2017不等式的证明方法教案(精选8篇)
篇1:2017不等式的证明方法教案
课题:基本不等式的证明(1)
斜桥中学肖剑
一、教材分析
不等式是高中的重点也是难点,而本节内容又是该章的重中之重,是《考试说明》中八个C级考点之一。基本不等式的证明方法(比较法、分析法、综合法)为我们证明不等关系提供了主要的方法及应用。用基本不等式求函数最值也是高考的一个热点。
二、教学目标
1.知识目标:⑴知道算术平均数和几何平均数的概念
⑵探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法;
⑶能利用基本不等式证明简单的不等关系。
2.情感目标:通过不等式基本性质的探究过程,培养学生合作交流的思维品质,渗透不等式
中的数学美,激发学生学习兴趣,陶冶学生的数学情操。
3.能力目标:⑴通过对基本不等式证明的理解,体会三种证明方法,能准确用三种证明中简
单的方法证明其它不等式问题。
⑵体会类比的数学思想方法,培养其观察、分析问题的能力和总结概括的能力
三、教学重、难点
以学生探索发现定理来得出重点,以学生小组讨论,教师点拨来突破难点。
四、教学方法
以学生自主探究为住,教师归纳总结,采用启发式教学。
五、教学过程
1、创设情境、导入新课
利用多媒体显示下面不等式,由学生完成比较大小。
34294
423
322222、问题探究、讲授新课
提出问题:能否发现什么规律?
通过比较,学生不难得出,两数和的一半大于两数积的算术平方根。从而得出数学表达式abab。从而得出本节课的第一个重点:基本不等式的定理。这样由学生自主探索、2发现新知,可让他们体会获得成功的愉悦感。在这里,如果学生漏掉a和b是正数,可对他们进行修正,并可扩充到a0,b0。同时讲明取“=”当且仅当的含义,接着可向学生讲
解算术平均数和几何平均数的概念。
得出这个定理后,下面我可利用多媒体生动地向学生展示该不等式的几何证明即不等式的几何意义同时强调取等号时的位置,这样可提高他们学习数学的兴趣。展示完后,我便可提问,刚才我们是从图中直观地看出这个不等式是正确的,但我们数学是需要严谨的逻辑证明,同学们可用哪些方法去证明呢?这便是本节课的第二个重点,也是难点。在此,可鼓励学生发挥集体的力量,一人不行两人,两人不行四人,大家一起探讨,这样以学生为主体,使他们全都参与到课堂中去,使课堂达到高潮。在学生的讨论过程中,我也深入到学生中去,并做适当的点拨。
通过学生的讨论,学生不难得出用作差的方法证明该不等式,对此,我对他们进行鼓励、肯定,竖立他们学习数学的自信心。同时向他们讲明作差比较是我们高中阶段证明不等式的重要方法之一。最后我用多媒体展示书写过程,帮他们再次强化该方法的书写步骤。对于分析法,我估计学生可能会想到思路,会说出大致的证明过程,但对该方法的理解还是很模糊的,在这里,我首先向他们介绍这就是分析法,是我们证明不等式的另一个重要方法,接着讲解该方法,即从结论出发,推到已知结论或恒等式或公理,最后由我在黑板上完成书写,帮他们学会规范的书写,即“要证,只要证”的形式
要证abab
2只要证2abab
只要证0ab2ab
只要证0ab 2
因为最后一个不等式成立,所以ab ab成立,当且仅当ab,即ab时取“” 2
对于综合法,在证明这道题时,如果学生没有先想到,就把本方法在最后的方法中讲,因为综合法在本题中不易想到从哪个式子开始证明,但有了比较法和分析法后,学生自然能想到从哪个式子开始证明,同时讲清综合法的特点,即由条件,推倒结论。
讲完三种证明方法后,留一定时间给学生,让他们自己去感悟一下三种方法的特点及书写过程,加深他们的印象。
b2a2
最后,我以巩固本节课所学知识为目的,让学生比较:与ab的大小(其中ab
a,bR),在这里,我认为比较两个变量的大小,可引导学生利用我们上课一开始比较具体数大小的方法,代几个具体的数去比较。这种方法在我们以后做填空题中比较大小是一种捷径。而本题的证明可利用我们今天课上所讲的三种方法,我打算让两位学生在黑板板演,以检验他们掌握情况与书写格式是否合理。如时间还有剩余,可由学生完成例一,帮他们巩固基本不等式定理。
例一1.设a,b为正数,证明下列不等式成立:
ba12(2)a2 aba
162.已知函数yx,x(2,),求此函数的最小值。x2(1)
六、回顾反思:
本节课的最后,由学生思考今天所学到了哪些知识,这些知识可解决哪些问题?
