电器常见故障分析

关键词: 元器件 常见故障 故障 电器

第一篇:电器常见故障分析

内燃机车常见电器故障浅析

电器故障的原因主要是元器件质量不高,电器设计中惯性质量问题,元器件寿命到限等, 在长期恶劣的运用环境中受振动、潮湿、腐蚀气体浸蚀、过载或欠载等影响,加之不当的使用操做、不当的保养维护,就产生了较多的电器故障。静载下电器故障的特征及分析在不带电的静载条件下,电器故障特征可简朴归纳为短路、断路和变质3 大类。短路: 回路中阻值变小或近无阻值 如元器件内部击穿 线路间击穿 碰线 绝缘降低等。断路: 元器件、线路等烧断、腐蚀折损、加工断路等线路不能连接,还有电路中接触不良的触点似接实断的虚接现象等。变质: 参数变化、工作性能和状态不稳等故障。常为电器元件的阻值变化、电容变化、三极管放大倍数变化、温度特性变化反向电阻变化等原因造成的故障; 线头紧固松及时断、时连,接触不良的触点造成的工作性能,状态不稳等故障或造成其它变化。 一. 前言

铁路是国民经济的大动脉,机务系统是铁路的排头兵,机车质量好坏直接关系运输的发展和运能的提高,目前海内使用的牵引动力以DF 型内燃机车为主,而电器故障是影响机车行车安全的重要因素。所以有必要对其运用中轻易发生的故障进行研究和探讨以更好的运用好牵引动力。由于机车电器工做在高速运行振动状态下,工作环境极为恶劣,容易造成电器动做故障。所以运行中励求快速查找和扫除故障,如不能及时处理将会扩大故障的影响范围 影响机车的安全运行。因此,探讨电器故障的判断查找方法,提高故障的扫除技能,迅速有效恢复机车使用十分重要。

1. 常见电器故障原因电器故障的原因主要是元器件质量不高,电器设计中惯性质量问题,元器件寿命到限等。在长期恶劣的运用环境中受振动、潮湿、腐蚀气体浸蚀、过载或欠载等影响,加之不当的使用操做,不当的保养维护,就产生了较多的电器故障。

1. 1 静载下电器故障的特征及分析在不带电的静载条件下 电器故障特征可简单归纳为短路断路和变质3 大类。短路: 回路中阻值变小或近无阻值 如元器件内部击穿 线路间击穿 碰线 绝缘降低等。断路: 元器件、线路等烧断 腐蚀折损 加工断路等线路不能连接 还有电路中接触不良的触点似接实断的虚接现象等。变质: 参数变化 工做性能和状态不稳等故障。常为电器元件的阻值变化 电容变化 三极管放大倍数变化 温度特性变化反向电阻变化等原因造成的故障; 线头紧固松及时断时连 接触不良的触点造成的工做性能 状态不稳等故障或造成其它变化。还有电子装置内部故障造成的外部特性变化及线路断路后高电流下的电弧导通或振动搭接等状态不稳故障。现场工做中 静载下的电器故障也表述为“松、虚、短、脱” 列为质量控制的重点。

1. 2 动载试验或运用中的故障特征及分析在动态通电带负载试验或运用中,因现象的不同分为以下几种故障特征。 1. 2. 1 带不上载荷、无电压、无电流而不能动做。主要原因是线路断路,形成不了回路或产生不了所需电压。机车的断路故障有各类接触器,继电器的触头虚接; 有电磁线圈烧损等原因使后控电路形成不了回路,造成无电流而不能动作或产生不了所需电压。

1. 2. 2. 带不动载荷,有电压、有回路、高电阻、小电流。主要是线路接头松、虚、造成接触电阻大与外负载串联后分压而带不动负载。 1. 2. 3. 带载后电流大: 线路中短路、电阻变小、电流过大。在机车线路中电阻变大,电流也变大的特别现象也较为多见,多为多台牵引电动机因分流不均时某电机电流大。主要原因是因串励牵引电动机 线路中触头接触不良、线路接头松、线耳紧固松、线路断股等原因,造成线路阻值加大,由于机车是由几台电动机并联使用,线路端电压相差很小,当某一线路阻值加大后会造成所在线路电动机反电动势减少,凡是励磁削弱后反电动势进一步减小,最终造成某台牵引电动机电流分配不均,显现故障线路中电流偏高,造成电机环火。 1. 2. 4. 带载后电压或电流波动大,影响其它装置工作。此现象多发生在元件技术使用范围较小和元器件极敏感的电器件,如集成电路极易受不稳的外电源冲击,如机车汞氙灯触发器的点火间隙过大时,有二次振荡不良现象,使机车运行监控记录装置电压波动,造成监控机中的单片机欠压而死机。 1. 2. 5. 带载能力时好时坏。在非振动情况下,当断线脱离时,呈现不工作状态,而在搭接一体时,又表现为正常状态; 且在振动情况下也有相对稳定状态,呈现时好时坏状态; 其它电器也有类似情况。 1. 2. 6. 带载后暂时无问题 但存在着隐患 不答应继承带病运用。如机车电路一点接地故障 是隐形的短路 暂时无问题 但当有另一点接地时 就形成了回路 极易造成较大故障损害。

