关键词:
小学数学五年级上册第《鸡兔同笼》精品教案(精选12篇)
篇1:小学数学五年级上册第《鸡兔同笼》精品教案
新课标人教版小学数学六年级上册《鸡兔同笼》精品教案
教学目标:
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
3、在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
教学重点:
用假设法解决“鸡兔同笼”问题。教学具准备:黑板、卡片、图表 教学过程:
一、揭示课题
1、同学们,这节课老师要领大家熟悉一下我们生活中常见的倆种小动物。(课件出示鸡、兔)提问:这是什么?接下来老师就从这倆种可爱的小动物身上找出一些数学问题来考考你们。
如:一只鸡几条腿?一只兔几条腿? 3只鸡有几条腿?你是怎么算的?
2只兔子几条腿?你怎么想的?7只兔子几条腿? 难吗?看来老师的题要增加难度了,你们还敢试试吗?
2只鸡和1只兔子共有几个头?几条腿?5只鸡和3只兔子共有几个头,几条腿?
2、通过刚才的问答我们发现如果把一些鸡和一些兔子放在一起,就是一道非常有意思的数学题。师:同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(出示原题)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。鸡和兔各有几只?(讲解今意))
3、有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年,4、会做“鸡兔同笼”这类题吗?会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习你老师相信今后你一定会做了。那同学们有没有信心把这节课的内容学好呢?
二、展示情境,尝试探究
(一)出示情景,获取信息
1、“鸡兔同笼”这四个字什么意思呀?(鸡和兔关在同一个笼子里)为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”
2、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生理解:①鸡和兔共8只。
②鸡和兔共有26条腿。
③鸡有2条腿。
④兔有4条腿。(教师板书)
(二)猜想验证,1、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
学生猜测,老师板书
2、怎样才能确定同学们猜的对不对?(把鸡的腿和兔的腿加起来看等不等于26。)
3、和学生一起验证,找出正确的答案。(只有这一个正确答案吗?)
4、我们把这种方法叫做列举法。(板书:列表法)
5、你们觉得用猜想列表法解决鸡兔同笼问题怎么样?(生:麻烦,而且当头和脚的只数越多时,越不容易找出答案。)
6、那我们还有研究新方法的必要。
(三)尝试假设法
1、为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)
2、假设全是鸡一共就有16条腿。实际有26条腿,这样笼子里就少了10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。一只兔当成一只鸡算少两条腿,那把几只兔当成了鸡算就会少算10条腿呢?即10里面有几个2。就把几兔当成了鸡算,5个2,用五只兔当成了鸡算,这个五就表示应该有5只兔)
3、上面的过程能用算式表示出来吗?请同学们试试看。(学生试着列算式,请一个学生到黑板上去板演。)
4、假设全是鸡:(板书)
8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)
5、算出来后,我们还要检验算的对不对,谁愿意口头检验。生:3×2+5×4=26(只),5+3=8(只)。师:看来做对了,最后写上答语。
6、假设全是兔
7、、我们再回到表格中,看看右起第一列中的8和0是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)
8、先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。
(学生讨论写算式,然后指名板演。)8×4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)
32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿)
4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了2条腿。)6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡当成了兔算,所以6÷2=3就是现在鸡的只数。)
8-3=5(只)兔
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
(四)列方程解
在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)要用列方程的方法就必须找到等量关系式。通过得到到信息能写出哪些等量关系式呢?
(兔的只数+鸡的只数=8;兔的腿+鸡的腿=26条腿)(板书)
这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设一个未知数为X,再把另一个表示出来。这道题我们可以设兔的知数为X只,根据兔和鸡共有8只。那鸡的只数就可以表示成:(8-X)只),因为一只鸡有2条腿,所以X只鸡就共有2X条腿。一只兔有4只脚,(8-X)只兔就有4(8-X)只脚。又因为鸡和兔共有26只脚,所以2X+4(8-X)=26 ① 解:设鸡有X只,兔有(8-X)只。2X+4(8-X)=26 在解的时候可以根据等式的性质将减变成加,分别加上4X,再来解。② 解:设有兔X只,鸡有(8-X)只。4X+2(8-X)=26 同样抽生说出自己想法。那种方程好解一点,(设兔的只数为X好解点)所以我们可以设脚数多的兔为X,在解的时候容易一点。
列方程的重点是找出等量关系:设头数,以脚数相等来列出方程; 小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)
三、练习
1、现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?用你喜欢的一种方法做
《孙子算经》中原题学生解答并集体讲评
四、延伸、应用 1.课件出示“做一做1”
鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。
2.看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。下面我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。
3、“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)学生独立完成,集体讲评。
五、课后总结:
本节课你有什么收获?那你知道早在一千五百年前的古人又是怎么解决鸡兔同笼问题的?请同学们自学P114页下面内容。这个内容我们留到下节课进行讲解。
篇2:小学数学五年级上册第《鸡兔同笼》精品教案
1、尝试用不同的方法解决“鸡兔同笼”问题,并体会代数方法的一般性。
2、解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。
3、体会到数学问题在日常生活中的`应用。
【学习重难点】
1、重点是尝试用不同的方法解决“鸡兔同笼”问题。
2、难点是在解决问题的过程中培养逻辑推理能力。
【学习过程】
一、故事引入
在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。
阅读书本P112鸡兔同笼的故事,能用你自己的话表述一下题目的意思吗?
二、探索新知
1、阅读P113例1,根据书本提示,会用列表法求出鸡、兔各几只吗?
(完成课本表格。)
2、假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?能列式解决吗?
(会用假设法解决“鸡兔同笼”问题)
3、自己动笔,尝试用方程的方法解决鸡兔只数的问题?
(有困难的可参考书本P114)
4、用假设或者解方程的方法解决P112“鸡兔同笼”问题
(1)方程解:(2)算术解:
解:设鸡有x只,那么兔就有(35-x)只。解:假设都是鸡。
根据鸡兔共有94只脚来列方程式2×35=70(只)
2x+(35-x)×4=9494-70=24(只)
2x=4624÷(4-2)=12(只)
x=2335-12=23(只)
35-23=12(只)答:鸡有23只,兔有12只。
答:鸡有23只,兔有12只。
5、以上三种解法,哪一种更方便?
☆友情小提示:
要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。
6、阅读P114阅读资料,了解下古人是怎样解决鸡兔同笼问题的。
三、知识应用:
独立完成P115“做一做”,组长检查核对,提出质疑。
四、层级训练:
1.巩固训练:完成P116练习二十六第1--5题。
2.拓展提高:练习二十六第6、7题。及P117“思考题”
五、总结梳理
回顾本节课的学习,说一说你有哪些收获?