七、板书设计
基本不等式
一、定理
abab(a0,b0)
2二、证明方法
⑴作差法
⑵分析法
⑶综合法
三、探索 ab比较2a2b2的大小 2
如何证明
例一
篇2:2017不等式的证明方法教案
一、比较法:
ab等价于ab0;而ab0等价于a
b1.即a与b的比较转化为与0
或1的比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章中许多代数不等式的证明及其他各章初等不等式的证明所常用的证明技巧.二、综合法与分析法:
综合法是由因导果,即是由已知条件和已知的不等式出发,推导出所要证明的不等式;分析法是执果索因,即是要逐步找出使结论成立的充分条件或者充要条件,最后归结为已知的不等式或已知条件.对于条件简单而结论复杂的不等式,往往要通过分析法或分析法与综合法交替使用来寻找证明的途径.还要注意:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各种不等式;第二,要善于利用题中的隐含条件;第三,不等式的各种变性技巧.三、反证法:
正难则反.设所要证的不等式不成立,从原不等式的结论的反面出发,通过合理的逻辑推理导出矛盾,从而断定所要证的不等式成立.要注意对所有可能的反面结果都要逐一进行讨论.四、放缩法:
要证ab,又已知(或易证)ac,则只要证cb,这是利用不等式的传递性,将原不等式里的某些项适当的放大或缩小,或舍去若干项等以达证题目的.放缩法的方法有: ①添加或舍去一些项,如:a21a;n(n1)n;
②将分子或分母放大(或缩小);
③利用基本不等式,如:
log3lg5(n(n1)lg3lg522)2lglglg4; n(n1);
④利用常用结论:
k1k
1k1
1k
11k1k
12k
1k;
1k(k1)
1k1
1k
1k1
1k
1k(k1)1k;
(程度大)
1k
1
(k1)(k1)
2k1
();(程度小)
五、换元法:
换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:
已知x2y2a2,可设xacos,yasin;
已知x2y21,可设xrcos,yrsin(0r1); 已知
xaxa
2
ybyb
1,可设xacos,ybsin;
已知
1,可设xasec,ybtan;
六、数学归纳法法:
与自然数n有关的许多不等式,可考虑用数学归纳法证明,数学归纳法法证明不等式在数学归纳法中有专门的研究.但运用数学归纳法时要注意:
第一,数学归纳法有多种形式.李大元就证明了下述七种等价的形式:设P(n)是与n有关的命题,则
(1)、设P(n0)成立,且对于任意的kn0,从P(k)成立可推出P(k1)成立,则P(n)对所有大于n0的n都成立.(2)、设m是任给的自然数,若P(1)成立,且从P(k)(1km)成立可推出
P(k1)成立,则P(n)对所有不超过m的n都成立.(3)、(反向归纳法)设有无穷多个自然数n(例如n2m),使得P(n)成立,且从P(k1)成立可推出P(k)成立,则P(n)对所有n成立.(4)、若P(且P(n)对所有满足1nk的n成立可推出P(k1)成立,1)成立,则P(n)对所有n成立.(5)、(最小数原理)自然数集的非空子集中必有一个最小数.(6)、若P)且若P(k),P(k1)成立可推出P(k2)成立,则P(n)1(,P(2)成立,对所有n成立.(7)、(无穷递降法)若P(n)对某个n成立可推出存在n1n,使得P(n1)成立,则P(n)对所有n成立.此外,还有螺旋归纳法(又叫翘翘板归纳法):设有两个命题P(n),Q(n),若
P(1)
成立,又从P(k)成立可推出Q(k)成立,并且从Q(k)成立可推出P(k1)成立,其中k为任给自然数,则P(n),Q(n)对所有n都成立,它可以推广到两个以上的命题.这些形式虽然等价,但在不同情形中使用各有方便之处.在使用它们时,若能注意运用变形和放缩等技巧,往往可收到化难为易的奇效.对于有些不等式与两个独立的自然数m,n有关,可考虑用二重数学归纳法,即若要证命题P(m,n)对所有m,n成立,可分两步:①先证P(1,n),P(m,1)对所有m,n成立;②设P(m1,n),P(m,n1)成立,证明P(m1,n1)也成立.第二,数学归纳法与其它方法的综合运用,例如,证明
n
k
11k
sinkx0,(0x)
就要综合运用数学归纳法,反证法与极值法;有时可将n换成连续量x,用微分法或积分法.第三,并不是所有含n的不等式都能用数学归纳法证明的.七、构造法:
通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.笔者将在第三章中详细地介绍构造法.八、利用基本不等式:
善于利用已知不等式,特别是基本不等式去发现和证明新的不等式,是广泛应用的基本技巧.这种方法往往要与其它方法结合一起运用.22
例1 已知a,bR,且ab1.求证:a2b2
252
.证法一:(比较法)a,bR,ab1
b1a
a2b2
252
ab4(ab)
122(a
12)0
a(1a)4
2a2a
即a22b22
证法二:(分析法)
252
(当且仅当ab时,取等号).a22B2
252
ab4(ab)8
252
b1a
225122
(a)0a(1a)4822
显然成立,所以原不等式成立.点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件.证法三:(综合法)由上分析法逆推获证(略).证法四:(反证法)
假设(a2)2(b2)2
252,则 a2b24(ab)8
252
252
.由ab1,得b1a,于是有a2(1a)212
1
所以(a)0,这与a0矛盾.22
.所以a2b2
252
.证法五:(放缩法)
∵ab1
∴左边=a2b2
a2b221252ab4
222
=右
边.点评:根据不等式左边是平方和及ab1这个特点,选用基本不等式
ab
ab2.2
证法六:(均值换元法)
∵ab1,所以可设a
12t,b
t,1
∴左边=a2b2(t2)2(t2)2
5525252
=右边.tt2t
2222
当且仅当t0时,等号成立.点评:形如ab1结构式的条件,一般可以采用均值换元.证法七:(利用一元二次方程根的判别式法)
设ya2b2,由ab1,有y(a2)2(3a)22a22a13,所以2a22a13y0,因为aR,所以442(13y)0,即y故a2b2
252
.252
.下面,笔者将运用数学归纳法证明第一章中的AG不等式.在证明之前,笔者先来证明一个引理.引理:设A0,B0,则(A+B)nAn+nA(n-1)B,其中nN.证明:由二项式定理可知
n
(A+B)=AniBiAn+nA(n-1)B
n
i0
(A+B)A+nA
nn(n-1)
篇3:关于不等式证明的若干方法
1 利用函数的单调性及微分中值定理
命题1:设f (x) 定义在区间I内, 若f' (x) >0 (或f' (x) <0) , x∈I则函数f (x) 在I内严格增加 (或严格减少) .
实质:根据所证的不等式构造一个函数F (x) , 利用导数的符号判断F (x) 的单调性, 使得被证明的不等式转化为一个单调函数在两点的函数值的比较.
命题2: (lagrange中值定理) 若函数f (x) 在[a, b]上连续, 在 (a, b) 内可导, 则, 其中ξ∈ (a, b) .
例1:设e<a<b<e2, 证明.
证明:对f (x) =ln2x在[a, b]上应用拉格朗日中值定理得:
设
当t>e时, φ ('t) <0, 所以φ (t) 单调减少
从而φ (ξ) >φ (e2)
应用函数的单调性及微分中值定理证明不等式问题是一种较常用的方法, 具体步骤如下:
(1) 在[a, b]上由题意引入函数f (x) .
(2) 写出微分中值公式
(3) 这里的关键也是辅助函数的引入, 对f' (ξ) 进行估值
2 利用曲线的凹凸性
命题3:若f (x) 为 (a, b) 内的凹 (或凸) 函数, 且x1, x2, …, xn∈ (a, b)
当且仅当x1=x2=…=xn时等号成立. (可由函数凹凸性的定义和推论证明)
例2:证明当x>0, y>0时,
证明:令f (t) =tlnt, 则, 当t>0时, f'' (t) >0为凸函数
当x>0, y>0时有
此方法适用于函数在指定区间上的曲线具有凹 (凸) 性, 证明的具体步骤是:
(1) 引入辅助函数, 求辅助函数的一二阶导数.
