不等式证明常用方法

关键词: 方法 证明

第一篇:不等式证明常用方法

证明不等式的几种常用方法

摘要:不等式由于结构形式的多样化化,证明方式也是灵活多样,但都是围绕着比较法、综合法、分析法三种方法展开.这三种方法是不等式证明的最基本、最重要的方法. 关键词:不等式证明;比较法;综合法;分析法

引言:不等式的证明是初高中教学中的一个难点,由于结构形式不同,其证明方法也是灵活多样的,且技巧性强.学生需要重点掌握的不等式证明的常用方法如比较法、综合法、分析法,它们是不等式证明的最基本、最重要的方法.虽然证明不等式的方法灵活多样,但都是围绕这三种基本方法展开.1 比较法

法证明不等式是不等式证明的最基本的方法,常用作差法和作商法.

1.1 作差比较法

作差比较法:要证不等式abab,只需证ab0ab0即可.

作差比较法步骤为:作差、变形、判断符号(正或负)、得出结论.

①作差:对要比较大小的两个数(或式)作差.

②变形:对差进行因式分解或配方成几个数(或式)的完全平方和.

③判断差的符号:结合变形的结果及题设条件判断差的符号.

例1 已知a,b,m都是正数,并且ab,求证:ama. bmb

证明:amab(am)a(bm)m(ba). bmbb(bm)b(bm)

∵a,b,m都是正数,并且ab,

∴bm0,ba0,

∴amam(ba). 0即:bmbb(bm)

aa1,欲证ab,需证1. bb1.2 作商比较法 作商比较法:若b0,要证不等式ab,只需证

作商比较法步骤为:作商、变形、判断与1的大小、得出结论.例2 已知a,b,m都是正数,并且ab,求证:ama. bmb

证明:amab(am)abbm, bmba(bm)abam

mR,0ab,

abbmabam,即

abbm1, abamama. bmb

2 综合法

综合法就是由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一

种证明方法.

例3 已知xyz1,求证:xyz

证明: xyz2222221. 31[3(x2y2z2)] 3

1222222222[xyz(xy)(yz)(zx)] 3

1211222(xyz2xy2yz2zx)(xyz), 333

1222xyz. 3

bccaababc例4 设a,b,c都正数,求证:abc

证明:a,b,cR, 

bccaab,,R, abc

bccacaababbc∴2c,2a,2b, abbcca

bccaab2(abc),∴2(bcabccaababc∴abc

3 分析法

分析法:从结论出发,逐步逆找结论成立的充分条件.也就是从求证的不等式出发,分析使这

个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这

些条件都已具备,那么就可以断定原不等式成立,基本步骤:要证……只需证……,只需证……

1. 3

1222证明: xyz1,为了证明xyz, 3例5 已知xyz1,求证:xyz222

只需证明3x3y3z(xyz),

即3x3y3zxyz2xy2yz2zx, 2222222222

即2x22y22z22xy2yz2zx,

即(x22xyy2)(y22xyz2)(z22zxx2)0,

即(xy)2(yz)2(zx)20.

(xy)2(yz)2(zx)20成立,xyz2221成立. 3

(ab)2ab(ab)2

ab. 例6 设ab0,求证:8a28b

(ab)2(ab)2(ab)2

证明:要证原不等式成立,只需证:. 8a28b

∵a

(ab)2(a)2

只需证1. 4a4b

abab只需证,12a2ba只需证 1ab

∵ab0上式成立,

∴原不等式在ab0时成立.

4 结束语

关于不等式的证明,上面的三种方法是最基本的方法,该类不等式的证明方法是以上三种方

法的延伸.有待读者进一步的研究.

第二篇:高中数学不等式证明的常用方法经典例题

关于不等式证明的常用方法

(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证

(2)综合法是由因导果,而分析法是执果索因换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法换元法主要放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法 凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法 典型题例

例1证明不等式1

121

31

n2n(n∈N*) 知识依托 本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等 例2求使xy≤axy(x>0,y>0)恒成立的a 知识依托 该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a>0,b>0,且a+b=1求证(a+11)(b+)ba证法一 (分析综合法)证法二(均值代换法)证法三(比较法)证法四 (综合法)证法五(三角代换法) 巩固练习 已知x、y是正变数,a、b是正常数,且ab=1,x+y的最小值为xy设正数a、b、c、d满足a+d=b+c,且|a-d|<|b-c|,则ad与bc的大小关系是 若m