学习心得__________(a.我很棒,成功了;b.我的收获很大,但仍需努力。)
篇3:小学数学五年级上册第《鸡兔同笼》精品教案
关键词 小学数学;“鸡兔同笼”问题;教学反思
引言:著名的苏联教育学家苏霍姆林斯基曾经说过:不能促进学生进步的课堂教学是毫无益处的,而且,如果课堂教学没有实际作用,对教师和学生来说都是严重的损失。随着我国社会水平和经济水平的不断发展,新课改和素质教育的观念深入人心,对教师的教学方式也提出了更高的要求,教师必须顺应教改的步伐,转变自己的教学思路。只有灵活多变的教学方式,才能激发学生的学习热情,提高他们的学习主动性,同时也能够提高教师的教学质量。
一、“鸡兔同笼”问题的解决
“鸡兔同笼”问题早在一千五百多年前的《孙子算经》中就出现了,而北师大版的小学五年级数学课本的“数学广角”环节再现了这一题目。“鸡兔同笼”问题表现出了我国历史悠久的数学文化,解决这个问题能够大大增加学生对数学学习的兴趣,能在一定程度上培养逻辑思维的能力。“鸡兔同笼”问题贴近生活,具有很强的代表性。在以往的教材中,这类问题一般是针对水平较高的学生,用来锻炼自己的能力,而新教材则把这道问题作为全体学生都能够面对的问题。解决“鸡兔同笼”问题有多种多样的方法,例如假设法和列表法等,也表现出数学学习的灵活性。下面通过课堂上使用列表法解决“鸡兔同笼”问题:
教师:大家通过了解这道题目,知道主要问题是什么吗?
学生:题目告诉我们鸡兔共有八只,脚共有二十六只,问鸡和兔子各有多少只。
教师:大家可以先猜一下结果,也可以和你身边的同学交流一下,比较一下答案。然后来列举一下可能的情况。
学生:可能的情况有七只鸡,一只兔子;六只鸡,两只兔子;五只鸡,三只兔子;四只鸡的话,就有四只兔子;三只鸡,五只兔子;两只鸡;六只兔子;或者一只鸡,七只兔子,这么多种情况。
教师:还有其他可能吗。
学生:全部是鸡或者全部是兔子。
教师:那么我们来分别计算上面的情况,看哪种情况下,脚的数量是二十六只。大家来计算一下。
学生:计算后得到的结果是有五只兔子和三只鸡。
通过上述课堂教学的过程,让学生自主的解决了“鸡兔同笼”问题。这种方式加强了学生在课堂教学中的主体地位。在解决问题的初始阶段,鼓励学生大胆猜想,发散自己的思维。然后让学生列举所有可能的情况,再引导他们通过计算得到正确答案。让学生了解解决问题的基本思路和方法,培养良好的学习习惯。
二、“鸡兔同笼”问题的教学反思
从小学数学“鸡兔同笼”问题的解决过程中,可以引起数学教师的反思。第一个方面趣味是最好的老师,激发了学生的学习兴趣,那么课堂教学基本成功了一半。通过灵活多变的教学方式,活跃课堂氛围,转变传统课堂枯燥无味的气氛,能够大幅度激发学生的求知欲,而只有有了求知欲,学生才会主动去了解问题,解决问题。通过教师的引导,让学生感受到解决问题带来的快乐,满足他们丰富的学习欲望,才能保证高涨的学习热情。美国的教育学家通过研究证明,激发了学习兴趣,学习效果能够成倍增加。孔子的《论语》中也提到过“知之者不如好之者,好知之不如乐之者”,只有激发学习兴趣,才能达到教学的最终目标——快乐学习。但是,现今很多小学数学教师,虽然知道新课改和素质教育的理念,但是仍然固步自封,不远转变观念,填鸭式的教学,造成课堂效率低下,浪费时间,又阻碍了学生的发展,所以,激发兴趣对学生的数学学习至关重要。
学无定法,掌握方法也是提高学习质量的重要因素。而课堂教学除了提高学生的学习热情外,更重要的是让学生掌握方法。在“鸡兔同笼”问题的教学中,就体现了以下两种数学方法:
(1)检查检验:要保证得到的答案准确,就要做好检查和检验。通过培养学生良好的检查习惯,能够揪出在解决数学题时出现的问题,保证答案符合题目要求。在教师引导学生自主解决“鸡兔同笼”问题后,很多同学会将答案弄错,比如将鸡和兔子的数量弄反了,这种情况是很常见的。所以,检验是保证解题正确的重要方法。通过方程或者其他方法得到了鸡和兔子的只数,还要通过计算总的脚的数量,来保证答案的正确性。检查和检验,是学生务必养成的良好学习习惯。
(2)数形结合:数学知识是比较抽象难懂的,而且小学生的知识水平认知水平都还不高,对过于理论性的解题方式,很多都是一知半解。针对这个问题,在数学教学中就要采用数形结合的方法,教师可以使用符号、图形来代替题目中的元素,通过题目中的条件将这些元素结合起来,就能很快得到答案。教师还可以利用现今普遍使用的信息化技术,通过计算机、课件让抽象的数学知识更加形象、易于理解,课件还能够提供给学生视觉、听觉上的全方位的接受知识的方式,能够有效加深学生对知识的理解和记忆。
小学生的思维方式还不是很成熟,而且正处在由形象思维向逻辑思维发展过度的阶段,所以,这个阶段接受的数学知识,仍然具有较强的具体形象性。数学知识贴近生活,数学上的很多问题,都能够用生活上的知识来解答,而我们也可以使用数学知识解答生活中的难题,所以,数学和生活是紧密结合的。数学课堂的教学内容都是来源于生活的,经过知识性的凝聚和提高,成为专业的数学知识。学生对来源于生活的数学知识接受程度最高,而且,在讲解这部分内容的时候,学生首先能够通过自己在生活中的体验,了解这部分知识的大致内容,基本相当于预习,对接下来的学习有很大帮助。
结束语
综上,通过小学数学课本中的“鸡兔同笼”问题教学,可以发现教学中仍然存在一定问题。在教学中,教师应该使用多变的教学方法,活跃课堂气氛,激发学生的学习热情,通过知识的生活化,让抽象的数学知识易于接受。这样才能做好小学数学教学工作。
参考文献:
[1]卢春华.初中数学教学反思刍议[J].中学教学参考.2012,(31):90.
[2]周胜琼.小学数学六年级上册“鸡兔同笼”教学反思[J].中国科教创新导刊.2012,(18):86.