(2) 判断二阶导数在所给区间上的符号.
3 利用函数的极值与最值
定义:设f (p) 定义在U (p0) , 若坌p∈U (p0) , p≠p0, f (p) <f (p0) (或f (p) >f (p0) ) , 求n元函数f (x1, x2, …, xn) 在约束条件g (x1, x2, …, xn) =0下的条件极值, 可先构造函数F (x1, x2, …, xn, λ) = (fx1, x2, …, xn) +λg (x1, x2, …, xn)
然后分别对x1, x2, …, xn, λ求偏导数的方程组
解上方程组得函数F (x1, x2, …, xn, λ) 的唯一稳定点p (x10, x20, …, xn0, λ0) , 再根据具体问题加以分析判断F (x1, x2, …, xn, λ) 是否存在极大值或极小值, 最后代入稳定点即可得到所证不等式.
例3:设x, y, z为正数, 且满足x+y+z=6, 求证:xy+yz+zx≤12.
证明:设F (x, y, z, λ) =xy+yz+zx+λ (x+y+z-6)
解之得唯一解x=y=z=2, λ=-4
因为F (x, y, z, λ) 有最大值F (2, 2, 2, -4) =12
所以
当我们构造好函数F (x) 后, 求出在指定区间上的最大值M最小值m, 则有m≤F (x) ≤M.
4 利用积分的性质
参考文献
[1]蔡兴光, 郑列.高等数学应用与提高[M].北京:北京科学出版社, 2002.
篇4:不等式证明的基本方法
一、 比较法
例1 设a、b是非负实数,求证:a3+b3≥ab(a2+b2).
简解: a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)
=(a-b)[(a)5-(b)5]
当a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)[(a)5-(b)5]≥0;
当a<b时,a<b,从而(a)5<(b)5,得(a-b)[(a)5-(b)5]
<0
所以a3+b3≥ab(a2+b2).
二、 分析法
例2 已知a>0,b>0,2c>a+b,求证:c-c2-ab<a<c+c2-ab.
简解:要证c-c2-ab<a<c+c2-ab,只需证,-c2-ab<a-c<c2-ab
只需证,|a-c|<c2-ab即证,(a-c)2<c2-ab
即证a2-2ac<-ab,∵ a>0,只需证,a-2c<-b
即证a+b<2c,这为已知.故原不等式成立.
点评:分析法是执果索因,其步骤为未知→需知→已知,在操作中“要证”,“只需证”,“即证”这些词语是不可缺少的.
三、 综合法
例3设函数f(x)=2x(1-ln2x),
求证:对任意a、b∈R+,均有f′a+b2≤f′(a)+f′(b)2≤f′2aba+b.
简解:
f′(x)=-2ln2x,f′(a)+f′(b)2=-ln4ab,
f′a+b2=-ln(a+b)2≤-ln4ab,
f′2aba+b=-2ln2•2aba+b≥-2ln4ab2ab=-ln4ab,
∴ f′a+b2≤f′(a)+f′(b)2≤f′2aba+b.
点评:综合法是由因导果,其步骤为:从已知条件出发,利用有关定理、公理、公式、概念等推导出结论不等式.
四、 基本不等式法
例4 已知a、b、c均为正数,证明:a2+b2+c2+1a+1b+1c2≥63,并确定a、b、c为何值时,等号成立.
简解:因为a、b、c均为正数,由基本不等式得:
a2+b2≥2ab
b2+2≥2bc
c2+a2≥2ac
所以a2+b2+c2≥ab+bc+ac①
同理1a2+1b2+1c2≥1ab+1bc+1ac②
故a2+b2+c2+1a+1b+1c2
≥ab+bc+ac+31ab+31bc+31ac③
≥63
所以原不等式成立.
当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立,
即当且仅当a=b=c=314时,原式等号成立.
点评:利用基本不等式必须注意:“一正,二定,三相等.”
五、 反证法
例5 已知p3+q3=2,求证:p+q≤2.
分析:本题由已知条件直接证明结论,佷难找到证明的方法,正难则反,可以利用反证法.
简解:假设p+q>2,则p>2-q,p3>(2-q)3,
∴ p3+q3>q3+(2-q)3=q3+8-12q+6q2-q3=6q2-12q+8=6(q-1)2+2≥2
∴ p3+q3>2与p3+q3=2矛盾,∴ p+q≤2.
点评:正难则反,使用反证法,从否定结论出发,经过逻辑推理,导出矛盾,证明结论的否定是错误的,从而肯定原结论是正确的.
六、 放缩法
例6 设数列{an}满足a1=0且11-an+1-11-an=1.
(1) 求{an}的通项公式;
(2)设bn=1-an+1n记Sn=∑nk=1bn,证明:Sn<1.
分析:要证Sn<1,先求出{bn}的通项公式,再求{bn}的前n项的和Sn,最后利用放缩法.
简解:(1)an=1-1n;
(2)bn=1-an+1n=n+1-nn+1•n=1n-1n+1,
Sn=∑nk=1bn=∑nk=11k-1k+1=1-1n+1<1.
点评:放缩法是利用不等式的传递性,按题意及目标,作适当的放大或缩小,常用的放缩技巧有:
(1) 舍掉(或加进)一些项;(2)在分式中放大或缩小分子(或分母);
七、 柯西不等式法
例7 若n是不小于2的正整数,求证:47<1-12+13-14+…+12n-1-12n<22.
分析:从所要证明的不等式结构可转化为柯西不等式来证.
简解:1-12+13-14+…+12n-1-12n=1+12+13+…+12n-212+14+…+12n=1n+1+1n+2+…+12n
所以求证式等价于47<1n+1+1n+2+…+12n<22
由柯西不等式有1n+1+1n+2+…+12n[(n+1)+(n+2)+…+2n]>n2于是:1n+1+1n+2+…+12n>n2(n+1)+(n+2)+…+2n=2n3n+1=23+1n≥47
又由柯西不等式有
1n+1+1n+2+…+12n<
(12+22+…+n2)1(n+1)2+1(n+2)2+…+1(2n)2<
n1n(n+1)+1(n+1)(n+2)+…+1(2n-1)(2n)=
n1n-12n=22
八、 构造法
例8 已知a、b∈R,求证:|a+b|1+|a+b|≤|a|1+|a|+|b|1+|b|.