312已知x,y,z∈R,且x+y+z=1,x2+y2+z2= x,y,z∈[0,] 23(1)a2+b2+c2≥证明下列不等式bc2ca2ab2z≥2(xy+yz+zx) xyabc

yzzxxy111(2)若x,y,z∈R+,且x+y+z=xyz,则≥2() xyzxyz(1)若x,y,z∈R,a,b,c∈R+,则

已知i,m、n是正整数,且1

m

n (2) (1+m)n>(1+n)m

若a>0,b>0,a3+b3=2,求证 a+b≤2,ab≤1不等式知识的综合应用

典型题例

例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h米,盖子边长为a米,(1)求a关于h的解析式;(2)设容器的容积为V立方米,则当h为何值时,V最大?求出V的最大值(求解本题时,不计容器厚度)

知识依托本题求得体积V的关系式后,应用均值定理可求得最值

例2已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤

1(1)|c|≤1;

(2)当-1 ≤x≤1时,|g(x)|≤2;

(3)设a>0,有-1≤x≤1时, g(x)的最大值为2,求f(x)

知识依托 二次函数的有关性质、函数的单调性,绝对值不等式

例3设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x

1、x2满足0

(2)设函数f(x)的图象关于直线x=x0对称,证明 x0<

x

1巩固练习

定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等

式,其中正确不等式的序号是()

①f(b)-f(-a)>g(a)-g(-b)②f(b)-f(-a)g(b)-g(-a)④f(a)-f(-b)

B②④

C①④

②③

下列四个命题中①a+b≥

2ab②sin2x+

19

4≥4③设x,y都是正数,若则x+y的最小值是12④=1,2

xysinx

若|x-2|<ε,|y-2|<ε,则|x-y|<2ε,其中所有真命题的序号是__________

已知二次函数 f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两实数根为x1,x2

(1)如果x1<2-1; (2)如果|x1|<2,|x2-x1|=2,求b的取值范围

设函数f(x)定义在R上,对任意m、n恒有f(m+n)=f(m)·f(n),且当x>0时,0

1(1)f(0)=1,且当x<0时,f(x)>1;

(2)f(x)在R上单调递减;

(3)设集合A={ (x,y)|f(x2)·f(y2)>f(1)},集合B={(x,y)|f(ax-g+2)=1,a∈R},若A∩B=,求a的取值范围

2x2bxc

已知函数f(x)= (b<0)的值域是[1,3],

2x1

(1)求b、c的值;

(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;(3)若t∈R,求证 lg

711≤F(|t-|-|t+|)≤566数列与不等式的交汇题型分析及解题策略

【命题趋向】

数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】

题型一 求有数列参与的不等式恒成立条件下参数问题

求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立f(x)min≥M;f(x)≤M恒成立f(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 11

1【例1】等比数列{an}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+an>…恒成立的正整数n的取

a1a2an值范围.【例2】(08·全国Ⅱ)设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.

(Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式;(Ⅱ)若an+1≥an,n∈N*,求a的取值范围.【点评】 一般地,如果求条件与前n

项和相关的数列的通项公式,则可考虑Sn与an的关系求解

题型二 数列参与的不等式的证明问题

此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.

【例3】 已知数列{an}是等差数列,其前n项和为Sn,a3=7,S4=24.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设p、q都是正整

1数,且p≠q,证明:Sp+q<(S2p+S2q).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)

2因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】 (08·安徽高考)设数列{an}满足a1=0,an+1=can3+1-c,c∈N*,其中c为实数.(Ⅰ)证明:an∈[0,1]对任意n∈N*11成立的充分必要条件是c∈[0,1];(Ⅱ)设0

2332

>n+1-n∈N*.

1-3c

题型三 求数列中的最大值问题

求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.

【例5】 (08·四川)设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为______.

【例6】 等比数列{an}的首项为a1=2002,公比q=-.(Ⅰ)设f(n)表示该数列的前n项的积,求f(n)的表达式;(Ⅱ)当n

取何值时,f(n)有最大值.

题型四 求解探索性问题

数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.

【例7】 已知{an}的前n项和为Sn,且an+Sn=4.(Ⅰ)求证:数列{an}是等比数列;(Ⅱ)是否存在正整数k,使

【点评】在导出矛盾时须注意条件“k∈N*”,这是在解答数列问题中易忽视的一个陷阱.

