)、15cm(1根)、18cm(1根)、50cm(8根)、大头针(若干枚)、小刀(8把)
五、教学过程:
(一)提出问题、引发思维、诱趣探求 导入语:同学们都观看过现场直播的电视节目,在这样的节目当中,摄影师最不想让观众看到的图像是什么?(稍顿)
学生回答:
1、质量不好的画面。
2、灯光不好、有阴影的画面。
3、表演出现 错误的画面。
(一一否定、加强悬念,诱发求知欲)是电视画面中出现摄影架的镜头。摄影师要想把多角度、多层次的电视画面呈现在观众面前,这要归功于摄影机的驱动架。究竟驱动架采用了什么样的结构设计,能够让摄影师随心所欲,运动自如,诀窍就在四根小小的杆件上,下面我们来做一个模拟设计。
(二)示范操作,发展思维
[策略分析] 对于铰链四杆机构曲柄存在条件这一重要知识点的学习,传统的教学方法是根据三角形二边之和大于第三边的理论进行不等式的数学推导,其过程繁琐而刻板,效果欠佳。如果利用教具演示与思维点拨相结合的教学方法,学生会在宽松的课堂气氛中获得非常直观的感性知识,既突破难点,又发展了学生思维。
取出四根杆件(6cm,10cm,15cm,18cm),用大头针组成平面连杆机构。 分别以四根杆件为机架,演示并引导学生观察两个连架杆的运动情况. 平面连杆机构定义,类型(板书) 测量四根杆件的长度并让学生做记录,计算最短杆与最长杆长度之和与其余两杆长度之和的关系. 引导学生探求曲柄存在条件 曲柄存在条件(板书). 出示投影:铰链四杆机构三种基本形式:曲柄摇杆机构,双曲柄机构,双摇杆机构的形成条件. (三)动手设计
深化思维
[策略分析] 该程序是“思维探索型”教学方法的中心环节,学生感性认识形成以后,要分组进行设计。在设计过程中,充分发挥其主观能动性,边设计,边思考,既巩固了理论知识,又提高了动手能力,从而实现感性知识上升为理性知识,达到理论与实践有效结合。 分组:32人,4人/组,共8组,由动手能力强的学生担任组长,发挥骨干作用。 组长领取设计材料:软质细杆1根,大头针若干,小刀一把。 分配设计任务。
(1,2)组
曲柄摇杆机构 (3,4)组
双曲柄机构 (5,6)组
双摇杆机构 最长杆+最短杆≤其余两杆长度之和。 以最短杆的相对杆为机架。
(7,8)组
双摇杆机构:最长杆+最短杆〉其余两杆长度之和。 巡回指导,及时解答学生疑问并纠正设计过程中的错误操作。 每组选派一人,表述设计思路,展示设计成果。
(四)探索创新,升华思维
[策略分析]通过展示设计成果,学生心中普遍产生一种成就感,自然的心理倾向是学有所用,此时教师要善于捕捉学生心理,适时提问:究竟谁的设计成果能应用在摄影机的驱动机构上?课堂气氛再度活跃,既升华学生思维,又能达到首尾呼应,探索创新的目的。 提问:究竟谁的设计成果能应用在摄影机的驱动机构上?