分析:本题若从绝对值不等式方面入手比较难,但观察不等式两边的结构,可看出是函数f(x)=x1+x(x≥0)自变量x分别取|a+b|、|a|、|b|的函数值,从而可构造函数求解.
简解:构造函数f(x)=x1+x(x≥0),首先判断其单调性,设0≤x1<x2,因为f(x1)-f(x2)=x11+1-x21+x2=x1-x2(1+x1)(1+x2)<0,所以f(x1)<f(x2),所以f(x)在[0,+∞]上是增函数,取x1=|a+b|,x2=|a|+|b|,显然满足0≤x1≤x2,所以f(|a+b|)≤f(|a|+|b|),
即|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|=|a|1+|a|+|b|+|b|1+|a|+|b|≤|a|1+|a|+|b|1+|b|.
点评: 抓住不等式的结构和特点,转化为函数思想求解是解决此题的关键.
篇5:不等式的多种证明方法
摘要:数学是生活中的一门自然科学,而不等式则是构成这门自然科学的众多基础中相当重要的组成之一,因此本文专门介绍不等式的各种证明方法。
根据在校期间从大学课程中所学的专业知识,通过课本、资料及网络等渠道收集各种类型的不等式习题,然后依据其不同的思想与方法可以归纳为三大类型,即基础类证明方法、延伸类证明方法和特殊类证明方法。其中基础类证明方法是最简单的证明,包括比较法、分析法、放缩法、综合法;延伸类证明方法则是通过代换、构造、转化等思想将原不等式变化为简单的形式再予以证明,比如换元法、引入参变量法、构造辅助函数法等等;特殊类证明方法是针对一些特殊类型的不等式结构或提问方式,采取相应的特殊证明方法可以使得证明更加简洁,就像反证法、数学归纳法、数形结合法等等。本文就是依上述介绍的各种方法进行展开介绍的,所选的例题皆比较简单,求证方法简洁合理,易于接受,为的只是借此传达各种证明方法的思想。
数学;不等式;证明;方法
目录
1.引言.................12.基础类证明方法..............1
2.1比较法.................1
2.2分析法.................22.3放缩法.................32.4综合法.................53.延伸类证明方法..............6
3.1换元法.................6
3.2引入参变量法...........8
3.3构造辅助函数法................8
3.4转化为向量不等式法...........11
3.5转化为复数法..........11
3.6分解、合成法..........1
14.特殊类证明方法.............1
24.1反证法................12
4.2数学归纳法............1
34.3借助证明法..........1
54.4数形结合法............16
5.结束语..............16
参考文献.................17
不等式的多种证明方法
汪洋,合肥师范学院
摘要:数学是生活中的一门自然科学,而不等式则是构成这门自然科学的众多基础中相当重要的组成之一,因此本文专门介绍不等式的各种证明方法。
根据在校期间从大学课程中所学的专业知识,通过课本、资料及网络等渠道收集各种类型的不等式习题,然后依据其不同的思想与方法可以归纳为三大类型,即基础类证明方法、延伸类证明方法和特殊类证明方法。其中基础类证明方法是最简单的证明,包括比较法、分析法、放缩法、综合法;延伸类证明方法则是通过代换、构造、转化等思想将原不等式变化为简单的形式再予以证明,比如换元法、引入参变量法、构造辅助函数法等等;特殊类证明方法是针对一些特殊类型的不等式结构或提问方式,采取相应的特殊证明方法可以使得证明更加简洁,就像反证法、数学归纳法、数形结合法等等。本文就是依上述介绍的各种方法进行展开介绍的,所选的例题皆比较简单,求证方法简洁合理,易于接受,为的只是借此传达各种证明方法的思想。
关键词: 数学;不等式;证明;方法
Various Methods of Inequality Proof
Wangyang, Hefei Normal University
Abstract: Mathematics is a natural science of the life, and the inequality is an important component of many bases which constitute the natural science.So this article dedicated to a variety of proven methods of inequality.According to the professional knowledge from university courses during the school, I collect all types of inequality problem by books, material and network channels.Then according to different ideas and methods, I put them into three types of proof, which is base class identification method and extension methods of proof and special class methods.The base class method is the simplest proof, and it include the comparison and analysis, and the method of techniques and so on.Extension methods are proved by such substitution, structure, the inequality of thought for the form of simple changes to prove.For example, substitution method, the introduction of parametric method, constructs the auxiliary function method, etc.Special class that is for some special types of inequality structure or form of a question takes a special method of proof which can be made more concise proof, as required, mathematical induction, several form combination, etc.This topic is introduced by the start of various methods described, and the examples are relatively simple, the method is simple and reasonable, and acceptable, which is just only to convey various methods of thought.Key words: Mathematics;Inequality;Proof;Method