篇4:小学数学五年级上册第《鸡兔同笼》精品教案
昨天在雀儿山一小参加了柳北区“有效课堂教学”系列研讨活动。参加的活动的不仅有咱们的小学老师,还有很多的中学老师。看来又是一场中小学衔接交流会了。每一次的活动,多多少少都会有些收获的。就如听一节课,无论好坏,总有让人学习之处。
其中听了一节由伍老师执教的《鸡兔同笼》,为北师大五年级版教材中的一课。伍老师虽然教龄只有4年,但是让人学习的地方却很多。在教学中她能充分让学生通过探究、小组讨论交流等形式区学习“鸡兔同笼”的问题,并且归纳了列表法中的“逐一试”、“跳跃式”、“取半试”三种方法,教给了学生一种数学学习的方法。不过,我个人认为,在课堂中学生通过自主探究列表的`方法后,老师是不是可以适时点拨一下学生?因为本次活动研究的主题就是“在课堂中如何关注学生”嘛!如:头的总数、鸡的腿数、兔的腿数三个数量之间的关系怎么样?当学生填出的腿的条数多的时候,应该适时“调整”兔子的只数。通过先尝试,再猜测,不断调整数据,逼近正确结果,这也是本节课要学习的一种策略。
课后,有中学的老师给予了及时的点评。有老师认为在特定的阶段应该学习特定的数学。鸡兔同笼问题在中学也有,那时采用的就是用列式计算来解决此类问题了。而作为小学五年级的学生,学习用列表区不断尝试、猜测也正是五年级学生要达到的学习目标。
篇5:小学数学五年级上册第《鸡兔同笼》精品教案
1.理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。
2.经历自主探究解决问题的过程,培养逻辑推理能力。
3.了解我国古代数学文化,增强民族自豪感。
【教学重点】渗透化繁为简思想,体会用假设法的逻辑性和一般性。
【教学难点】 理解用假设法解决“鸡兔同笼”问题的算理。
【教学具准备】课件
【教学过程】
一、课前活动
学生猜测老师的年龄。
学生根据老师的提示,调整自己的猜测,直到猜到正确的答案。
师:刚才大家在猜测老师年龄的过程中,经历了猜测、验证、调整的过程,不知不觉掌握了一种数学策略。
【设计意图】通过课前的游戏活动,激发学生的参与热情,并且渗透数学解题策略,为本节课的学习做好铺设。
二、课中活动:
(一)创设情境,导入新课
生齐读课题:鸡兔同笼
出示表格
头
3
5
鸡
2
兔
1
2
脚
12
8
第一栏、第二栏都能够解决。
师:如果告诉一共有5个头,你们能确定一共有几只脚?为什么?如果告诉一共有8只脚,能确定鸡兔各几只吗?为什么?
师:如果告诉头的数量和脚的数量,能确定鸡兔各几只吗?这就是我们今天要研究的数学问题。
【设计意图】经过前期学情了解,不少孩子对于鸡和兔不清楚有几只脚,所以在这个环节先了解学生基本常识。通过填写表格,从易到难,引起学生对问题的深刻思考。
(二)猜测验证,化繁为简
1.出示《孙子算经》中的鸡兔同笼问题。
师:能读懂是什么意思吗?
生:就是鸡兔同笼,从上面数有35个头,从下面数,有94只脚。鸡、兔各几只?
师:能猜猜鸡兔各几只吗?
师:如何验证自己猜的对不对?(既要考虑头,也要考虑脚)
师:怎么办呢?有没有办法解决这个问题?
师:为什么要改小?
生:改小一点好猜些。
【设计意图】引导学生理解题意,帮学生初步理解“鸡兔同笼”问题的结构特点,渗透化繁为简的数学思想。
(三)尝试猜想,发现规律
出示“鸡兔同笼,从上面数有8个头,从下面数有26只脚。鸡兔各几只?”
师:请再猜一猜。
师:看来有很多种情况,能不能按照一定的顺序把所有情况列举出来呢?想不想自己来尝试一下?
学生自主填写表格,教师巡视。
师:请你把你尝试的过程与大家分享。
师:后面还要不要再尝试下去?
师:脚少了,说明什么?增加谁的数量?
师:你为什么跳着猜测呢?
生:一个一个地试比较慢,就我隔一个试一次了。
生:脚少了,就增加兔子,增加一只兔就增加2只脚!增加2只兔就增加4只脚!
师:我没明白,为什么增加1只兔不是增加4只脚呢?
学生陷入思考。
师:我们再来研究一下这个表格,把空格填完整,再看看数量间 有没有什么数学规律。
学生观察、讨论、分享。
师:为什么是2只2只地变化呢?而不是4只4只地变化?
师:为了让大家看得更加清楚,想得更加明白,我们借图形朋友帮忙吧。
送教下乡教学设计送教下乡教学设计送教下乡教学设计出示
理解:1只鸡换成1只兔,脚就减少2只。
师:反过来呢?
引导发现:1只兔换成1只鸡,脚减少2只。
【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。
(四)数形结合理解假设法
1.假设全是鸡。
出示表格:
鸡
8
0
兔
0
8
脚
16
26
32
师:请再看表格左边第一栏,8和0表示什么意思?
师:假设什么?这样假设的结果会是什么呢?
师:脚实际是26只,为什么少了10只?少了谁的脚?
出示:换什么?换几只?
学生独立思考。
师:你们说得真好!你们能用算式表达出你们的想法吗?
学生独立写算式,汇报。
师:10÷2=5,这里的“2”表示什么?是鸡的脚吗?
师:怎样更清楚地表示2是相差的脚呢?
假设全部是兔子。
学生独立解决。
3.比较两种方法
师:你觉得列表法与假设法怎么样?
【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。
(五)建立模型,拓展应用
1.应用新知,解决问题。
师:如果让你解决鸡兔同笼,有35个头,94只脚,鸡兔各几只?你会选择什么方法?
2.鸡兔同笼问题的发展
出示龟鹤问题。
师:与鸡兔同笼问题有什么相似的地方?谁可以看成鸡,谁看成兔?
3.出示歌谣 “一队猎人一队狗,两队并成一队走。数头一共是十二,数脚一共四十二。”
师:谁看成鸡,谁看成兔?
师:研究鸡兔同笼问题并不在于问题本身,而是用解决鸡兔同笼问题的方法去解决生活中类似的问题。
篇6:小学数学《鸡兔同笼》教案
【知识与技能】
理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。
【过程与方法】
经历自主探索解决问题的过程,体验解决问题的策略的多样化;在解决问题的过程中,提高逻辑推理能力,增强应用意识和实践能力。
【情感态度价值观】
感受古代数学问题的趣味性。
二、教学重难点
【教学重点】
掌握运用列表法、假设法解决“鸡兔同笼”问题。
【教学难点】
理解掌握假设法,能运用假设法解决数学问题。
三、教学过程
(一)引入新课
PPT呈现课本的主题图,并提问:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?是什么意思?大家能不能算出各几何呢?
引出课题——《鸡兔同笼》
(二)探索新知
先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下
教师总结学生回答:3只兔子,5只鸡,22只脚;4只兔子,4只鸡,24只脚。均不对
追问:按顺序列表填写一下,应该是各有几只?
得出结论有3只鸡,5只兔子。
进一步追问:还有没有其他方法?
学生活动:前后四人一小组讨论。
教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。
(三)课堂练习
PPT再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”
学生活动:学生自主选择喜欢的方法进行解决,一名学生到黑板上板演,其余学生独立完成,在黑板上板演的学生在结束后充当小老师给其他同学进行讲解
(四)小结作业
提问:今天有什么收获?