1. 2. 7. 带载后暂时无问题 允许带病暂时维持运用。此类故障常发生在有备用装置或出现问题后可维持运用时 如机车因有6 台牵引电动机 当某一台电动机出现线路断路时 可甩电机维持运用; 实际工做中 因电动机内部包扎带内部电源线板裂断后搭接又恢复正常状态时 因外观未破损及暂时呈现出正常状态 查找故障相称困难 可允许带病维持运用; 再发生问题时 甩电机维持运用。

2. 电器故障的常用查找方法与处理通过以上故障现象和原因的分析 可以看出电器故障处所多是极简单的 没有超出短、断、变等范围 但其现象多变 多发的特性 使得电器故障的扫除方法重点是在查找上 只要查找到故障处所 较多的故障都可以通过简单的维修处理 即可扫除故障。而故障的查找 因其特性 往往是各有各法 总的方法是根据故障的现象 结合机车电器控制特点 抓住本质 分析现象 逐步缩小检查范围判定查找故障所在 逐步向故障点压缩检查寻找问题的方法。 下面是几种我们在实际工做中常用的查找方法

(1) 直接观察法: 主要是眼看、耳听、鼻闻、手摸等直观手段对电器故障进行检查 发现易见的破损、脱焊、松动、烧断、裂断、虚焊、烧痕、接触状态异常等部位或部件。

(2) 破坏法: 是一种工做试验法 主要是对静态检查未能发现的问题 采用动态检查的方法 但必须要有防范措施 如采取瞬间通电等方法 注重过程中及过程后的闪光 打火 冒烟 烧焦 变色等现象 如能发现问题 即破坏法有效。在动态检测中如仍未能发现问题 可延长时间 采用加重故障法继续检测。

(3) 电流法: 也是一种工做试验法 主要采用通电试验或模似工做状态 进行机车故障的动态检测 验证和探查故障现象及程度 以便找出故障点的方法。如用试灯查找断路或虚接。

(4) 电压测量法: 动态试验时 带不了载荷的故障可用此法使用电压表或使用活动试灯测试查找 当检测到断点两端时 电压表有指示或测试试灯亮 而断点的其它部位 因无回路 电压差为零 就表示为无电压指示 或试灯灭。

(5) 电阻测量法: 对详细电子元器件及电子装置进行测量或验证的一种方法 通过测量电阻 电容 电感线圈 晶体管和集成块的电阻值来判断故障部位。主要是对有松点的机车元件测量检验。 ( 6) 替换法: 对内部复杂的电子器件或组件 因不易检验 常采用有目的更换配件的方法进行查找 十分快捷。

(7) 短接法: 怀疑某线路断路或触头接触不良时 用外加导线直接连接 以此检验相应电路的方法 适合低电压小电流电路。

(8) 断路法: 通过关开控制回路或分解线路接头 判断故障在什么部位的方法 如判断接地故障时 在接地试灯发光后 采用此法 分别开或断各照明电路 预热锅炉电路 三电控制电路或者分解要害线路 查看试灯亮度变化 检查寻找接地点。

(9) 经验检查法: 线路中总有容易出现故障的部分和一些特殊的现象 对应的关键点是重点检查和关注的处所。如易发热的线圈 接触不良的触头 易损的电器及易坏的机械部分等。然后根据现象特点 根据以往经验 对重点可疑部分进行检查。

(10) 分段检查法: 对复杂电路 按照电器原理和电路图 按照工艺程序 一步步地进行逐段验证的方法 机车电路是由若干电路组成 电路分若干部件 采用分段法不断地缩小故障范围也能快速有效地解决问题。

3. 结论: 综上分析了内燃机车电器故障在静态和动态情况下的现象和特点 提出了几种常用故障检查 判断方法的原理 但在实际应用中 必须在详知机车电器原理的基础上 才能有效地使用各方法 在实际工做中 关键要具体情况具体分析 综合有效地发挥各方法做用 才会有好的效果。

第二篇:解决电动车充电器常见6大故障的方法

查看最近90天中添加的最新产品 最新电子元器件资料免费下载 派睿电子TI有奖问答 - 送3D汽车鼠标 IR推出采用焊前金属的汽车级绝缘栅双极晶体管 全球电子连接器生产商—samtec 最新断路器保护套