1.引言
用不等号连结两个代数式所成的式子叫做不等式,是描写不等号两边式子的大小关系。不等式理论是等式、方程、函数论进一步的深入和发展,是数学知识又一次扩展的重要内容,是掌握初等数学不可或缺的重要部分,学习了等式后再学习不等式,使式的内容更加充实,更加完善,是我们进一步扩大数学视野,增加数学知识的必要基础。不等式的重要作用是十分明显的,因为在日常的生活、生产和科学研究中到处用到不等式的知识;而不等式的证明更体现了不等式的另一方面,它在数学领域中占有核心地位,它贯穿于初等数学和高等数学的方方面面。
著名数学家D.S.Mitrinovic在他的名著《Analytic Inequalities》的序言中都引述到:“所有分析学家要花费一半的时间通过文献查找他们想要用而又不能证明的不等式”。分析学家Michiel Hazewinkel在《Inequalities Involving Functions and Their Integrals and Derivatives》一书的序言中也讲道:“有时我有这样的感觉,数学(特别是分析学)就是不等式”。由此可见,给出一个关于不等式方面系统的、全面的证明方法具有很现实的意义。
因此,本文将对各种各样的不等式给出相应的证明方法,尽量把不等式的证明方法系统化、全面化。
2.基础类证明方法
在此介绍的四种方法仅需要根据命题本身的已知条件或常用结论即可证明。
2.1比较法
即借助不等式两边做差或做商的结果与0或1比较来证明不等式的方法。如果
篇6:不等式证明的若干方法
摘要:无论是在初等数学还是在高等数学中,不等式证明都是其中一块非常重要的内容.本文主要总结了高等数学中不等式的几种证明方法,高等数学中不等式证明的常用方法有利用函数的单调性、Cauchy不等式、中值定理、泰勒公式、Jensen不等式、定积分的性质、放大或缩小被积函数及变积分上下限证明不等式等.通过辅以例题对这些方法进行详细的分析,给出其适用范围、具体步骤及限制条件.其中利用函数的单调性和利用中值定理法是基础的方法,其它几种方法需要要重点掌握,并可在证明中灵活运用.关键词:不等式 积分 中值定理
Some Methods about Inequality Proof
Abstract : The proving of the inequality is a very important content, whether in elementary mathematics or in higher mathematics.This paper mainly summarizes several methods of proving the inequality in higher mathematics.In higher mathematics inequality is usually proved by applying the Monotony of a Function, Cauchy Inequality, Mean Value Theorem, Taylor Formula, Jensen Inequality, Properties of Definite Integral, to zoom in or out the integrand, variable upper limit or lower limit and so on.These methods are analyzed in detail through examples, and give its range of application, concrete steps and restricted conditions.Among these methods, the Monotony of a Function and Mean Value Theorem are foundation methods and the others should be mastered conscientiously or are flexible application in the verification.keywords : inequality integral Mean Value Theorem
数学世界中的量有相等关系,也有不等关系.一般与比较量有关的问题,都要用到不等式的知识.不等式问题不仅在数学领域有广泛的应用,而且在解决最优控制、最优化、经济等各种实际问题中也有广泛应用.它是研究和学习现代科学和技术的一个重要工具.由此可见,不等式问题的重要性, 而不等式证明又是不等式问题的精髓,由于不等式的形式各不相同,所以证明没有固定的步骤可依,方法灵活,技巧多样,因此不等式证明是数学中的难点之一.证明不等式的方法有很多,在初等数学中主要有综合法、分析法、比较法、反证法、数学归纳法、换元法等常用方法,但高等数学中的不等式证明又比初等数学中的不等式证明更为复杂,以上几种方法就很难解决高等数学
中复杂的不等式问题.[1]本文结合课本所学内容及平时积累的资料总结了几种高等数学中不等式证明的常用方法.1.利用函数的单调性
利用函数单调性证明不等式的步骤:(1)构造辅助函数f(x).(2)判断单调性:求f(x),并验证f(x)在指定区间上的增减性.(3)求出区间端点的函数值或极限值,比较后判断不等式.例1 证明不等式 e.e 证明
要证 ee,只需证明eln,即只要证明
令f(x)lnx1lnx(xe),则 f(x)0.(xe)xx2lneln.e因为 f(x)在e,上单调递减,又因为 e, 所以 f(e)f(),即lneln,得证.e 一般利用函数的单调性证明不等式需根据题目条件构造函数,此函数求导后可以很容易判断其在指定区间上的单调性,进而利用函数单调性证明不等式.[2] 2.利用Cauchy(柯西)不等式
柯西不等式在不等式理论中占有重要地位,这个不等式结构对称和谐,应用广泛,巧妙灵活的运用它,可以使有些比较困难的问题迎刃而解,它的推论有多种形式,在定积分中Schwarz不等式就是其中的一个推论.2.1 柯西不等式(aibi)a2i1i1nn2ibi1n2i也可写作
abi1niiab2ii1i1nn2i.2.2 积分的形式 当被积函数f(x),g(x)在区间a,b上连续,则有
bbb2 f(x)g(x)dxf(x)dxg(x)2dx.aaa2例2 已知f(x)0,在a,b上连续,f(x)dx2,k为任意实数,求证:
ab(f(x)sinkxdx)2(f(x)coskxdx)24.aabb 2
证明 由柯西不等式知,(f(x)sinkx)2[(f(x)f(x)sinkx)dx]2
aabb f(x)dxf(x)sin2kxdx
aabb 2f(x)sin2kxdx.ab同理(f(x)coskxdx)22f(x)cos2kxdx, aabb所以(f(x)sinkxdx)2(f(x)coskxdx)24.aabb此种方法一般用于要证明的不等式中的某些式子经过变形后可以直接套用柯西不等式,这就需要对不等式认真观察和对柯西不等式的灵活应用.3.利用中值定理