教师引导学生回顾解决鸡兔同笼问题的方法。
课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。
四、板书设计
篇7:小学数学五年级上册第《鸡兔同笼》精品教案
关键词:小学数学 鸡兔同笼 解法探析
DOI:
10.16657/j.cnki.issn1673-9132.2016.02.028
“今有雉兔同笼,上有三十五头,下有九十四脚,问雉免各几何?”这就是著名算术题“鸡兔同笼”,这道源自古代《孙子算经》的趣味题经过千百年来无数算术爱好者和教育人士的研究,其解题方法得到了极大的丰富,而其内涵也不断地延伸。现代人研究“鸡兔同笼”的目的已不仅仅局限于具体的解决办法,而是通过“鸡兔同笼”实现数学思想的渗透,学会以数学的眼光看待世界、解决问题。
一、“鸡兔同笼”解题法中隐含的数学思想
解决“鸡兔同笼”的办法有很多,既有古代流行的抬脚法,也有现代人新创的猜想法、列表法、图画法、假设法、建模法、方程法等。“鸡兔同笼”的多样解题法彰显了数学思想在数学教育中的重要地位。作为教师,我们需要深入研读教材,把隐含在课本公式、习题间的数学思想准确地提炼出来,在课堂教学过程中潜移默化地引导学生感悟,促使学生尝试运用数学思想分析与解决问题。
二、“鸡兔同笼”解决法分析
(一)猜想法
也可称为凑数法,即让学生根据题目中提供的“头”的数量先猜鸡与兔的数量,再通过题目提供的“脚”的数量予以印证。在此过程中,学生会慢慢领会“若鸡与兔的脚数量猜测得多,则应该增加鸡的猜测数量而减少兔的数量。反之,若是脚的数量少了,就要增加兔的猜测数量而减少鸡的数量。在这种不断修正猜测结论的过程中,学生自主学习的积极性得到提高,慢慢变得大胆,思路也更加开阔。
(二)列表法
列表法可以看作是猜测法的延续,将猜测的数值按照一定顺序(一般是从小到大)排列为表格,根据表格数据可以发现规律“鸡的数量减少一只、兔的数量增加一只的情况下,脚的数量就会增加两只”。在现实生活中,当一些问题暂时不能找到最恰当的数学模型时,以列表的办法往往能够得到结果,这也为后面的数学建模奠定了基础。
(三)画图法
画图法是最直观形象的办法,首先画出35个头与94只脚,然后先给所有的头配上两只脚,接着将多出来的24只脚加在其中的12个头上,答案出现。通过上面画图的过程,新的解题法——假设法已经初步呈现。画图在小学生的数学学习过程中是一个十分必要也相当有用的办法,学生在动手绘图的过程中能够逐渐领悟解题思路,在一定程度上拓展想象空间,从而体会的掌握其中的数学思想。
(四)假设法
新课程标准的提示内容中有“假设笼子里全是鸡,则全部的脚的数量就应该是70只,这会多出24只脚,一只兔子比一只鸡多两条只脚,则24÷2=12,这就是兔子的数量,那么鸡就有23只”。根据这种提示,学生可以反向思维:“如果笼子里全是兔子,那就应该有140只脚,这样就少了46只脚,一只鸡比一只兔子少两只脚,46÷2=23,这是鸡的数量,那么兔子就是12只。”
假设法解题相对于之前几种解题法而言更加快捷迅速,并且有利于促进小学生创新性思考能力的发展。但假设的方向一定要正确,假设的目标对象必须顺应题目而非自相矛盾,否则不仅得不到正确答案,反而会让解题人陷入混乱。
(五)建模法
这种办法是在假设法的基础上得到的,在“假设”的过程中,学生可以得出以下规律:“鸡的数量=(所有头的数量×4-所有脚的数量)÷(4-2),兔的数量=(所有脚的数量-所有头的数量×2)÷(4-2)”。这个规律就是一个数学模型。这个模型可以解决所有与“鸡兔同笼”问题类似甚至有所扩展的问题。建模法已经是一种相对成熟的解决现实问题的常用数学思想方法,该法从“形”和“量”的角度分析现实问题,以相对简化了的抽象形式确立解题参数与参量,结合数学定理(定义)将现实问题与之关联,此时,一个数学(或现实)问题就成为一个极简的数模。小学生对于建模的问题相对难以理解,但教师应当尝试让学生初步对建模产生大致的印象,从而为后续的深入学习做好铺垫。
(六)方程式解题法
方程式的应用在四年级已有了初步的认识,这种方法也是使用最广泛和最便捷的数学思想方法之一,具体到“鸡兔同笼”的问题,可以设兔的数量为X,鸡为Y,则鸡头数量则为35-X,那么,兔子的脚就是4X,鸡脚就是2(35-X),则方程式为4X+2(35-X)=94,解X=12,Y=23。
方程式作为解决现实问题最有效的数模,具有直接、简便、以易解难的优势,其在现代社会各行业均有广泛应用,此法的应用重点在于将问题中的已经量与未知量通过列方程建立起关联,最终通过已知量计算得到未知量,此即为方程式思想方法的由来。
三、通过分析“鸡兔同笼”教会学生数学思想
从上述猜想法到方程式法不难看出,这些由浅及深的数学思想方法之间存在着层层递进、由具象到抽象、由低层级往高层级发展的关联。粗看之下,“猜想、列表、画图”显得幼稚,似乎很“笨”,而且一旦头和脚的数量上了百只,那么仅在画图表上耗费的时间就已经无法想象,更遑论后续的解题措施。然而,这些略显笨拙的解题法作为小学生学习数学思想的必然过程却是必不可少的,正因有了这些“笨”办法,才为后面的假设、建模与方程式奠定了基础。教师需要通过这样循序渐进的教学方法化繁为简,进一步让学生明白所谓的“笨”办法与后面精炼简洁的数模之间其实有着千丝万缕的联系,从而让学生了解“数学思想之间并非孤立存在”的深刻内涵。
四、结束语
分析“鸡兔同笼”的目的在于让小学生掌握不同数学思想的内涵,教师应充分挖掘与延伸“鸡兔同笼”的潜在价值,引导小学生领会及掌握不同数学思想方法间的联系,为更高层级的学习奠定坚实的基础。
参考文献:
[1]谢清霖.亲历问题解决过程 深入感悟数学思想——“鸡兔同笼”问题蕴涵的一些数学思想方法教学例谈[J].小学数学教育,2013(2).