【例8】 (08·湖北)已知数列{an}和{bn}满足:a1=λ,an+1=n+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整

3数.(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;(Ⅲ)设0

数列与不等式命题新亮点

例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数„,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) „,则第50个括号内各数之和为_____.

点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设A. bn

Sk+1-2

>2成立. Sk-2

an是由正数构成的等比数列, bnan1an2,cnanan3,则()

S

cnB. bncnC. bncnD. bncn

点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对x(,1],不等式(m

m)2x()x1恒成立,则实数m的取值范围()

A

B

D

A. (2,3)B. (3,3)C. (2,2)D. (3,4)

例4四棱锥S-ABCD的所有棱长均为1米,一只小虫从S点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n米后恰好回到S点的概率为Pn (1)求P

2、P3的值;(2)求证: 3Pn1Pn

例5 已知函数

1(n2,nN)(3)求证: P2P3„Pn>6n5(n2,nN)

2

4fxx2x.(1)数列

an满足: a10,an1fan,若

1

1对任意的nN恒成立,试求a1的取值范围; 2i11ai

,Sk为数列cn的前k项和, Tk为数列cn的

1bn

n

(2)数列

bn满足: b11,bn1fbnnN,记cn

Tk7

. 10k1SkTk

n

前k项积,求证

例6 (1)证明: ln

1xx(x0)(2)数列an中. a11,且an1

11

an2; n1

2n1n

2①证明: an【专题训练】

7n2②ane2n1 4

aaD.a6a8() D.bn≤cn

()

1.已知无穷数列{an}是各项均为正数的等差数列,则有

aaA.<

a6a8

aaB.

a6a8

aaC.>a6a8

2.设{an}是由正数构成的等比数列,bn=an+1+an+2,cn=an+an+3,则

A.bn>cn

B.bn

C.bn≥cn

3.已知{an}为等差数列,{bn}为正项等比数列,公比q≠1,若a1=b1,a11=b11,则()

A.a6=b6 A.9 A.S4a5

B.a6>b6 B.8 B.S4a5>S5a4

C.a6

(n+32)Sn+1

1C.

40

D.a6>b6或a6

150

4.已知数列{an}的前n项和Sn=n2-9n,第k项满足5

5.已知等比数列{an}的公比q>0,其前n项的和为Sn,则S4a5与S5a4的大小关系是()

6.设Sn=1+2+3+…+n,n∈N*,则函数f(n)=

A.

120

B.

130

D.

7.已知y是x的函数,且lg3,lg(sinx-),lg(1-y)顺次成等差数列,则

A.y有最大值1,无最小值B.y有最小值

()

1111

C.y有最小值,最大值1D.y有最小值-1,最大值11212

()

D.(-∞,-1∪3,+∞)

8.已知等比数列{an}中a2=1,则其前3项的和S3的取值范围是

A.(-∞,-1

B.(-∞,-1)∪(1,+∞)C.3,+∞)

9.设3b是1-a和1+a的等比中项,则a+3b的最大值为()

A.1()

A.充分不必要条件 11.{an}为等差数列,若

A.11

B.必要不充分条件C.充分比要条件

D.既不充分又不必要条件

()

B.2

C.

3D.4

10.设等比数列{an}的首相为a1,公比为q,则“a1<0,且0an”的

a1,且它的前n项和Sn有最小值,那么当Sn取得最小正值时,n= a10

B.17

C.19

D.21

12.设f(x)是定义在R上恒不为零的函数,对任意实数x、y∈R,都有f(x)f(y)=f(x+y),若a1=an=f(n)(n∈N*),则数列{an}

的前n项和Sn的取值范围是

1A.,2)

B.[,2]

() 1

C.1)

D.[1]

S13.等差数列{an}的前n项和为Sn,且a4-a2=8,a3+a5=26,记Tn=,如果存在正整数M,使得对一切正整数n,Tn≤M都

n

成立.则M的最小值是__________.

14.无穷等比数列{an}中,a1>1,|q|<1,且除a1外其余各项之和不大于a1的一半,则q的取值范围是________. (a+b)

215.已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是________.cd

A.0

B.1

C.2

D.