电动车以其出行便捷、低碳环保的优势已进入我们的生活,但它的充电器故障率较高很令人头疼。出于这个缘故,本人根据多年酌维修经验,总结了龟动车充电器的常见故障的维修方法,供大家参考。

常见故障维修

由于电动车充电器的输入电路工作在高电压、太电流的状态下,因此,故障率最高。如高压大电流整流三极管、滤波电容、开关功率管等;其次较易损坏的就是输出整流部分的整流二极管、保护二极管、滤波电容、限流电阻等;再就是脉宽调制控制器的反馈部分和保护电路部分。

1.保险丝管熔断

一般情况下,保险丝管熔断说明充电器的内部电路存在短路或过流的故障。这是由于充电器长时间工作在高电压、大电流的状态下,内部器件的故障率较高所致。另外,电网电压的波动,浪涌都会引起充电器内电流瞬间增大而使保险丝熔断。

维修方法∶首先仔细查看电路板上面的各个元件,看这些元件的外表是否被烧糊或有电解液溢出,闻—闻有无异昧。再测量电源输入端的电阻值,若小于20OkΩ ,则说明后端有局部短路现象,然后分别测量4只整流二极管正,反电阻值和两个限流电阻的阻值,看有无短路或烧坏的;最后再测量电源滤波电容是否能进行正常充放电、开关功率管是否击穿损坏、UC3842及周围元件是否击穿,烧坏等。需要说明的是,因是在路测量,有可能会使测量结果有误或造成误判,因此必要时可把元器件焊下来测量。如果仍然没有上述情况,则测量一下输入电源线及输出电源线是否内部短路。一般情况上,在熔断器熔断故障中,整流二极管,电源滤波电容、开关功率管、UC3842是易损件,损坏的概率可达95%以上,要着重检查这些元器件,就很容易排除故障。

2.无直流电压输出或电压输出不稳定

如果保险丝是完好的,在有负载的惰况下.这类故障要原因有:过压、过流保护电路出现开路,短路现象;振痨电路没有工作;电源负载过重,高频整流滤波电路中整流二极管被击穿:滤波电容漏电等。

维修方法:首先,用万用表测量高频脉冲变压器的各个元器件是否有损坏:排除了高频整流二极管击穿、负载短路的情况后,再测量各输出端的直流电压,如果这时输出仍为零,则可以肯定是电源的控制电路出了故障,最后用万用表静态测量高频滤波电路中整流二极管及低压滤波电容是否损坏,如果上述元器件有损坏,更换好新元器件,一般故障即可排除。但要注意:输出线断线或开焊、虚焊也会造成这种故障,在维修时应注意这种情况。

3.无直流电压输出,但保险丝丝完好

这种现象说明充电器未工作,或是工作后进入了保护状态。

维修方法:首先应判断一下充电器的变控芯片UC3842是否处在王作状态或已经损坏。具体判断方法是:加电测UC3842的7脚对地电压,若7脚电压正常并且8脚有+5∨电压,

1、

2、

4、6脚也会有不同的电压,则说明电路已启振,UC3842基本正常。若7脚电压低,其余管脚无电压,则说明UC3842已损坏。最常见的损坏是7脚对地击穿,

6、7脚对地击穿和

1、7脚对地击穿。如果这几只脚都未击穿,而充电器还是不能正常启动,也说明UC3842已损坏,应直接更换。若判断芯片没有坏,则着检查开关这栅极的限流电阻是否开焊、虚焊或变值以及开关功率管本身是否性能不良。除此之处,电源输出线断线或接触不良也会造成这种故障,因此在维修时也应注意。

4.直流电压输出过高

这种故障往往是由稳压取样和稳压控制电路异常所至,在充电器中,直流输出、取样电阻、误差取样放大器、光耦合器、电源控制芯片等共同构成了一个闭合的控制环路,任何一处出问题会导致电压升高。

维修方法:由于充电器有过压保护电路,输出电压过高首先会使过压保护电路动作。因此遇到这种故障,我们可以断开过压保护电路,使这压保护电路不起作用,然后测量开机瞬间的电源主电压。如果测量值比正常值高出1V以上,说明输出电压过高的原因确实在控制环路中。此时应着重检查取样电阻是否变值或损坏,精密基准电压源(TL431)或光耦器(PC817)是否性能不良、变质或损坏。其中精密基准电压源(TL431)极易损坏,我们可用下述方法对精密稳压放大器进行判别:将TL431 的参考端(Ref)与它的阴极(Cathode)相连,串1OkΩ的电阻,接入5∨电压。若阳极(Anode)与阴极之间为2.5V,并且等侍片刻还仍为2.5∨,则为好管,否则为坏管。

5.直流电压输出过低

根据维修经验,除稳压控制电路会引起输出电压过低外,还有以下几点原因:

(1)输出电压端整流三极莒、滤波电容失效,可以通过代换法进行判断。

(2)开关功率管的性能下降,导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。

(3)开关功率管的源极通常接一个阻值很小但功率很大的电阻,作为过流吴护检测电阻。该电阻的阻值—般在0.2~O.8Ω。如该电阻变值或开焊、接触不良也会造成输出电压过低。

(4)高频脉冲变压器不良,不但造成输出黾压下降,还会造成开关功率管激励不足从而屡损开关管。

(5)高压直流滤波电容不良,造成电源带负载能力差。

(6)电源输出线接触不良,有—定的接触电阻,造成输出电压过低。

(7)电网电压过低。虽然充电器在低玉下仍然可以输出额定的充咆电压,但当电网电压低于充电器的最低电压限定值时,也会使输出电压过低。

维修方法∶首先用万用表检查—下高压直流滤波电容是否变质、容量是否下降、能否正常充放电。如无以上问题,则测量一下开关功率管的电极的限流电阻以及源极的过流保护殓测电阻是否变值、变质或开焊、接触不良。若无问题,再检查—下高频变压器的铁芯是否完好无损。除此z外还有可能就是输出滤波电容容量降低,或开焊、虚接;电源输出限流电阻变值或虚接;电源输出线虚接等。

这些困素都不要放过,都应仔细检查,确保万无—失。

6.散热风扇不转

这种故障原困主要是控制风扇的三极管(一般为8550或8050)损坏,或者风扇本身损坏或风叶被杂物卡住。但有些充电器申采用的是智能散热,对于采用这种方式散热的充电器,热敏电阻损坏的概率是很大的。

维修方法:首先用万用表测量—下控制风扇的三极管是否损坏,若测得此管未损坏,那就有可能是风扇本身损坏,可以把风扇从电路板上拔下来,另外接上一个12V的直流电(注意正、负极),看是否转动,还要看有无异物卡住。若摆动凡下风扇的电线,风扇就转动,则说明电线内部有断线或接头接触不良。若仍不转动,则风扇必坏。对于采用智能散热的充电器来说,除按上述检查外,还应检查一下热敏电阻是否接触不良或损坏、开焊等。但要注意此热敏电阻为负温度系数,更换时应注意。

第三篇: 电动车充电器几大常见的故障与解决办法

电动车充电器是电动车四大件之一,对电动车的重要性不言而喻,电动车充电器在日常生活中常见的故障主要有以下几种:

1.红灯问题:在一般的情况下,电动车在充电,充满满8到10个小时就直接跳绿灯了,但是有时候会出现无论充多久的电,电动车充电器的红灯一直亮着,不会自动跳转成为绿灯的情况。出现这种情况后,可以用以下方式解决:

(1)检查电动车的充电器,看是不是坏了,造成了电源短路,而充不进去电。

(2)在充满超过一定的时间任然没有跳灯,也可以拆下你电动车的座凳,看看电瓶是否已经老化,用手摸摸是不是电瓶发烫,这时就得考虑换一组或几组电瓶了。

(3)如果在这两个方面都没有问题的话,可以去附近的配件店,买个电动车专用充电定时器,时间由自己定,如果电动车充8个小时可以充满的话,就调至8小时。

2.噪音问题:很多用户反应在充电时,充电器经常发出嗡嗡的噪音,非常的刺耳,害怕这样下去会冲坏电池,出现这种情况后,可以用以下方式解决: (1)现在的电池容量较大,在充电器中(通常48v以上都)加装了散热风扇,在正常充电时,风扇起动,也会发出这样的声音,只有在变灯后才会停止,这些都是正常现象,如果噪音实在过于异常,也有可能是风扇电机缺油,自己揭开风扇电机上的贴纸,滴一滴机油即可。

(2)如果是风扇损坏而引起的噪音,则更换风扇。

3.充电器鼓胀:充电过程中充电器鼓胀,多是应为充电器本身没有过充保护和横流保护等保护功能,劣质充电器经常会造成鼓胀问题,所以为了避免充电器发生这样的故障,最好在一开始就选择质量好,品牌大的充电器产品,比如高端充电器、好易充充电器等,这些产品具有充电保护功能,基本不会造成这样的故障。

第四篇:变压器气体继电器故障分析与改进措施

2008-10-14

来源:Internet

浏览:341

1概况

气体继电器是大型电力变压器最重要的非电量保护装置。实践证明,装有气体继电器的变压器,在变压器本体发生放电性或由其他因素引起的绝缘油快速分解故障时,反映最灵敏的往往是气体继电器。它的正确动作能大大减少变压器故障后的损失。目前,QJ系列的气体继电器主要有QJ-