篇8:小学数学五年级上册第《鸡兔同笼》精品教案
一、课前小练
1、计算和解方程
20.07×1994+19.93×2007 999
(x-2.3)×1.5=7
2、()÷15=
8818
+99+9+
9939
461 x+x=4.5×
9523=0.6=()%=():()()1,甲乙两数的比为(),乙数比甲数少()%。4514、吨化肥平均分给5个村,每个村分得这些化肥的。()
883、甲数比乙数多所有的自然数都有倒数。()并且这些数的倒数都小于1.()走同一条路,小明用了5分钟,小红用了四分钟,小明的速度比小红慢20%。()
5、一篇印度神话这样记载:有一束莲花,把这束莲花的三分之一、五分之一、六分之一分别先给三位女神,剩下的六枚献给声望最高的人。问这束莲花有多少瓣?
二、课堂教学
1,什么是”鸡兔同笼”问题
“鸡兔同笼”问题是我国古代趣味名题,出自于古代数学名著《孙子算经》下卷。因其计算同一个笼子中鸡和兔的只数而得名“鸡兔同笼”问题。
用我们现代的数学术语说,”鸡兔同笼”问题有如下几个特点:
1、有2个未知的量。
2、最少有两个关于这两个未知量的等量关系。
例1:鸡兔同笼,共有 30 个头,88 只脚。求笼中鸡兔各有多少只? 其中两个未知的量:鸡和兔的数量 两个等量关系:
例2:小明用 10 元钱正好买了 20 分和 50 分的邮票共 35 张,求这两种邮票名买了多少张? 这也是“鸡兔同笼”问题,其中两个未知的量为: 其中两个等量关系为:
2、用方程法解决“鸡兔同笼”问题
例3:鸡兔同笼不知数,三十六头笼中露。数清脚共五十双,各有多少鸡和兔? 解题步骤:
1、认真审题,找准条件和问题
2、列出关系式:
3、设未知数,列出方程
4、解方程或者方程组
5、检验作答
变式一:一次数学竞赛共有 20 道题。做对一道题得 5 分,做错一题倒扣 3 分,刘冬考了 52 分,你知道刘冬做对了几道题?
变式二:100 个和尚吃了 100 个面包,大和尚 1 人吃 3 个,小和尚 3 人吃 1 个。求大小和尚各有多少个?
归纳小结:用方程法解决鸡兔同笼”问题是最明了,思路最清晰的一种方法,是我们一定要学习掌握的方法,这和我们一般的方程应用题的思路是一样的。
3、“鸡兔同笼”问题与分数应用题的结合考查
例4:甲乙两个工厂去年一共上缴税收112万元。已知甲厂上缴税收的4/9与乙厂上缴税收的2/7相等。两厂去年各自上缴税收是多少万元
变式一:水果店运来的苹果和梨一共有1300千克,苹果卖出了2/5,梨卖出了20千克后,剩下的梨和苹果的质量恰好相等。原来苹果和梨子各自有多少千克?
变式二:某车间原来有男工人数是女工人数的5/4,后来又调来2名女工,现在男工人数是女工人数的6/5。这个车间现在拥有多少名男工人?
归纳小结:思路都是一样的,题中的关系变得相对复杂了,要理清。
4、用“鸡兔同笼”问题方法解决其他奥赛题型(1)和差、和倍、差倍问题
例1:两个数的和为36,差为22,则较大的数为多少?
变式:买一支自动铅笔与一支钢笔共用10元,已知铅笔比钢笔便宜6元,那么买铅笔花多少元?
(2)年龄问题
例2:.小刚4年前的年龄与小明7年后的年龄之和是39岁,小刚5年后的年龄等于小明3前的年龄,求小刚、小明今年的年龄是多少?
变式一:哥哥5年前的年龄等于7年后弟弟的年龄,哥哥4年后的年龄与弟弟3年前的年龄和是35岁,求兄弟二人今年的年龄?
变式二:10年前父亲的年龄是儿子年龄的7倍,15年后父亲的年龄是他儿子的2倍,问今年父子二人各多少岁?
(3)浓度问题
例1:把含盐5%的食盐水与含盐8%的食盐水混合制成含盐6%的食盐水600克,分别应取两种食盐水各多少千克?
(4)其他问题
例1:学校四年级有甲、乙丙3个班,甲班和乙班共有100人,乙班和丙班共有101人,甲班和丙班共有97人。甲、乙、丙3个班各有多少人?
变式:△、□、〇分别代表三个不同的数,并且:
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60
求:△= 〇= □=
课后练习:
1、纺织工厂第一车间的人数是第二车间人数的4/5少30人。如果从第二车间调10人到第一车间,这时,第一车间的人数是第二车间人数的3/4。原来两个车间的人数是多少人?第一车间的人数是第二车间人数的几分之几?
2、鸡兔共有腿50条,若将鸡数与兔数互换,则腿数变为54条,鸡有()只,兔有()只。
3、有人问孩子年龄,回答:“比爸爸的岁数的一半少9岁。”又问爸爸的年龄,回答说:“比孩子的4倍多2岁。”孩子年龄是多少岁?
4、哥弟俩共有邮票70张,如果哥哥给弟弟4张邮票后还比弟弟多面手多2张,哥哥原来有邮票多少张?(写出过程)
篇9:小学数学五年级上册第《鸡兔同笼》精品教案
1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、尝试用列表、假设的方法解决“鸡兔同笼”问题,使学生体会列表、假设的一般性。
3、在解决问题的过程中,培养学生的迁移思维能力。
教学重难点:
1、理解掌握解决问题的不同思路和方法。
2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学具准备:
小黑板
教学过程:
一、导入。
师:同学们,你们喜欢看书吗?你们都喜欢看哪一类的书呢?(待答)很好,同学们还养成了课外学习的好习惯。老师也喜欢看书,不过我的爱好与同学们不同,我喜欢看的是有关数学之类的书,但最近我在书上遇到了一个问题,没能解决,同学们愿意帮我解决吗?(待答)是这样的:“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?同学们知道这是哪一种类型的数学问题吗?这就是大约一千五百多年前,我国古代数学名著《孙子算经》中记载的“鸡兔同笼”问题。板书课题:数学广角--鸡兔同笼。
二、共同探究。
1、质疑:提问:
(1)、从数量上讲,鸡有什么特点?兔呢?(鸡有一个头,2只脚;兔有一个头,4只脚)
(2)、一只鸡和一只兔从数量上看有什么相同点和不同点?(相同点:都有一个头。不同点:鸡有2只脚。兔有4只脚。)
(3)鸡和兔相比:什么比什么多?多多少?(兔子的腿比鸡的腿多,多2条退)
(4)如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?请同学们算算。算完的同学请举手说说你是怎样算的?
