第一篇:圆知识点分类练习题
11 水文水井钻探工知识分类练习题
1综合水文地质图平面,镶图,剖面图三部分组成。 2钻机由回转、升降、钻进、传动、变速等机构组成。 3硬质合金钻头的结构要素有 钻头体、合金片类型数量、 切削具排列方式、镶焊角度和水口水槽数量及规格
4大口径全面钻进常用牙轮和刮刀前由软到硬后用于松软。
5八项指标钻孔直径、岩心采取整理、校对孔深、钻孔弯曲度、 简易水文观测、止水和封孔、抽水试验、原始记录和档案 6安装井管的方法可概括为卷扬机提吊、钻杆托盘法、 二次下管、钢丝绳托盘和综合下管法
7井(孔)身结构即井(孔)的技术剖面,它包括 各井段直径和井管直径、井深和歌井段深度、 虑水结构和形式、止水位置和方法等方面。
8松软冲击定深取样配合电测井,可用 刮刀钻头无岩芯钻进。
9滤水管类型骨架、桥式、缠丝、包网、角式、砾式、贴砾、塑料、 10洗井方法应根据含水层类型、地下水压力、井管、井深选择 11抽水设备应根据水文地质、井深结构钻孔类型合理选择
12台月效率完成工作量和台月数之比,台月数计入台月时间除以720 13快速扩孔的关键是:保持泥浆性能,保证钻具强度。 14止水效果的检验方法有 压力和食盐扩撒。
15油压钻机的油压操纵器总成调压溢流阀与若干 换向阀组合而成。 32. 岩石磨损与之接触的工具表面的能力叫岩石的研磨性。
33普通合金钻头钻压计算方法是钻压每颗合金压力乘以合金片数 34泵吸反循环冲洗液上返速度以2.5-3.5米秒为宜。
35器举反循环组合方式双通道水龙头、主动钻杆、双壁钻杆、 混合器、单臂钻杆、钻铤、钻头
36避雷针应高1.5引下线截面铝线 16钢质线28 与钻塔距离3,接地电阻 大于15。
37钢粒钻进向内收拢,锥面光滑一般是由于泵量太大。 38采用正循环回转粘性土和完整基岩采取率应大小70%。
39冲击钻进中硬以下的岩石钻进时,悬距值约为3~4 厘米。 40绳索取心钻具卡簧与钻头内台阶合理的间隙是(2-4毫米 。 41在强研磨性地层钻进,为减轻硬质切削具的磨损应降低转速。 42提钻后观察,钢粒钻头底唇呈锥形,锥面光滑,原因是(冲洗量过小 )。 43在三种反循环方法中,(气举 )能进行较深孔钻进。
44在易溶于水的盐岩层钻进,采用的冲洗液应该是(饱和盐水 ),
45HPAN为睛纶废丝水解而成,呈白色纤维状,分子量为(5~8万 ) 46饱和盐水泥浆在一升的泥浆中含(30~33万 )毫克
- 176井管底部如不悬空,只能发生折断、滑扣、而不能回扣。(ν ) 77岩土的容水度就是它的持水度。 (× ) 78硬质合金、钢粒、金刚石三种磨料,前者应用历史最长,者最短。 (× ) 79硬质合金钻进研磨性地层,应加大内、外出刃以抵抗磨损。 (× ) 80浅孔段纠斜,需要钻孔向右偏时,可将钻机机架左边垫高。 (× ) 81伊利石与蒙脱石晶体构造相同。 (ν ) 82钠粘土可直接造浆,而不需加纯碱予处理。 (ν ) 83钙处理泥浆的PH值越大,钙离子浓度愈小。 (ν ) 84减水剂的作用是减少水泥浆中的自由水。 (× ) 85其它条件相同时,浅孔段发生弯曲比深孔段弯曲的偏距小。 (× ) 86定向钻探可用于打辐射井,增加水井的出水量。( ν ) 87当井内下人两段以上滤水管时,钻杆拉压活塞洗井,应自下而上逐层抽洗。 (× ) 88盐水泥浆含盐<3%,化学处理以稀释为主,降失水为辅;含盐>3%时则相反。 (ν ) 89细分散泥浆钻遇盐侵,应设法沉淀钠离子。 (× ) 90粘土颗粒在水中带负电。 (ν) 91粘土改型时,纯碱加量按粘土重量的百分比计算。(ν ) 92遇孔壁坍塌、涌、漏、井喷等复杂情况,需专门治理时,应属孔内事故。 (ν ) 93通天公锥小径段磨损后,在适当位置锯短,可用于锥捞钻杆通孔及锁接头锥形母扣。 (×) 94固相含量即泥浆中固相所占重量百分比。 (× )
第二篇:最新初中圆的知识点考点总复习总结归纳《圆》章节知识点复习
《圆》章节知识点复习
圆的记忆口诀:
常把半径直径连,有弦可做弦心距,它定垂直平分弦,直圆周角立上边。
圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆,
直角相对成共弦,试试加一个辅助圆,若是证题打转轴,四点共圆可解难,
要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连
直线与圆未给点,需证半径作垂线,四边形有内切圆,对边和等是条件,
如果遇到圆与圆,弄清位置很关键,圆相切做公切,两圆想交连工弦。
一、圆的概念
集合形式的概念:
1、圆可以看作是到定点的距离等于定长的点的集合;
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系
1、点在圆内
点在圆内;
2、点在圆上
点在圆上;
3、点在圆外
点在圆外;
三、直线与圆的位置关系
1、直线与圆相离
无交点;
2、直线与圆相切
有一个交点;
3、直线与圆相交
有两个交点;
四、圆与圆的位置关系
外离(图1)
无交点
;
外切(图2)
有一个交点
;
相交(图3)
有两个交点
;
内切(图4)
有一个交点
;
内含(图5)
无交点
;
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①是直径
②
③
④
弧弧
⑤
弧弧
中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙中,∵∥
∴弧弧
六、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,
只要知道其中的1个相等,则可以推出其它的3个结论,
即:①;②;
③;④
弧弧
七、圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵和是弧所对的圆心角和圆周角
∴
2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
即:在⊙中,∵、都是所对的圆周角
∴
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙中,∵是直径
或∵
∴
∴是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△中,∵
∴△是直角三角形或
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
八、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙中,
∵四边形是内接四边形
∴
九、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;