25、QJ-50、QJ-80等几种或其改进型产品,它们的结构基本相同。在JB/T9647-1999《气体继电器》中,规定了此类产品的型号、技术要求等。在一些显示器变压器上也有采用,如速动油压继电器、皮托(PITOT)继电器、BR-1型继电器或MK-10型继电器等。但到目前为止,尚没有出现一种可以完全取代气体继电器的大型电力变压器的非电量保

护装置。

当变压器内部出现轻微故障时,因油分解产生的气体逐渐积聚到气体继电器上部,达到一定量时,使上开口杯下降到某一限定位置,其上的磁铁使干簧接点吸合,发出轻瓦斯保护动作,发出信号。当变压器内部发生严重故障时,绝缘油被迅速并大量分解,使油箱内压力急剧升高,出现油的浪涌现象,气体继电器连接油管内产生油流达到继电器启动定值时,油流冲击挡板,当挡板旋转到某一限定位置时,其上的磁铁使干簧接点吸合,使生瓦斯保护动作、开关跳闸、切除故

障。

气体继电器的动作有正确动作和误动作之分。文章就气体继电器因使用不当或制造缺陷原因,产生非正常动作的情况加以统计分析,并提出一些改进措施,为正确使用变压器瓦斯保护装置提供参考。

2辽宁电网发生的主事故实例

2.1使用维护不当引起重瓦斯保护动作

2.1.1呼吸系统不畅

(1)1991年1月12日,太平哨电厂2号主变压器正常运行中(SFPL-120000/220型),重瓦斯保护动作跳闸。当时有功功率为80MW、无功功率为20MVAR,上层油温为66℃。因环境温度低,已经吸潮的吸湿器硅胶结块,引起呼吸不畅,在机组负荷增加、油温升高时,造成呼吸器跑油,热油将硅胶结块融化,压力突然释放,造成重瓦斯保护动作跳闸。1990年2月25日,太平哨电厂1号主变压器(SFPS-120000/220型)发生过同样事故。

(2)1992年1月1日,白山电厂红石变电站2号主变压器正常运行中(SFP-120000/220型),轻、生瓦斯保护动作,两侧开关跳闸,呼吸器喷油。当时正值调峰,机组满负荷运行的时间,上层油温达69.4℃,环境温度为-10.5℃。变压器运行时冷却风扇未投入,加之负荷较大,变压器温度快速上升,导致发生事故。经分析发生事故的原因与上例基本相同。

2.1.2本体端子箱密封不严

(1)1992年3月10日,两锦局凌河一次变电站1号主变压器(SFP-63000/220型)重瓦斯保护动作,开关跳闸。经检查发现,事故时工作人员正在用洗衣粉水对油箱进行清洗。未对器身上的端子箱采取可靠的遮挡措施,雾状水珠进入端子箱,知接跳闸回路接点,造成重瓦斯保护动作跳闸。

(2)1993年6月29日,两锦局锦州一次变电站1号主变压器(DF-40000/220型)发生由于C相变压器二次保护端子箱密封不良、受潮,未落实重瓦斯跳闸线与相邻正电源分开布置的反事故措施,造成相邻的跳闸线与正电源短接,导致发生重瓦斯保护动作跳闸事故。沈阳电厂主变压器发生了同样原因的重瓦斯保护动作跳

闸事故。

2.1.3气体继电器引出电缆或二次回路不良

(1)1997年1月12日,铁岭局中固二次变电站1号主变压器(SFL1-8000/60)有载调压开关重瓦斯保护动作,主变压器停运。经检查为有载调压开关重瓦斯保护电缆绝缘损坏,造成跳闸接点短接,保护动作。

(2)1991年铁岭局平顶堡二次变电站、朝阳局木头城子二次变电站主变压器,因主控保护屏到变压器端子箱之间的电缆绝缘降低,以到绝缘击穿,造成重瓦斯保

护动作跳闸。

(3)1994年3月7日,赤峰局土城二次变电站主变压器发生因二次回路接地,造成跳闸回路接通,重瓦斯保护动作、开关跳闸事故。

2.1.4气体继电器安装不良

1998年6月19日,赤峰局元宝山一次变电站1号主变压器(SFPZ-120000/220型)有载调压重瓦斯保护动作,10条66KV线路及母线全停。事故原因是:安装有载调压气体继电器时,法兰压住继电器跳闸端子引线,造成引线绝缘损坏,接点短接,有载调压重瓦斯保护动作跳闸。

2.2制造缺陷引起的重瓦斯保护动作

2.2.1气体继电器干簧接点玻璃管破碎

(1)2005年9月2日,大连开发区供电局220KV中华路变电站1号主变压器调压开关重瓦斯保护动作,三侧开关跳闸,主变压器停电。经检查发现,调压开关气体继电器干簧管断裂、破碎,有放电短路痕迹,初步判定为干筑管破碎后,瞬间接通引起跳闸。1998年9月25日和2004年1月22日,该变压器曾发生了2次