师:有时候,生活在同一笼子里的鸡看到兔子走路很好玩,于是他把两只翅膀伸出来学兔子走路,同学们说说,你会发现什么问题?(笼子里的脚多了,多的刚好是鸡学兔子走路的数量。)也就是说,如果把笼子里的动物都看着是兔子的时候,笼子里有:7×4=28(条腿)比实际的20条腿多6条腿,那么这6条腿就是鸡学兔子走路的得出的,就可以知道笼子里的鸡的只数:6÷2=3(只),如果笼子里多出40条腿,你能够知道有多少只鸡在学兔子走路呢?(有20只,笼子里多出的40条腿刚好是鸡学兔子走路得出的,即40÷2=20(只鸡)。有时候兔子对鸡也很好奇,它认为鸡叫起来很好玩,于是提起两条腿学鸡叫,你又会发现什么呢?(笼子里的脚少了,少的也搞好是兔子学鸡叫得数量。)也就是说,如果把笼子里的动物都看成是鸡的时候,笼子里有:7×2=14(条腿),比实际的20条腿少6条腿,那么这笼子里少的6条腿就是兔子学鸡叫得出的,即:6÷2=3(只兔),如果笼子里少了18条腿,同学们知道是几只兔子在学鸡叫吗?
过渡:现在请同学们帮我解决这个问题好吗?
2、教学例1
(1)请同学们读一读,你从题里知道了几个条件?分别是什么?,笼子里有多少只鸡和兔?我们一起来猜一猜好吗?
假如笼子里的动物都是鸡,那么8×2=16(条腿)符合题意吗?照此类推。
鸡的只数 8 7 6 5 4 3 2 1 0
兔的只数 0 1 2 3 4 5 6 7 8
腿的条数 16 18 20 22 24 26 28 30 32
(2)在数学中这种方法叫列表法,如果遇到数目大的时候,这种方法行吗?怎么办呢?
3、假设全是鸡:(板书)
8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)
5、算出来后,我们还要检验算的对不对,谁愿意口头检验。
生:3×2+5×4=26(只),5+3=8(只)。
师:看来做对了,最后写上答语。
5、假设全是兔
8×4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)
32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿)
4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了2条腿。)
6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡当成了兔算,所以6÷2=3就是现在鸡的只数。)
8-3=5(只)兔
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)
三、练习
现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?用你喜欢的一种方法去解决
四、课后总结:
本节课你有什么收获?那你知道早在一千五百年前的古人又是怎么解决鸡兔同笼问题的?请同学们自学P114页下面内容。这个内容我们留到下节课进行讲解。
板书设计:
鸡兔同笼
1、列表法
2、假设法
(1)全是兔(2)全是鸡
8×4=32(条)8×2=16(条)
32-26=6(条)26-16=10(条)
4-2=2(条)4-2=2(条)
鸡:6÷2=3(只)兔:10÷2=5(只)
兔:8-3=5(只)鸡:8-5=3(只)
篇10:小学数学五年级上册第《鸡兔同笼》精品教案
——《鸡兔同笼》教学设计
万宁市和乐中心学校
卓业伟
教学内容:五年级数学广角—鸡兔同笼的内容(第129—130页)教学要求:
1.通过学习使学生初步认识“鸡兔同笼”的数学趣题,能尝试用多种策略解答数目比较小的此类题目。
2.通过学习使学生在不断的试误中,运用“列表举例”“作图分析”“假设法”“方程解”等方法解决鸡兔同笼问题,逐步形成良好的数学意识,体验多种法解决数学问题的思想和方法。
3.在学习我国传统的数学文化的过程中,了解与此有关的数学史,对学生进行数学文化的熏陶和感染。教学重点:
探究用不同方法解决鸡兔同笼问题,会用“假设法”等方法解题。教学难点:明确此类数学问题的解题思路中的算理。教学用具:实物投影、课件 教学过程:
一、揭示课题
1、师:同学们,今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”(出示挂图)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。
鸡和兔各有几只?(师解释今意))
2、有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。对,鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年,3、听说过“鸡兔同笼”吗?在哪听说的?会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习老师相信今后你一定会做了。那同学们有没有信心把这节课的内容学好呢?
二、展示情境,尝试探究
(一)出示情景,试图获取信息
1.“鸡兔同笼”这四个字什么意思呀?(鸡和兔关在同一个笼子里)
为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?”(课件出示)
2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生理解:①鸡和兔共8只。
②鸡和兔共有26条腿。
③鸡有2条腿。
④兔有4条腿。(课件出示)
(二)学生尝试做
1.我们先来猜猜,笼子中可能会有几只鸡几只兔呢?猜测时要注意什么呢?(鸡和兔一共是8只)
学生猜测,老师板书:兔 6 5 4 3 2 1
鸡 2 3 4 5 6 7
2.大家猜得都有道理,笼子里到底有几只鸡,几只兔呢?猜了这么多你为什么认为只能是5兔和3只鸡呢?
3、怎样才能确定同学们猜的对不对?(把鸡的腿和兔的腿加起来看等不等于26。)
4、和学生一起验证,找出正确的答案。(只有这一个正确答案吗?)
5、我们把这种方法叫做列举法。(板书:列表法)
6、你们觉得用猜想列表法解决鸡兔同笼问题怎么样?(生:麻烦,而且当头和脚的只数越多时,越不容易找出答案。)
7、那我们还有研究新方法的必要。8.尝试用其它方法
(1)除了刚才猜测的方法还能其它的方法来计算吗?那请同学们自己尝试完成。
(2)学生试做,教师巡视指导,收集有代表性的计算方法。(3)展示学生做的方法 A、假设全是鸡:
8×2=16(只)
26-16=10(条)4-2=2
10÷2=5(只)兔
8-5=3(只)鸡 展示,抽生说自己的想法。
①
8只鸡出现后,你发现了什么?(有16条腿,与26条腿的条件不相符)
②
怎么不相符?(比26条腿少10条)③
你是怎么知道的?(26-16=10)
④
怎么办就不少这10条腿呢?(用兔子来换鸡)⑤
展示兔子换鸡时腿数的变化。
⑥
为什么腿数会2条2条地增加?(明确兔子与鸡的腿数相差4-2=2)
B假设全是兔(方法同上)C、用方程做
①
解:设鸡有X只,兔有(8-X)只。2X+4(8-X)=26 ②
解:设有兔X只,鸡有(8-X)只。4X+2(8-X)=26 同样抽生说出自己想法。
(4)刚才我们用了几种方法来解决这类题?(枚举、列式、方程)
(三)即时练习
现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?用你喜欢的一种方法做
出示《孙子算经》中原题学生解答并集体讲评
三、延伸、应用
1.师:鸡兔同笼的问题你学会了吗?有没有疑问?鸡兔同笼问题在我国1500年前就出现在《孙子算经》中了,现在我们也可以顺利地解决出这样的传统名题了。不过老师有一个问题想问大家,你们在生活中有见过将兔和鸡放在同一个笼子里吗?(没有)就算的话,我们有没有必要去从上面数看看头有几个,再从下面数看看脚有几只,然后再把鸡和兔各有多少只给算出来?呃,那学这个问题是不是很无聊啊?可就这个无聊的问题,中国人在研究,外国人也在研究呢?这个问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。
2.看来我们今天不能把问题局限在鸡兔同笼上,我们学习数学不光会做一些数学题,还应该用我们掌握到的方法帮我们解决生活中遇到的一些问题。现在请同学们用“鸡兔同笼”的解题方法来解决生活中遇到的问题吧。
3、课件出示“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)那请同学说说鸡兔共多少只?共有多少只脚?鸡有几只脚?兔有几只脚?