3.1 微分中值定理(主要讲利用拉格朗日中值定理)微分中值定理是微分学中最重要的理论部分,它包括罗尔定理、拉格朗日中值定理、柯西中值定理等.拉格朗日中值定理建立了函数值与导数之间的定量关系,[3]拉格朗日中值定理是柯西中值定理的特殊形式,罗尔定理又是拉格朗日中值定理的特殊形式.而且拉格朗日公式有几种等价形式,在用拉格朗日中值定理证明不等式时要选择恰当的形式.3.1.1拉格朗日中值定理: 若函数f(x)满足如下条件:(1)在闭区间a,b上连续;(2)在开区间a,b内可导;
则在a,b内至少存在一点,使得f()3.1.2拉格朗日公式几种等价形式:(1)f(b)f(a)f()(ba), ab;(2)f(b)f(a)fa(ba)(ba), 01;(3)f(ah)f(a)f(ah)h, 01.3.1.3用拉格朗日中值定理证明不等式的一般步骤:
f(b)f(a).ba 3
(1)由题意作出a,b上的函数f(x),验证其满足条件.(2)再运用微分中值定理公式或其等价形式.(3)根据题目需要进行适当的放缩.[3] 例3 设0ab,证明不等式
babbaln.baa 证明 显然等式当且仅当ab0时成立.下证
当0ab时,有
babbaln.baa 作辅助函数f(x)lnx,则f(x)在a,b上满足拉格朗日中值定理,故a,b,使lnblna1.①
ba由于0ab, 所以 111.② ab1lnblna1, bbaababbaln所以.baa由①②得
3.2 积分中值定理 3.2.1 积分第一中值定理
定理3.2.1 若f在a,b上连续,则至少存在一点a,b,使得
f(x)dxf()(ba).ab积分第一中值定理的条件简单,只需f(x)在a,b上连续即可.但此定理却非常重要,它是联系定积分与其积分函数的桥梁.其中的灵活性和任意性就是证明不等式的关键所在.例4 设f(x)为0,1上的非负单调非增连续函数(即当xy时,f(x)f(y)),证明对于01,有不等式
0f(x)dxf(x)dx 成立.证明
由题意及积分中值定理有
f(x)dxf()()f()(),
所以 101f(x)dxf()f(x)dx.(1)f(x)dxf(x)dx.0(1)f(x)dx0f(x)dx. 因为 0
1所以 11, 0f(x)dxf(x)dx.3.2.2 积分第二中值定理
定理3.2.2 设函数f(x)在a,b上可积.(i)若函数g(x)在a,b上是减函数,且g(x)0,则存在a,b,使得 f(x)g(x)dxg(a)f(x)dx;
aab(ii)若函数g(x)在a,b上是增函数,且g(x)0,则存在a,b,使得 f(x)g(x)dxg(b)f(x)dx.abb推论 设函数f在a,b上可积,若g为单调函数,则存在a,b,使得baf(x)g(x)dxg(a)f(x)dxg(b)f(x)dx.ab在积分第二中值定理中,用推论证明不等式运用比较广泛,推论中对g(x)的限制比定理中对g(x)的限制条件更为宽松,它解决的题目范围也会扩大.例5 设f(x)为a,b上的连续递增函数,则成立不等式
b xf(x)dxaabbf(x)dx.a2ba证明
要证不等式成立,只需证明 (xab)f(x)dx0.2 由于f(x)单调递增,利用积分第二中值定理,则存在a,b,使
bababab)f(x)dxf(a)(x)dxf(b)(x)dx aa222bbabab)dxf(b)f(a)(x)dx =f(a)(xa22 b(xb22ab =f(b)f(a)(b)
22 =f(b)f(a) 得证.利用中值定理证明不等式要满足定理的条件,通过构造、变换找到符合的条件,再一步步解决所要证明的不等式.微分中值定理中用的比较多的是拉格朗日中值定理,而积分中值定理中它的推论用得比较频繁.[3]
b(a)0.24.利用泰勒公式
泰勒定理 若函数f在a,b上存在直至n阶的连续导函数,在a,b内存在(n1)阶导函数,则对任意给定的x,x0a,b,至少存在一点a,b,使得
f(x0)f(n)(x0)2f(x)f(x0)f(x0)(xx0)(xx0)(xx0)n2!n!
f(n1)()(xx0)n1.(n1)!泰勒公式是拉格朗日中值定理的推广,当n=0时,即是拉格朗日中值定理,所以用 泰勒公式证明不等式的步骤类似于利用拉格朗日中值定理证明不等式的步骤,只不过泰勒公式适用于n阶导数的问题.[3]
例6 若f(x)在0,1上二次可微,且f(0)f(1),f(x)1.证明 f(x)证明
设x0,1,由泰勒公式知
1.2 6
1f(1)(0x)2,01x1.① 21 f(1)f(x)f(x)(1x)f(2)(1x)2, 0x21.② f(0)f(x)f(x)(0x) 由①-②得: 1 f(x)[f(1)x2f(2)(1x)2] 所以 f(x)[f(1)x2f(2)(1x)2] [x2(1x)2] [x(1x)]2 .2 得证.在要证明的不等式中含有二阶或二阶以上的导数时一般可利用泰勒公式,特别在以下四种情况下利用泰勒公式证明不等式更为简便:①已知某点的函数值②已知某点的导函数值③已知函数某阶导数的符号④已知函数某阶导数有界.泰勒公式的应用要灵活、巧妙、合理.5.利用Jensen(詹森)不等式
定理5.1 若f为a,b上的凸函数,则对任意xia,b,i0(i1,2,,n), i1,有 f(ixi)if(xi).i1i1i1nnn詹森不等式与函数的凹凸性有关,凹凸函数的性质为构建不等式和证明不等式提供了空间和依据.例7 证明不等式 abc(abc)证明 设f(x)xlnx,x0.由f(x)的一阶和二阶导数f(x)lnx1,f(x)1 可知, xabcabc3,其中a,b,c均为正数.f(x)xlnx在x0时为严格凸函数,依詹森不等式有 f(abc1)(f(a)f(b)f(c)),33 7
abcabc1ln(alnablnbclnc),333abcalnablnbclnc
(abc)ln3abcabc)aabbcc.即(3abc又因为 3abc
3所以
所以(abc)abc3aabbcc,不等式得证.使用詹森不等式一般要先构造满足条件的函数,即在某区间上是凸函数,接着找到合适的i,使i1.要求有良好的思维能力,善于观察、分析.i1n6.利用定积分的性质
性质1 设f为a,b上的可积函数,若f(x)0, xa,b,则
f(x)dx0.ab 推论 若f与g为a,b上的两个可积函数,且f(x)g(x),xa,b,则有f(x)dxg(x)dx.aabb性质2 若f在a,b上可积,则f在a,b上也可积,且 baf(x)dxf(x)dx.ab利用定积分的性质证明不等式的过程中,要学会利用微分和积分的互逆,运用积分自身的单调性,把问题的关键放在不等式两边构造的积分形式当中,再运用定积分的性质证明不等式.例8 设f(x)在0,1上连续,且f(x)0.证明 lnf(x)dxlnf(x)dx.0011证明 记Af(x)dx, 01 因为 f(x)0 所以 A0.lnf(x)f(x)f(x)ln[1(1)]1.AAA 两端积分 lnf(x)dxlnAdx0011f(x)dx10.0A10 因为 lnf(x)dxlnAdxlnAlnf(x)dx.0011 所以 lnf(x)dxlnf(x)dx.0011例9 设a0,函数f(x)在0,a上连续可微,证明: f(0)a1af(x)dx0f(x)dx.a0证明 因为f(x)连续,由积分中值定理知,0,a,使得f(x)dxf()a.0a 又因为 f()f(0)f(x)dx,0 所以 f(0)f()f(x)dxf()00f(x)dx