两个条件:过半径外端且垂直半径,二者缺一不可
即:∵且过半径外端
∴是⊙的切线
(2)性质定理:切线垂直于过切点的半径(如上图)
推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵、是的两条切线
∴
平分
十一、圆幂定理
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙中,∵弦、相交于点,
∴
(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙中,∵直径,
∴
(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙中,∵是切线,是割线
∴
(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙中,∵、是割线
∴
十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图:垂直平分。
即:∵⊙、⊙相交于、两点
∴垂直平分
十三、圆的公切线
两圆公切线长的计算公式:
(1)公切线长:中,;
(2)外公切线长:是半径之差;
内公切线长:是半径之和。
十四、弦切角定理
顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
弦切角等于它所夹的弧所对的圆周角。
十五、圆内正多边形的计算
(1)正三角形
在⊙中△是正三角形,有关计算在中进行:;
(2)正四边形
同理,四边形的有关计算在中进行,:
(3)正六边形
同理,六边形的有关计算在中进行,.
十六、扇形、圆柱和圆锥的相关计算公式
1、扇形:(1)弧长公式:;
(2)扇形面积公式:
:圆心角
:扇形多对应的圆的半径
:扇形弧长
:扇形面积
2、圆柱:
(1)圆柱侧面展开图
=
(2)圆柱的体积:
3、侧面展开图
(1)=
(2)圆锥的体积:
第三篇:小学圆知识点总结
第一单元
圆
一、圆的概念和性质
1、
圆是由一条曲线围成的平面图形。
(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)
2、
画圆时,针尖固定的一点是圆心,通常用字母O表示;
连接圆心和圆上任意一点的线段是半径,通常用字母r表示;
通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。
在同一个圆里,有无数条半径和直径。
在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
3、
用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。
画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。
4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r,
r
=d÷2)
5、圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。
6、圆心决定圆的位置,半径决定圆的大小。要比较两圆的大小,就是比较两个圆的直径或半径。
7、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积
画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
8、长方形里最大的圆。两者联系:宽=直径
画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。
9、同一个圆内的所有线段中,圆的直径是最长的。
二、圆的周长
10、圆围成的长度就是圆的周长。
车轮滚动一周前进的路程就是车轮的周长。
每分前进米数(速度)=车轮的周长×转数
11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。
用字母π表示。π是一个无限不循环小数。π=3.141592653……
我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14
12、如果用C表示圆的周长,那么C=πd或C
=
2πr
13、求圆的半径或直径的方法:d
=
C÷π
r
=
C÷
π÷2=
C÷2π
14、半圆的周长等于圆周长的一半加一条直径。
C半圆=
πr+2r=5.14r
C半圆=
πd÷2+d=2.57d
15、常用的3.14的倍数:
3.14×2=6.28
3.14×3=9.42
3.14×4=12.56
3.14×5=15.7
3.14×6=18.84
3.14×7=21.98
3.14×8=25.12
3.14×9=28.26
3.14×12=37.68
3.14×14=43.96
3.14×16=50.24
3.14×18=56.52
3.14×24=75.36
3.14×25=78.5
3.14×36=113.04
3.14×49=153.86
3.14×64=200.96
3.14×81=254.34
三、圆的面积
16、圆所占(平方
)的大小就是圆的面积。
圆的面积公式:S=πr2。圆的面积是半径平方的π倍。
17、圆的面积推导:
圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);
长方形的宽是圆的半径(即b=r);
长方形的长是圆周长的一半(即a=C÷2=πr)。
即:S长方形=
a
×
b
↓
↓
S圆=
πr
×
r
=
πr2
所以,S圆
=
π
r2
18、半圆的面积是圆面积的一半。S半圆=πr2÷2
四、补充
19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方
(即r扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍)
20、
周长相等的平面图形中,圆的面积最大;
面积相等的平面图形中,圆的周长最短。
21、求阴影部分的面积的常用方法有割补法、和差和等分法等。
22、几个直径和为n的圆的周长=直径为n的圆的周长(如图)
几个直径和为n的圆的面积<直径为n的圆的周长
n
23、常用的平方数:112=121
122=144
132=169
142=196
152=225
162=256
172=289
182=324
192=361
202=400
第四篇:初中数学知识点圆总结
今天小编为大家精心整理了一篇有关初中数学圆的知识点内容,以供大家阅读,谢谢!