四、课后总结:本节课你有什么收获?
师:今天我们研究鸡兔同笼的问题,不在于单单解决这个问题,而是学会了一些解决问题的方法,用这些方法可以帮助我们解决很多生活上的一些实际问题。
六年级数学上册《数学广角》教学设计
教学目标:
1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。3.在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
教学重点:用假设法解决“鸡兔同笼”问题。教学过程:
一、揭示课题
1、师:同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。鸡和兔各有几只?
2、有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年。
3、会做“鸡兔同笼”这类题吗?会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习你老师相信今后你一定会做了。那同学们有没有信心把这节课的内容学好呢?
二、展示情境,尝试探究
(一)出示情景,获取信息
1.“鸡兔同笼”这四个字什么意思呀?(鸡和兔关在同一个笼子里)
为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”)
2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了什么信息?
学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。
③鸡有2条腿。④兔有4条腿。
(二)猜想验证,1、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?
学生猜测,老师板书
2、怎样才能确定同学们猜的对不对?(把鸡的腿和兔的腿加起来看等不等于26。)
3、和学生一起验证,找出正确的答案。(只有这一个正确答案吗?)
4、我们把这种方法叫做列举法。(板书:列表法)
5、你们觉得用猜想列表法解决鸡兔同笼问题怎么样?(生:麻烦,而且当头和脚的只数越多时,越不容易找出答案。)
6、那我们还有研究新方法的必要。
(三)尝试假设法
1、为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(出示:把一只兔当成一只鸡算,就少了两条腿。)
2、假设全是鸡一共就有16条腿。实际有26条腿,这样笼子里就少了10条腿,为什么会少了10条腿呢?(把兔当了鸡在算。一只兔当成一只鸡算少两条腿,那把几只兔当成了鸡算 就会少算10条腿呢?即10里面有几个2。就把几兔当成了鸡算,5个2,用五只兔当成了鸡算,这个五就表示应该有5只兔)
3、上面的过程能用算式表示出来吗?请同学们试试看。(学生试着列算式,请一个学生到黑板上去板演。)
4、假设全是鸡:(板书)
8×2=16(条)(如果把兔全当成鸡一共就有8×2=16条腿)
26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)
4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)
10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)
8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)
5、算出来后,我们还要检验算的对不对,谁愿意口头检验。生:3×2+5×4=26(只),5+3=8(只)。师:看来做对了,最后写上答语。
6、假设全是兔
7、我们再回到表格中,看看右起第一列中的8和0是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只鸡当成一只兔算,就多了两条腿)
8、先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。
(学生讨论写算式,然后指名板演。)
8×4=32(条)(如果把鸡全看成兔一共就有8*4=32条腿)
32-26=6(条)(把鸡当成兔来算,两条腿的鸡当成4条腿兔算,每只鸡就多了两条腿,6条腿是多算了鸡的腿)
4-2=2(假设全是兔,是把两条腿的鸡当成有4条腿的兔。所以4-2表示是一只鸡当成一只兔多算了2条腿。)
6÷2=3(只)鸡(那要把多少只鸡当成兔来算就会多算6条腿呢?就看6里面有几个2就是把几只鸡当成了兔算,所以6÷2=3就是现在鸡的只数。)
8-3=5(只)兔
小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)
(四)列方程解
在解决鸡兔同笼问题时,除了假设法外,还有别的方法吗?(方程的方法)要用列方程的方法就必须找到等量关系式。通过得到到信息能写出哪些等量关系式呢?
(兔的只数+鸡的只数=8;兔的腿+鸡的腿=26条腿)
这里我们需要求兔的只数和鸡的只数,共有两个未知数。那我们可以设一个未知数为X,再把另一个表示出来。这道题我们可以设兔的知数为X只,根据兔和鸡共有8只。那鸡的只数就可以表示成:(8-X)只),因为一只鸡有2条腿,所以X只鸡就共有2X条腿。一只兔有4只脚,(8-X)只兔就有4(8-X)只脚。又因为鸡和兔共有26只脚,所以2X+4(8-X)=26 ①解:设鸡有X只,兔有(8-X)只。
2X+4(8-X)=26 在解的时候可以根据等式的性质将减变成加,分别加上4X,再来解。②解:设有兔X只,鸡有(8-X)只。4X+2(8-X)=26 同样抽生说出自己想法。那种方程好解一点,(设兔的只数为X好解点)所以我们可以设脚数多的兔为X,在解的时候容易一点。
列方程的重点是找出等量关系:设头数,以脚数相等来列出方程;
小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)
三、练习
1、现在我们就用刚才学到的这些方法来解决《孙子算经》中原题,你会做吗?用你喜欢的一种方法做
出示《孙子算经》中原题学生解答并集体讲评
四、延伸、应用
1、出示“做一做1”
鸡兔同笼问题传到日本时就变成了“龟鹤问题”,你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?课件出示(龟相当于兔,鹤相当于鸡)展示学生作业,并抽生说说思路。
2、看来鸡兔问题这类问题我们不只局限算鸡和兔的只数问题上,只要能用“鸡兔同笼”问题来解答的问题都可以统一叫做“鸡兔同笼”问题。下面我们就用刚才学到的“鸡兔同笼”方法,来帮我们解决生活中遇到的一些实际问题。
3、出示“做一做”第二题。问这道题与“鸡兔同笼”问题有相似的地方吗?有哪些地方相似?(大船相当于“兔”,小船相当于“鸡”)学生独立完成,集体讲评。
五、课后总结:
篇11:小学数学五年级上册第《鸡兔同笼》精品教案
困惑之一:鸡兔同笼问题的解决有一系列的方法,对于六年级学生是否需要一一详细列举、运用?其他年级如何处理?
困惑之二:鸡兔同笼问题蕴含着丰富的数学思想方法。一堂40分钟的课,渗透四五种思想方法,是否会“贪多嚼不碎”,学生能理解和掌握吗?