同样原因的事故。

(2)2002年1月27日,大连供电公司革镇堡一次变电站2号主变压器(SFPSZ-120000/220型)有载调压重瓦斯保护(气体继电器型号为QJ4G-25型)动作跳闸。跳闸原因是串联在重瓦斯保护回路中的气体继电器中的干簧接点玻璃管破碎,簧片搭接,跳闸回路接通,导致开关动作跳闸。

2.2.2气体继电器接线盒密封不良

(1)1992年5月22日,大连一次变电站一组主变压器重瓦斯保护动作,三侧断路器跳闸,全站停电。经检查是由于气体继电器接线端子盒防水不良,进水受潮,跳闸接点短接,造成重瓦斯保护动作跳闸。

(2)1991年5月26日,本溪局崔东二次变电站2号主变压器、1996年5月1日铁岭局乱石山二次电路站1号主变压器、1995年4月22日阜新66电厂KVT1T变压器、1998年7月22日鞍山局太平二次变电站1号主变压器等都发生了主变压器或有载调压气体继电器接线端子盒密封不严,进水后短接瓦斯保护接点,造

成保护动作跳闸。

2.3轻瓦斯保护频繁动作

2.3.1制造缺陷引起轻瓦斯保护动作

1992年4月8日,通辽电厂2号主变压器运行中轻瓦斯保护动作,经检查为气体继电器轻瓦斯油杯转轴脱落,造成轻瓦斯保护接点接通,发出信号。

2.3.2油位降低引起轻瓦斯保护动作

(1)1992年1月24日,通辽电厂4号主变压器、1991年赤峰局元宝山二次变电站、乌丹二次变电站主变压器都出现了因漏油或温度降低、油位严重下降,

导致轻瓦斯保护动作的情况。

(2)1993年鞍山局海城一次变电站2号主变压器(SFPS-63000/220型)、1993清河电厂7号主变电站变压器(SFP3-26000/220型)、1994年沈阳高台山一次变电站1号主变压器等都发生了轻瓦斯保护频繁动作,其原因都是由于冷却器油门、胶垫老化龟裂漏油,油位下降,轻瓦斯保护动作。

(3)2001年1月10日,丹东局蛤蟆塘二次变电站1号主变压器轻瓦斯保护动作。原因是变压器油箱上盖插测温元件孔的胶圈损坏,进水后将测温元件插管冻裂,造成储油柜油大量漏泄,轻瓦斯保护动作。

2.3.3空气侵入引起轻瓦斯保护动作

1992年朝阳电厂1号主变压器、1993年白山电厂红石电站2号主变压器(SFPSZ4-63000/220型)、1993年赤峰局元宝山一次变电站2号主变压器(SFPZL3-63000/220型)、1994年沈阳劝工一次变电站1号主变压器(SFPS3-80000/220)、2001年本溪一次变电站5号主变压器、铁岭开原一次变电站2号主变压器都发生瓦斯保护频繁动作,其原因都是由于冷却系统负压区有密封不良情况,造成空气侵入,轻瓦斯保护动作,发出信号。

2.3.3残存空气引起轻瓦斯保护动作

1993年沈阳局孙家一次变电站1号主变压器(SFPSL3-63000/220型)、1993年丹东局岫岩一次变电站主变(SFP-63000/220型)、1994年赤峰局元宝山一次变电站2号主变压器(SFPZL3-63000/220型)、1994年抚顺局河北一次变电站主变压器(SFPS7-180000/220型)都发生了轻瓦斯保护频繁动作。经检查,故障原因是:更换冷却器后,排气不彻底或更换硅胶后浸油、排气不充分,残存空气逐渐

析出,造成轻瓦斯保护频繁动作。

3气体继电器非正常动作情况分析

(1)气体继电器非正常动作情况分为重瓦斯保护动作跳闸和轻瓦斯保护动作,发出2类信号。由于前都动作于跳闸,往往影响和损失都大,是我们特别应

该注意和预防的。

(2)从由运行维护不当引起重瓦斯保护动作的统计看:对设备的反事故技术措施落实得好的,此类事故发生的就少,反之,不能严格执行各级制定的反事故技术措施的,这类事故发生的就比较集中。此类故障的主要表现形态是:①由于呼吸系统不畅,引起重瓦斯保护动作。②由于本体端子箱密封不良,进水引起重瓦斯动作。③由于继电器引出电缆短路或绝缘不良,引起重瓦斯保护动作。第一类表现形态都发生在冬季,且为水电机组、环境湿度大,变压器负荷变化大,并伴随着呼吸器跑油。第二类故障纯属维护不到位,在雨季到来之前应该落实的反事故措施不能认真落实。有的单位对多年强调的正电源与跳闸线在端子排上要隔开的要求也没有落实。对电缆和二次线加强绝缘监视,定期试验十分必要,特别要提高安装质量,防止因安装不当而给运行带来隐患。