416.等差数列{an}的公差d不为零,Sn是其前n项和,给出下列四个命题:①A.若d<0,且S3=S8,则{Sn}中,S5和S6都是

{Sn}中的最大项;②给定n,对于一定k∈N*(k0,则{Sn}中一定有最小的项;④存在k∈N*,使ak-ak+1和ak-ak1同号 其中真命题的序号是____________.

17.已知{an}是一个等差数列,且a2=1,a5=-5.(Ⅰ)求{an}的通项an;(Ⅱ)求{an}前n项和Sn的最大值.

18.已知{an}是正数组成的数列,a1=1,且点(an,an+1)(n∈N*)在函数y=x2+1的图象上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)

若列数{b}满足b=1,b=b+2an,求证:b ·b

n

n+1

n

n

n+2

n+1

19.设数列{an}的首项a1∈(0,1),an=

3-an1

n=2,3,4,…. 2

(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=a3-2an,证明bn

(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{an}中b1=2,bn+1=

3bn+4

n=1,2,3,….2

321.已知二次函数y=f(x)的图像经过坐标原点,其导函数为f(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函

数y=f(x)的图像上.(Ⅰ)求数列{an}的通项公式;

1m

(Ⅱ)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m

20anan+1

22.数列

,是常数.(Ⅰ)当a21时,求及a3的值;(Ⅱ)2,)an满足a11,an1(n2n)an(n1,

数列an是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求的取值范围,使得存在正整数m,当nm时总有an

一、 利用导数证明不等式

(一)、利用导数得出函数单调性来证明不等式

0.

利用导数处理与不等式有关的问题

某个区间上导数大于(或小于)0时,则该单调递增(或递减)。因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的。

1、 直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减)区间,自变量越大,函数值越大

(小),来证明不等式成立。

x2例1:x>0时,求证;x-ln(1+x)<0

2、把不等式变形后再构造函数,然后利用导数证明该函数的单调性,达到证明不等式的目的。 例2:已知:a,b∈R,b>a>e, 求证:ab>b a, (e为自然对数的底)

(二)、利用导数求出函数的最值(或值域)后,再证明不等式。

导数的另一个作用是求函数的最值. 因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立。从而把证明不等式问题转化为函数求最值问题。 例

3、求证:n∈N*,n≥3时,2n >2n+1 例

4、g

x2(b1)2的定义域是A=[a,b),其中a,b∈R+,a

(x)(1)Aax

若x1∈Ik=[k2,(k+1)2), x2∈Ik+1=[(k+1)2,(k+2)2)

3、利用导数求出函数的值域,再证明不等式。 例5:f(x)=

41

3x-x, x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤

33

二、利用导数解决不等式恒成立问题

不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为m>f(x) (或m

a

(9(aR),对f(x)定义域内任意的x的值,f(x)≥27恒成立,求a的取值范围

x

nn

1例

7、已知a>0,n为正整数, (Ⅰ)设y=(xa),证明yn(xa);

n

(Ⅱ)设fn(x)=xn-(xa),对任意n≥a,证明f ’n+1 (n+1)>(n+1)f ’n(n)。

6、

已知函数f(x)

三、利用导数解不等式 例8:函数

ax(a0),解不等式f(x)≤1

第三篇:用导数证明函数不等式的四种常用方法

本文将介绍用导数证明函数不等式的四种常用方法.

()x0). 例

1证明不等式:xln(x1证明

设f(x)xln(x1)(x0),可得欲证结论即f(x)f(0)(x0),所以只需证明函数f(x)是增函数. 而这用导数易证:

f(x)1所以欲证结论成立.

10(x0) x1注

欲证函数不等式f(x)g(x)(xa)(或f(x)g(x)(xa)),只需证明f(x)g(x)0(xa)(或f(x)g(x)0(xa)). 设h(x)f(x)g(x)(xa)(或h(x)f(x)g(x)(xa)),即证h(x)0(xa)(或h(x)0(xa)). 若h(a)0,则即证h(x)h(a)(xa)(或h(x)h(a)(xa)). 接下来,若能证得函数h(x)是增函数即可,这往往用导数容易解决. 例

2证明不等式:xln(x1). 证明

设f(x)xln(x1)(x1),可得欲证结论即f(x)0(x1). 显然,本题不能用例1的单调性法来证,但可以这样证明:即证f(x)xln(x1)(x1)的最小值是0,而这用导数易证:

f(x)11x(x1) x1x1

所以函数f(x)在(1,0],[0,)上分别是减函数、增函数,进而可得

f(x)minf(1)0(x1)

所以欲证结论成立. 注

欲证函数不等式f(x)()g(x)(xI,I是区间),只需证明f(x)g(x)()0x. (I设h(x)f(x)g(x)(xI),即证h(x)()0(xI),也即证h(x)min()0(xI)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.

bex1例3

(2014年高考课标全国卷I理科第21题)设函数f(x)aelnx,曲线

xxyf(x)在点(1,f(1))处的切线为ye(x1)2.