a1a f(x)dxf(x)dx
0a0 a1af(x)dxf(x)dx.得证 00a证明定积分形式不等式常用定积分的性质,有时也与积分中值定理结合.7.利用放大或缩小被积函数及变积分上下限证明不等式
放大或缩小被积函数要注意放缩的尺度,根据被积函数的特点以及要证明的不等式进行放缩.当不等式中的被积函数连续时,可以把积分上限或下限作为一个变量,构造一个变上限或下限的积分函数,再证明不等式.例10 设g(x)为随机变量X取值的集合上的非负不减函数,且E(g(x))存在,证明:对任意的0,有P(X)证明 记p(x)为X的密度函数,则 P(X)E(g(X)).g()p(x)dxg(x)p(x)dx g()g(x)E(g(X))p(x)dx.得证
g()g()上题是放大或缩小被积函数法在概率论问题中的应用,结合了概率中的有关期望的知识.概率论的发展是建立在微积分的基础之上,微积分的方法和理论渗透到概率
论中的各个方面.微积分是基础,在某些方面概率论和微积分有很大联系.高等数学中的一些方法可以运用到概率论中,反之,概率论中的一些知识也可以很容易解决高等数学中的一些问题.上述总结了高等数学中证明不等式的几种方法,其中函数的单调性及中值定理比较简单,其他几种方法需要认真掌握.有些不等式的证明可以直接套用公式,有些比较复杂,运用的方法灵活多变.不过,利用中值定理与泰勒公式证明不等式的问题比较常见.高等数学中不等式问题有很多,证明不等式的方法也有很多,这里只是简单总结了几种比较常用的方法,而这些方法也只是解决了高等数学中的一部分不等式问题.随着后继课程的出现如在泛函分析、复变函数、常微分方程中也会出现新的不等式问题,那么不等式证明的方法可能会有进一步的更新,这就要求大家平时思维要广阔,善于分析解决问题,培养良好的思维习惯.对于不等式的证明要细心观察,找到最合适的方法并及时总结.参考文献
篇7:均值不等式的证明方法
本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。一般的均值不等式我们通常考虑的是AnGn: 一些大家都知道的条件我就不写了
x1x2...xn
n
x1x2...xn
我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出:
二维已证,四维时:
abcd(ab)(cd)2ab2cd4八维时:
(abcd)(efgh)4abcd4efgh8abcdefgh
abcd
4abcd
这样的步骤重复n次之后将会得到
x1x2...x2n
n
n
x1x2...x2n
令x1x1,...,xnxn;xn1xn2...x2
n
x1x2...xn
n
A
由这个不等式有
A
nA(2n)A
nn
n
x1x2..xnA
2n
n
(x1x2..xn)2A
n
1
n2
n
即得到
x1x2...xn
n
n
x1x2...xn
这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子:
例1:
n
若0ai1(i1,2,...,n)证明
i1
11ai
n
1(a1a2...an)n
例2:
n
若ri1(i1,2,...,n)证明
i1
1ri1
n
1(r1r2...rn)n
这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法:
给出例1的证明:
当n2时11a1
11a2
(1
a1a2)2(1a1)(1a2)
设pa1a2,q
(1q)(2p)2(1pq)
p2qpq2qp(1q)2q(q1)p2q,而这是2元均值不等式因此11a1
11a22
n
11a3
11a4
此过程进行下去
n
因此
i1
1ai
1(a1a2...a2n)2
n
令an1an2...a2n(a1a2...an)nG
n
有
i1n
11ai
11ai
(2n)
n
11G
n
n2n
n
n
1(GG
n1G
n)
n
1G
即
i1
例3:
已知5n个实数ri,si,ti,ui,vi都1(1in),记RT
n
1n
n
r,S
ii
1n
n
s
i
i
1n
n
t,U
ii
1n
n
u
i
i,V
1n
n
v,求证下述不等式成立:
ii
i1
(risitiuivi1risitiuivi1)(RSTUV1RSTUV1)
n
要证明这题,其实看样子很像上面柯西的归纳使用的形式
其实由均值不等式,以及函数f(x)ln因此
e1e1
x
x
是在R上单调递减
RSTUV
(RSTUV1RSTUV1)
n
我们要证明:
n
(rstuv
i1
iii
i
risitiuivi1
i
1)
证明以下引理:
n
(x
i1
xi1
i
x21x21
n
1)
n2时,(令A
x11x11)()2
A(x1x21x1x2)(x1x21x1x2)
2A(x1x2x1x21)A(x1x21x1x2)(1x1x2x1x2)2A(x1x21x1x2)
(A1)(x1x21)2A(x1x21)显然成立
2n
n
n
因
此(i1
xi1xi1
n)(G1G1)
2n
n
(GGGG
n
n
n
n
11
2n2
n),G
n
(G1G1
n)
因此(i1
xi1xi1
n)
所以原题目也证毕了
这种归纳法威力十分强大,用同样方法可以证明Jensen:
f(x1)f(x2)
f(x1x2),则四维:
f(x1)f(x2)f(x3)f(x4)2f(x1x2)2f(x3x4)4f(x1x2x3x4)
一直进行n次有
f(x1)f(x2)...f(x2n)
n
f(x1x2...x2n
n),令x1x1,...,xnxn;xn1xn2...x2
n
x1x2...xn
n
n
A
有
f(x1)...f(xn)(2n)f(A)
n
n
f(nA(2n)A
n)f(A)
所以得到
f(x1)f(x2)...f(xn)
n
f(x1x2...xn
n)
所以基本上用Jensen证明的题目都可以用柯西的这个方法来证明
而且有些时候这种归纳法比Jensen的限制更少
其实从上面的看到,对于形式相同的不等式,都可以运用归纳法证明
篇8:证明不等式的几种方法
1.利用比较法证明不等式
1.1利用作差比较法证明不等式
作差比较法的依据是a-b>0a>b, 只要证明差式a-b>0. 解题步骤是作差、差式变形、判断差式的正负.变形时常用的方法有:因式分解、配方、通分、公式代换等.
例1.已知0<x<1, 求证|loga (1-x) |>|loga (1+x) |.
证明: (1) 当0<a<1时, 因为0<x<1, 所以有
(2) 当a>1时, 因为0<x<1, 所以有
综合 (1) 、 (2) 可知原不等式成立.
1.2利用作商比较法证明不等式
作商比较法的依据是, 若b>0, 则a>ba /b >1, a<ba /b <1. 解题步骤是作商、商式变形 (因式分解、配方、通分、公式代换等) 、判断商式大于或小于1.