(3)由于制造缺陷引起的重瓦斯保护动作主要表现为气体继电器干簧接点玻璃管碎裂和继电器接线盒密封不良2种形态。前者都发生在有载调压开关的气体继电器上,且在同一台变压器上,1998年、2004年和2005年发生了3次事故,是否与该处振动幅值较大有关,需要进一步分析,但主要还是应该提高继电器的制造质量。气体继电器接线盒密封不良问题,在各类继电器上都有发生,说明改进接线盒的密封状况势在必行,也可对改变接线盒的安装方向进行探讨,以减少进水短路的几率。有的单位采用加装防雨罩的措施,可以有效的减少此类事故的发生,但最根本的还是要确保接线盒密封万无一失。

(4)轻瓦斯保护频繁动作,如果不能及时、正确判断,对于发展较快的故障可能造成漏判,酿成大祸。由于气体继电器浮筒转轴脱落,造成轻瓦斯保护频繁动作,是制造过程中应该特别注意改进的。在油位降低的情况下,轻瓦斯发出信号,使运行人员及时采取措施,防止漏油的继续发展,说明轻瓦斯保护设置的重要意义。变压器或冷却系统存在负压区进气或排气不彻底,导致轻瓦斯保护频繁动作的隐患,这种情况容易使人们麻痹,此时,若有其他故障发生,容易产生漏判,所以,此时应尽快处理漏气或排队残留气体。

4改进措施

(1)速动油压继电器在变压器本体发生严重故障时,达到或超过整定的压力值时,压力升速越快,其动作越灵敏,对保护变压器可以起到一定作用。但到目前为止,变压器生产厂家还没有以此装置取代气体继电器。对高电压、大容量的重要变压器,加装此类装置可以大大提高保护的可靠性。

(2)对于有载调压开关的气体继电器设置,应遵循国家标准和行业标准的有关规定:保护装置应反映压力或油流冲击的情况,如采用气体继电器代替油流控制继电器,该继电器应该具有油流冲击动作功能,不必保留轻瓦斯保护功能,这样,可以减少轻瓦斯动作后的大量工作,又可以对有载调压开关实施可靠的保护。

(3)在经过多次事故教训和经过认真调研、分析,经过对几个生产厂家的技术改进进行评议后,辽宁省电力有限公司于2004年8月在《关于变压器有载分接开关气体继电器选型的通知》文件中,对QJ4G-25型气体继电器的改进,作了明确要求:①继电器的支架调试为70-90mm;②采用双接点串联结构,干簧管接点引线距离不小于4mm;③不采用轻瓦斯开口杯装置,并取消相应接点;④干簧管应采用双螺丝固定在支架上,并在固定环内加装缓冲层;⑤采用质量好的、接点镀银的干簧管;⑥推荐采用引线焊接点热塑包封结构。对其他尚未采取改进措施的有载调压开关用气体继电器暂不宜选用。

(4)对有载调压开关重瓦斯保护是否投跳闸,应根据实际情况而定。如气体继电器未做改进,发生误动的频次较多,也可以暂投信号。对有载调压开关用气体继电器采用改进后新结构的产品,变压器有载调压开关的瓦斯保护可以投跳

闸。

(5)对于220KV有以上的变压器,必须采用双接点的气体继电器;对于66KV及以下的变压器,逐步采用双接点的气体继电器;对于有载调压开关用的气体继

电器,一律取消轻瓦斯回路。

第五篇:常见配电变压器故障分析

配电变压器是配电网中的主要设备,也是工农业、居民用电中供给动力的主要设备。一旦发生故障,将影响工农业生产和人民的正常生活,给企业带来经济损失。为了减少配电变压器故障发生的概率、提高配变供电可靠性,本文通过对电力系统中配电变压器常见的故障类型及故障原因进行分析,并提出相应的防范措施,给配电运行人员提供参考,以减少配电变压器的故障。

随着经济的飞速发展,电力需求旺盛,配电变压器在电力系统及生产生活中占据着至关重要的地位。虽然经过多年配网改造,配电变压器高低压都配套预防故障的保护装置,使配电变压器损坏发生率由原来每年占总配电变压器台数的30%~40%,下降到目前每年的3%~5%左右,但由于雷击、高温过负荷等原因,故障发生的数量还相当大。配电变压器的故障逐渐成为配网的主要故障。损坏的配电变压器不仅增加了管理费用的压力,还影响了农民生活、生产的正常用电,成为最困扰基层管理单位供电管理的实际问题。需要通过认真总结和分析配电变压器故障的类型和原因,采取正确的预防措施,为配电变压器的运行管理提供借鉴和参考。