引导学生进行小组讨论。 总结发言:指出应为双摇杆机构。 课堂小结:网络知识体系。
教学反馈:自由研读教材当中列举的应用实例。 布置作业:P118:3、4、5、6、7、8
附:板书设计: 平面连杆机构
一、平面连杆机构
3、基本类型 1、定义、特点
(1)曲柄摇杆机构 2、类型
条件:
二、铰链四杆机构:
(2)双曲柄机构 1、组成
条件: 2、曲柄存在条件
(3)双摇杆机构 (1)
条件: (2)
第五篇:连杆机构的设计1(5页)
连杆机构的设计是机械原理中关于机构设计的重要内容。它的设计有多种类型,其中按照行程速比系数进行设计是考试中最常见的类型,本文先举一个例子来说明其设计过程。
问题:设计一曲柄摇杆机构ABCD。已知摇杆CD的长度 290 mm,摇杆两极限位置间的夹角 ,行程速比系数 K = 1.25,连杆BC的长度 260 mm。试求曲柄的长度AB和机架AD的长度。
问题分析:设计四杆机构,实际上要确定两个固定铰链A,D的相对位置,以及AB,BC,CD的长度。这里共有5个设计要素。这里先进行简单的分析。
(A)固定铰链D的位置。随便取一个作为初始位置。已知。 (B)固定铰链A的位置。待定。 (C)AB的长度。待定。
(D)BC的长度。已知,为260mm. (E)CD的长度。已知,为290mm. 这里的关键是要求出铰链A的位置,一旦确定后,根据AC的一个位置,就可以计算AB的长度。
确定铰链A的位置。由于A在几何上就是一个点,要确定一个点的位置,在作图中基本上都是通过两根线相交而得来的。这就是说,先根据某些已知条件得到A所在的一个曲线,再根据另外的已知条件得到A所在的另外一条曲线,二者相交得到A点的位置。
显然,这里根据形成速比系数就可以得到A点所在的一个圆,而另外A点所在的一条曲线,我们随着分析的深入,在解题过程中确定。
(1)计算极位夹角
首先,计算极位夹角。根据形成速比系数的定义,可以得到
因此,极位夹角是20度。 (2)作出摇杆的两个位置
然后,根据题意随便取一个点做出固定铰链A,然后随便做一个290mm的长度C1D作为摇杆的第一个位置,顺时针转动32度得到另外一个位置C2D。
(3)根据极位夹角确定转动副A所在的圆
下面根据据极位夹角确定A点所在的圆。 连接C1C2. 过C1作一条直线垂直于C1C2;过C2作一条直线,与C2C1的夹角是90-20=70度;上述两条直线相交于一点,该点命名为E点。
然后以C2E为直径,以其中点为圆心,作一个圆,该圆就是铰链A所在的圆。但是铰链A在该圆的哪个地方呢?这是未知的,需要进一步利用其它条件确定。
(4)计算转动副A所在的曲线的关键数据
假设铰链A在圆上的位置已经确定,则连接AC1,AC2,这应该就是在两个极限位置时机构的状态。设曲柄的长度是a,而连杆的长度是b(实际上就是260mm),则有
这就是说,A点到C1,C2点的距离和是520mm.
所以,现在的问题其实是,如何做出到C1,C2的距离和为520mm的A点所在的曲线呢?
把这个问题抽象一下,如何找到一个点,使得该点到两个定点的距离是常数?
实际上,按照高中解析几何,该曲线是一个椭圆。而这两个定点就是椭圆的两个焦点。所以,现在的问题就是,如何把该椭圆绘制出来。
要绘制椭圆,需要知道半长轴和半短轴的长度。下面简单的计算一下。
首先从图中量取C1C2的距离为160mm,在椭圆的定义里面,这是两个焦点的距离,即
而由已知条件,A点到这两个焦点的距离和为2*260mm,所以椭圆的半长轴为260mm 即
根据半长轴,半短轴与焦点距离的关系,有
即半短轴的长度为
这样,椭圆的基本参数完全确定。 (5)绘制椭圆,得到铰链A出现的两个位置
以C1C2的中点O为原点,做出OF1=OF2=260mm,再做出OG=247mm,并使得OG垂直于F1F2.
然后以这几个点作为关键点,作出椭圆。该椭圆与上面圆的交点为A1,A2.
擦去中间的辅助线,得到铰链A所在的两个位置。显然,该机构的设计会有两种方案。
(5)绘制位置1处的机构运动简图
下面先绘制位置1出的机构运动简图。
首先连接AC1,AC2,并量取其长度。这里AC2=327mm.由于
故而曲柄的长度就是67mm。以A1为圆心,以67mm为半径作圆,与AC2的交点为B1点.在B1处绘制一个圆圈,在C2处也绘制一个圆圈,以代表转动副。
去掉辅助线,并量取A1D的长度,以及A1D与水平线的夹角如下图,则此处的机构运动简图完全确定。
(6)绘制位置2处的机构运动简图
对于位置2,按照上述方法同样可以确定基本尺寸,不再赘述。
这样,关于两个机构运动简图就完全确定了。那么,这两个机构运动简图之间有什么关系呢?大家自己可考虑一下这个问题。