知识点:
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
l、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
六、圆的判定性质
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 dr
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 dR+r ②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)
[初中数学知识点圆总结]相关文章:
第五篇:初三数学圆知识点总结
初三数学
圆知识点总结
一、本章知识框架
二、本章重点
1.圆的定义:
(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.
(2)圆是到定点的距离等于定长的点的集合.
2.判定一个点P是否在⊙O上.
设⊙O的半径为R,OP=d,则有
d>r点P在⊙O
外;
d=r点P在⊙O
上;
d
内.
3.与圆有关的角
(1)圆心角:顶点在圆心的角叫圆心角.
圆心角的性质:圆心角的度数等于它所对的弧的度数.
(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.
圆周角的性质:
①圆周角等于它所对的弧所对的圆心角的一半.
②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.
③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.
④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
⑤圆内接四边形的对角互补;外角等于它的内对角.
(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.
弦切角的性质:弦切角等于它夹的弧所对的圆周角.
弦切角的度数等于它夹的弧的度数的一半.
4.圆的性质:
(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.
在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.
(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.
垂径定理及推论:
(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(3)弦的垂直平分线过圆心,且平分弦对的两条弧.
(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.
(5)平行弦夹的弧相等.
5.三角形的内心、外心、重心、垂心
(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.
(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.
(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.
(4)垂心:是三角形三边高线的交点.
6.切线的判定、性质:
(1)切线的判定:
①经过半径的外端并且垂直于这条半径的直线是圆的切线.
②到圆心的距离d等于圆的半径的直线是圆的切线.
(2)切线的性质:
①圆的切线垂直于过切点的半径.
②经过圆心作圆的切线的垂线经过切点.
③经过切点作切线的垂线经过圆心.
(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.
(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
7.圆内接四边形和外切四边形
(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.
(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.
8.直线和圆的位置关系:
设⊙O
半径为R,点O到直线l的距离为d.
(1)直线和圆没有公共点直线和圆相离d>R.
(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.
(3)直线l和⊙O
有两个公共点直线l和⊙O
相交d
9.圆和圆的位置关系:
设的半径为R、r(R>r),圆心距.
(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.
(2)没有公共点,且的每一个点都在外部内含d
(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.
(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.
(5)有两个公共点相交R-r
10.两圆的性质:
(1)两个圆是一个轴对称图形,对称轴是两圆连心线.
(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.
11.圆中有关计算:
圆的面积公式:,周长C=2πR.
圆心角为n°、半径为R的弧长.
圆心角为n°,半径为R,弧长为l的扇形的面积.
弓形的面积要转化为扇形和三角形的面积和、差来计算.
圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.
圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl
,全面积为,母线长、圆锥高、底面圆的半径之间有.
【经典例题精讲】
例1
如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变?
分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律.
解:
连结OP,
P点为中点.
小结:此题运用垂径定理进行推断.
例2
下列命题正确的是(
)
A.相等的圆周角对的弧相等
B.等弧所对的弦相等
C.三点确定一个圆
D.平分弦的直径垂直于弦.
解:
A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确.
B.等弧就是在同圆或等圆中能重合的弧,因此B正确.
C.三个点只有不在同一直线上才能确定一个圆.