1 配电变压器常见故障类型

配电变压器常见故障主要有温度异常、声音异常、三相不平衡、高压保险丝熔断故障、雷击损坏、漏油等。

2 故障原因分析

2.1 温度异常

产生此类故障的原因多为变压器绕组故障,配变在制造或检修时,局部绝缘受到损害,遗留下缺陷;在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高。

2.2 声音异常

变压器正常运行时,由于交变磁通经过铁芯产生电磁力,铁芯发出均匀的“嗡嗡”声。当变压器发出“噼啪”的爆裂声时,可能是绕组或铁芯的绝缘被击穿,或者引线等带电导体与油箱或铁芯距离过小发生放电;变压器匝间短路,不但会发出放电声音,且故障点局部严重发热使油沸腾汽化,会发出“咕噜咕噜”的沸水声。

2.3 三相电压不平衡

造成配变三相电压不平衡的原因可能是因为工作人员不合理分配三相负荷;居民私拉乱接等均能造成三相负荷不平衡,从而引起当负荷轻的相电压升高,负荷重的相电压降低,电流升高,最终导致变压器匝间短路,烧坏变压器。

2.4 高压保险丝熔断故障

造成此类故障的原因一是随着社会经济的不断发展,用电量增加迅速,原有变压器容量

小,造成变压器过载运行;或者是季节气候原因造成用电高峰,使变压器过载运行。由此产生过高的温度则会导致绝缘老化,纸强度降低,导致绝缘破损,进而发生故障。

2.5 雷击损坏

按配网运行规程要求,配电变压器必须在高、低压侧安装合格的避雷器,且接地良好,防止雷击过电压危害变压器高低压线圈及套管,避雷器的防雷接地引下线、变压器的金属外壳和变压器低压侧中性点,应连接在一起,然后再与接地装置相连接,接地电阻应不大于4欧。但实际运行中有许多变压器的接地引下线被盗割和破坏;或由于维护不当造成锈蚀严重接地电阻增大,甚至锈断等都将起不到引雷作用,造成配变雷击故障。

2.6 漏油

变压器漏油主要是变压器经长期运行,各连接处的密封胶垫老化、龟裂,造成渗油,使绝缘油吸潮,导致绝缘性能下降。或者由于密封垫本身的产品质量不过关;焊接质量不良;安装工艺和安装操作不规范;铸件有砂眼以及设备结构不合理和制造问题等等。

3 常见配电变压器故障的预防

针对以上配电变压器常见故障的原因分析可以发现,有相当一部分变压器故障是完全可以避免的。本文总结几点变压器故障的预防措施。

(1)根据用电负荷选择合适的变压器容量。既要避免因选择过小造成配电变压器烧坏;又要防止容量过大,造成浪费。

(2)变压器安装避免供电半径过大,防止末端用户电压过低,避开易爆易燃、污染严重及地势低洼的地方;高压进线及低压出线便于施工、维护。

(3)加强投运前检查。在变压器投入运行前,一般应做下列各项检查工作:①检查试验合格证,不合格不允许使用;②检查油箱油阀是否完整,有无渗油情况;③检查油位是否达到指示范围、无油枕的变压器油应高于分接头25mm,超过散热管的上管口;④检查分接头调压板是否松动,分接头的选定合适;⑤检查外观是否整洁,套管有无污垢,破裂、松动,各部螺丝是否完整无缺;⑥检查高压熔丝配备是否合理。

(4)做好运行维护工作。①要定期检查三相电压是否平衡,变压器的油位、温度、油色是否正常,有无渗漏,呼吸器内干燥剂的颜色是否变化。②定期清理变压器上的污垢,检查套管有无闪络放电,接地是否良好,有无断线、脱焊、断裂现象,定期摇测接地电阻,并加装绝缘护套避免异物落至套管上造成变压器相间短路。③定期进行测温,油浸式自冷变压器上层油温不宜经常超过85℃,最高不超过95℃,不得长期过负荷运行。④合理选择变压器的高低压熔丝。一般情况下变压器的高压侧熔丝选择在1.2-1.5倍高压额定电流,低压侧按额定电流选用,即使发生低压短路故障,熔丝也能对变压器起到应有的保护作用。⑤避免三相负载的不平衡。变压器三相负载不平衡运行,将造成三相电压不平衡。对三相负载不平衡的变压器,应视最大电流的负荷,若在最大负荷期间测得的三相最大不平衡电流或中性线

电流超过额定电流的25%时,应将负荷重新分配。

4 结语

导致配电变压器故障发生的原因是多种多样的,通过对变压器的常见故障分析,采取合理的解决措施和预防手段,可以将变压器故障产生的损失降至最低,确保配电线路的安全可靠运行。

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:安全阀常见故障分析 下一篇:电缆常见故障分析