例2.已知0<x<1, 求证|loga (1-x) |>|loga (1+x) |.
∴原不等式成立.
一般地, 当我们证明整式、对数不等式等常用作差法, 而证明与正数乘积、幂函数、指数相关的不等式时则常用作商 法, 并且若“差式”或“商式”中含有字母, 则还要对字母的取值范围进行分类讨论.
2.利用换元法证明不等式
有些时候, 我们发现运用一些常规的方法证明不等式的时候会觉得难以下手, 而选取一些适当的变量代替原不等式中的变量时, 会突然觉得这个题目变得简单得多, 这种方法我们把它称之为换元法.常用的换元法有三角换元、比值换元、增量换元三种.
2.1利用三角换元法证明不等式
将不等式中的英文字母用三角函数形式代替, 然后再利用三角知识证明这个不等式的方法我们称之为三角换元法.
2.2利用比值换元法证明不等式
比值换元法指的是用一个新的元素替换已知条件中的等比式的比值, 达到简化不等式的目的, 从而使得证明过程更简单.
2.3利用增量换元法证明不等式
当一变量在某一常量附近变化时, 我们可以用这一常量加上另一变量替换这个变量, 这个方法叫做增量换元法.
例5.n个正数x1, x2…xn, 它们的和是1, 求证:
证明:利用增量代换可设:
换元法是一种大众化的证明不等式手段, 但是很多学生在运用换元法做题时发现, 明明换对了, 结果却是错误的.这是因为很多人在换元后, 关于换元后的变量的变化范围没变化, 这点是运用换元法必须重视的.
3.利用反证法证明不等式
在已知的条件不变的情况下, 然后假设所要证明的结论不成立, 再根据假设推出与已知有明显矛盾的结果, 从而下结论说原来的假设不成立的方法叫做反证法.
即原命题成立.
反证法是一种间接证法, 它是逆向思维解决问题的证明方法.用反证法证明时, 推出的矛盾可以是多种多样的, 可能有的与已知矛盾, 也有的与假设矛盾, 或者与定理、公理矛盾. 但不管推出的结果是什么, 最重要的是推出的矛盾必须是明显的.
4.利用数学归纳法证明不等式
设p (n) 是一个与自然数有关的命题, 如果
(1) p (1) 成立;
(2) 假设p (k) 成立, 则p (k+1) 成立, 那么对于任何自然数, p (n) 都成立.这就是数学归纳法的原理.
由1) 和2) , 原不等式对于任意自然数n都成立.
当我们在证明与整数有关的不等式时, 可以首先考虑选用数学归纳法证明.
5.利用函数证明不等式
5.1利用函数的判别式法证明不等式
当使用公式无法证明一个含有两个或两个以上的字母的不等式的时候, 如果能把这个不等式证明一边为零而一边为某个字母的二次式, 那么就可以考虑使用判别式法证明这个不等式.判别式法的依据是在二次函数f (x) =ax 2 +bx+c (a≠0) 中,
当a>0时, 若△<0, 则f (x) >0恒成立;若△≤0, 则f (x) ≥0恒成立.
当a<0时, 若△<0, 则f (x) <0恒成立;若△≤0, 则f (x) ≤0恒成立.
例8.求证a2+b2 +c 2≥ab+bc+ca (a, b, c∈R) .
证明:即证a2 - (b+c) a+b 2 +c 2 -bc≥0
令f (a) =a2 - (b+c) a+b2+c2-bc
故要证明上式只需证明该二次函数的△≤0即可.
从而不等式得证.
当我们遇到一个二次函数或者能转变成二次函数的不等式证明时, 可以考虑用判别式法证明.
5.2利用函数极值证明不等式
通过一些变换, 把所需要证明的不等式转化为求极值问题.从而达到证明不等式的目的.
例9.设x∈R, 求证:-4≤cos2x+3sinx≤2 (1 /8) .
证明:设f (x) =cos2x+3sinx, 则经过化简可得
5.3利用函数单调性证明不等式
当x属于某区间, 有f′ (x) ≥0, 则f (x) 单调上升;若f′ (x) ≥0, 则f (x) 单调下降.推广之 , 若证f (x) ≤g (x) , 只需证f (a) =g (a) 及f′ (x) ≤g′ (x) , (x∈ (a, b) ) 就可以了.
例10.证明不等式
5.4利用中值定理证明不等式
拉格朗日 (Lagrange) 中值定理:f (x) 是在区间[a, b]上有定义的连续函数, 且可导, 则存在ξ, a<ξ<b, 满足f (b) -f (a) =f′ (ξ) (b-a) .
例11.求证:|sinx-siny|≤|x-y|.
证明:设f (x) =sinx, 则sinx-siny= (x-y) sin′ξ= (x-y) cosξ
故|sinx-siny|≤| (x-y) cosξ|≤| (x-y) cosξ|≤|x-y|.
即|sinx-siny|≤|x-y|.
在证明不等式的时候, 将一些不等式的一边转换为函数形式会给我们提供多种解题的思路, 让我们能更快地证明不等式.
综上, 可以发现证明不等式的方法有很多, 但是要快速、简便地证明一个不等式, 我们还需要不断地从做题中吸取经验, 然后总结方法.只有这样才能在最短的时间内想出证明不等式最好的方法.
参考文献
[1]李长明, 周焕山.初等数学研究[M].北京:高等教育出版社, 1995:253-261.
[2]聂文喜.用数学归纳法证明递推不等式的几点技巧[J].数学教学研究, 2007, 1 (02) :35-37.
[3]王卫生.不等式证明的六种方法[J].辽宁教育学院学报.2002, 19 (8) :67-68.
[4]张爱武.论不等式证明的方法和技巧[J].宿州教育学院学报.2004, 7 (2) :127-129.
[5]董占超.例谈不等式解题策略[J].中学数学研究, 2002, 5 (8) :10.
相关文章:
不等式的构造证明方法01-09
不等式的几种证明方法01-09
不等式证明方法探讨01-09
基本不等式的证明方法01-09
不等式证明的基本方法01-09
不等式的证明方法论文01-09
不等式证明方法研究01-09
搞好企业文化建设01-09
如何搞好班组安全活动01-09
浅谈如何搞好车间班组安全文化建设01-09