D.平分弦(不是直径)的直径垂直于此弦.
故选B.
例3
四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.
分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.
解:
设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.
x+2x+3x+2x=360°,
x=45°.
∴∠D=90°.
小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.
例4
为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.
分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过
P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解.
解:
.
小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型.
例5
已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距.
解:分两种情况讨论:
(1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂直平分AB,∴.
又∵AB=16
∴AC=8.
在中,.
在中,.
故.
(2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结.
∵垂直平分AB,
∴.
又∵AB=16,
∴AC=8.
在中,.
在中,.
故.
注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.
三、相关定理:
1.相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条线,各弦被这点所分成的两段的积相等)
说明:几何语言: 若弦AB、CD交于点P,则PA·PB=PC·PD(相交弦定理)
例1.
已知P为⊙O内一点,,⊙O半径为,过P任作一弦AB,设,,则关于的函数关系式为。
解:由相交弦定理得,即,其中
2.切割线定理
推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
说明:几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB
例2.
已知PT切⊙O于T,PBA为割线,交OC于D,CT为直径,若OC=BD=4cm,AD=3cm,求PB长。
解:设TD=,BP=,由相交弦定理得:
即
,(舍)
由切割线定理,
由勾股定理,
∴
∴
∴
四、辅助线总结
1.圆中常见的辅助线
1).作半径,利用同圆或等圆的半径相等.
2).作弦心距,利用垂径定理进行证明或计算,或利用“圆心、弧、弦、弦心距”间的关系进行证明.
3).作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算.
4).作弦构造同弧或等弧所对的圆周角.
5).作弦、直径等构造直径所对的圆周角——直角.
6).遇到切线,作过切点的弦,构造弦切角.
7).遇到切线,作过切点的半径,构造直角.
8).欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径.
9).遇到三角形的外心常连结外心和三角形的各顶点.
10).遇到三角形的内心,常作:(1)内心到三边的垂线;(2)连结内心和三角形的顶点.
11).遇相交两圆,常作:(1)公共弦;(2)连心线.
12).遇两圆相切,常过切点作两圆的公切线.
13).求公切线时常过小圆圆心向大圆半径作垂线,将公切线平移成直角三角形的一条直角边.
2、圆中较特殊的辅助线
1).过圆外一点或圆上一点作圆的切线.
2).将割线、相交弦补充完整.
3).作辅助圆.
例1如图23-10,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么AE的长为(
)
A.2
B.3
C.4
D.5
分析:连结OC,由AB是⊙O的直径,弦CD⊥AB知CD=DE.设AE=x,则在Rt△CEO中,,即,则,(舍去).
答案:A.
例2如图23-11,CA为⊙O的切线,切点为A,点B在⊙O上,如果∠CAB=55°,那么∠AOB等于(
)
A.35°
B.90°
C.110°
D.120°
分析:由弦切角与所夹弧所对的圆心角的关系可以知道∠AOB=2∠BAC=2×55°=110°.答案:C.
例3
如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于(
)
A.
B.
C.
D.
分析:圆柱的侧面展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长;另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高,即.答案:B.
例4
如图23-12,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,延长CM交⊙O于E,且EM>MC,连结OE、DE,.
求:EM的长.
简析:(1)由DC是⊙O的直径,知DE⊥EC,于是.设EM=x,则AM·MB=x(7-x),即.所以.而EM>MC,即EM=4.
例5如图23-13,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、BD恰好是关于x的方程(其中m为实数)的两根.
(1)求证:BE=BD;
(2)若,求∠A的度数.
简析:(1)由BE、BD是关于x的方程的两根,得,则m=-2.所以,原方程为.得.故BE=BD.
(2)由相交弦定理,得,即.而PB切⊙O于点B,AB为⊙O的直径,得∠ABP=∠ACB=90°.又易证∠BPD=∠APE,所以△PBD∽△PAE,△PDC∽△PEB,则,,所以,所以.在Rt△ACB中,,故∠A=60°.
相关文章:
祝福宝宝满月酒祝福语(优秀8篇)01-17
企业培训师二级分类知识01-17
最新宝宝满月的祝福语女孩 祝愿宝宝满月的祝福语(十四篇)01-17
知识分类历史教学论文01-17
最新送给宝宝的祝福语 祝满月宝宝的祝福语(18篇)01-17
宝宝满月酒红包贺词 宝宝满月酒红包祝福语8篇(实用)01-17
2025年宝宝满月酒红包祝福语(14篇)01-17
圆知识点分类训练01-17
最新祝宝宝满月祝福语红包实用(四篇)01-17
知识学习的迁移分类01-17