通过鸡兔同笼的教学,反思到小学生数学思维的培养问题。数学思维是人脑和数学对象交互作用,并按照一般思维规律认识数学内容的内在理性活动。数学思维是一个动态系统,一般包括数学思维内容、基本形式,方法及个性品质。笔者试以鸡兔同笼的教学实践为例,来探讨对小学生数学思维的培养。
一、数学思维的培养要与可接受水平结合起来考虑
思维是在感知基础上进行的高级认识活动。思维的全部材料来自于感性经验。因此,要发展小学生的思维,首先要丰富小学生的感性经验。帮助小学生掌握丰富的、生动的感性知识,是发展其思维能力的必要条件。
对于低年级的小学生,教师在教学中要适当运用实物、图片及各种直观教具,积累感性经验,有必要时还可根据教育教学的需要组织参观、访问、游览等活动,要有意识地引导小学生去全面观察、深刻分析所积累的材料。
如鸡兔同笼问题,由于各年段学生的思维感知基础不同,根据低年段的小学生感知基础弱些,又喜欢直观性思考问题、爱好图像等特点,教师在一年级可以选择直观性强的数形结合法(画图法);二年级可以进行简单的抽象,采用列表法、枚举法,这样可以促使学生养成有序思考的习惯,而有序思考问题的意识是一种重要的数学思想方法。
中年段的小学生感知基础有所提高,具有了一定的抽象思维能力,可以将抽象与具体结合起来,所以在三四年级可以选择列表法、枚举法甚至是假设法。
小学高年段的学生具备了较强的抽象思维能力,五六年级可以运用假设法、方程甚至于方程组的方法。不同的年级代表着学生不同的认知接受水平,也表现出不同的思维层次。
如问四年级的学生一个这样的鸡兔同笼问题:鸡和兔共有8个头、26只脚,有多少只鸡、多少只兔?有个学生这样分析:“先是鸡兔各4只,发现脚少了,再将1只鸡换成兔即可。”“既然可以这样想,那可不可以先全部是鸡呢?”听到我这样反问,他停顿了一会儿,用假设法给了我一个满意的解答过程。
当然这可能是一个特殊的个体,但有一点可以肯定,思维的发展是受年龄、感知基础限制的,思维的培养与可接受水平结合起来考虑,效果才会更好。
二、以知识教学为载体,适时地渗透数学思想方法
新一轮的数学课程改革的一项重要贡献是:由唯一强调具体数学知识内容的学习过渡到了所谓的“三维目标”,即认为数学教育不仅应当帮助学生很好地掌握数学的基础知识与基本技能,而且应帮助学生初步学会数学意义上的思维,具备一定的数学思考方法。
在鸡兔同笼问题的教学中,教师引导学生探究解决问题的方法时,可将数学思想方法的渗透与知识教学紧密结合。开课伊始,由于原题数据比较大,不利于初次接触的学生进行研究,教师可以提出“由于原题数据比较大,我们不妨从数据小的题目开始研究”,自然而然地将“化繁为简”的数学思想渗透;又如,引导学生理解运用假设法解题后,进一步引导学生思考为什么要假设全是鸡或全是兔呢?让学生体会两种动物不能解决,转化为一种动物,问题就简单了,这样可使其在更高的层次上体会“化繁为简”思想的奇妙,也为学生之后学习关于更复杂的鸡兔同笼问题提供思想方法作基础。
再如,学生在运用方程方法解答出了例题后,教师可引导学生明白代数思想的普遍适用性,给学生今后解决复杂的同类问题提供导向。
三、注重学生数学思维的活动过程
数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过让学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分、有效地让学生展示自己的思维过程,是数学课堂的核心,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。
课堂上,教师有时可以不将解决问题的方法限定于教材上,而是遵照学生的认知发展水平的差异性,提出开放性的问题:“用自己想到的方法解决这个问题,并把解决问题的过程简单地记录下来。”开放性的问题活跃了学生的思维。通过个体的思考和小组的合作讨论之后,学生充分展示了自己的思维过程:有形象直观的画简图的解法、有逻辑推理性强的假设法、有普遍运用的方程法等。
处理方法也是需要认真思考的。如“根据六年级学生思维的发展层次,引导学生用假设法、方程法解决这类问题”,基于这种思考,侧重于学生展示的假设法,教师可指出假设法的关键——找到“腿数的相差数”;再如代数的方程法的关键——找到以只数设为未知数的依据,以总腿数为等量关系,列出方程求解出结果。
总之,鸡兔同笼问题,蕴含着丰富的数学思想方法,对培养学生的数学思维能力很有帮助。当然,数学思维的培养需要一个长期的训练过程,要有意识地结合教学内容进行,只要做到持之以恒,自然会水到渠成。
篇12:小学数学五年级上册第《鸡兔同笼》精品教案
小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!
一、填空题。
(共5题;共5分)
1.(1分)(2012•华池县)鸡、兔同笼,一共有94只脚,兔比鸡少11只,鸡有_______只,兔有_______只.
2.(1分)1.芳芳家有兔和鸭若干只,从上面数有10个头,从下面数有28只脚,兔有_______只,鸭有_______只。
3.(1分)3.制作小组10个同学扎灯笼,男同学每人扎3个,女同学每人扎5个,一共扎了42个灯笼,男同学有_______人,女同学有_______人。
4.(1分)4.学校买来篮球、足球共8个,共用279元。篮球每个39元,足球每个28元,学校买来_______个篮球和_______个足球。
5.(1分)5.用大、小卡车运19吨蔬菜,大卡车每辆每次运5吨,小卡车每辆每次运3
吨,如果要一次运完,且都是整车,需要_______辆大卡车和_______辆小卡车。
二、选择题。
(共3题;共3分)
6.(1分)摩托车和三轮车共15辆,共有35个轮子,摩托车有()辆.
A
.5
B
.8
C
.10
7.(1分)笼子里有若干只鸡和兔.从上面数,有8个头,从下面数,有26只脚.鸡和兔各有()
A
.3只和5只
B
.6只和2只
C
.5只和3只
D
.2只和6只
8.(1分)强强一次捐款175元,分别是20元和5元的,共有23张,其中5元的有()张.
A
.4
B
.19
C
.13
三、解决问题。
(共7题;共7分)
9.(1分)看图回答
10.(1分)鸡和兔放在一只笼子里,上面有29个头,下面有92只脚.问:笼中有鸡兔各多少只?
11.(1分)在一个笼子里,有鸡又有兔,数一下它们的脚,共有20只.请问笼子里鸡、兔各多少只?(用方程解)
12.(1分)停车场上停放两轮摩托车和小汽车共26辆,两种车车轮子的总和为80个,摩托车和小汽车各有多少辆?
13.(1分)一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?
14.(1分)44名学生去划船,一共乘坐10只船,其中每只大船坐6人,每只小船坐4人。大船和小船各有多少只?
15.(1分)鸡兔同笼,共有头48个,脚132只,鸡和兔各有多少只?
参考答案
一、填空题。
(共5题;共5分)
1-1、2-1、3-1、4-1、5-1、二、选择题。
(共3题;共3分)
6-1、7-1、8-1、三、解决问题。
(共7题;共7分)
相关文章:
小学语文S版五年级上册第三单元教案01-20
语文钓鱼的启示课文预习教案01-20
新课标人教版小学语文三年级上册29《掌声》精品教案01-20
四年级日记:爱读书,读好书500字01-20
小学语文五年级上册测试卷01-20
小学五年级上册的语文期末试卷01-20
人教版小学语文五年级上册第三单元教案01-20
一年级夏雨作文200字01-20