(1)求a,b;

(2)证明:f(x)1.

x解

(1)f(x)aelnxaxbx1bx1e2ee. xxx题设即f(1)2,f(1)e,可求得a1,b2.

x(2)即证xlnxxe21(x0),而这用导数可证(请注意1): ee设g(x)xlnx(x0),得g(x)ming. 设h(x)xex1e1e12(x0),得h(x)maxh(1).

ee注

i)欲证函数不等式f(x)g(x)(xI,I是区间),只需证明f(x)ming(x)max(xI),而这用导数往往可以解决. 欲证函数不等式f(x)g(x)(xI,I是区间),只需证明f(x)ming(x)max(xI),或证明f(x)ming(x)max(xI)且两个最值点不相等,而这用导数往往也可以解决. ii)例3第(2)问与《2009年曲靖一中高考冲刺卷理科数学

(一)》压轴题第(3)问完全一样,这道压轴题(即第22题)是:

已知函数f(x)xlnx,g(x)xax3. (1)求函数f(x)在[t,t2](t0)上的最小值;

(2)对一切x(0,),2f(x)g(x)恒成立,求实数a的取值范围; (3)证明:对一切x(0,),都有lnx212成立. xeexln x例4 (2013年高考北京卷理科第18题)设L为曲线C:y=在点(1,0)处的切线.

x(1)求L的方程;

(2)证明:除切点(1,0)之外,曲线C在直线L的下方. 解 (1)(过程略)L的方程为y=x-1. lnxx1(当且仅当x1时取等号). xx2-1+ln xlnx(x0). 设g(x)x1,得g′(x)=

x2x(2)即证当01时,x2-1>0,ln x>0,所以g′(x)>0,得g(x)单调递增.

所以g(x)ming(1)0,得欲证结论成立. (2)的另解 即证仅当x1时取等号). 设g(x)xxlnx,可得g(x)2lnxx1(当且仅当x1时取等号),也即证x2xlnx0(当且x2x1(x1)(x0). x进而可得g(x)ming(1)0,所以欲证结论成立. (2)的再解 即证lnxx1(当且仅当x1时取等号),也即证lnxx2x(当且仅当xx1时取等号).

2如图1所示,可求得曲线ylnx与yxx(x0)在公共点(1,0)处的切线是yx1,所以接下来只需证明

lnxx1,x1x2x(x0)(均当且仅当x1时取等号)

前者用导数易证,后者移项配方后显然成立.所以欲证结论成立.

图1

例5

(2013年高考新课标全国卷II理21(2)的等价问题)求证:eln(x2). 分析

用前三种方法都不易解决本问题,下面介绍用导数证明函数不等式的第四种常用方法. 设f(x)e(x2),g(x)ln(x2)(x2),我们想办法寻找出一个函数h(x),使得f(x)h(x)g(x)(x2)且两个等号不是同时取到. 当然,函数h(x)越简洁越好. 但h(x)不可能是常数(因为函数g(x)ln(x2)(x2)的值域是R),所以我们可尝试h(x)能否为一次函数,当然应当考虑切线. 如图2所示,可求得函数f(x)e(x2)在点A(0,1)处的切线是yx1,进而可得f(x)h(x)(x2);还可求得函数g(x)ln(x2)(x2)在点B(1,0)处的切线也是yx1,进而可得h(x)g(x)(x2).

xxx

图2 进而可用导数证得f(x)h(x)g(x)(x2)且两个等号不是同时取到,所以欲证结论成立. 当然,用例2的方法,也可给出该题的证明(设而不求):

x设f(x)eln(x2),得f(x)ex1(x2). x2可得f(x)是增函数(两个增函数之和是增函数),且1fe20,f(1)e10,所以函数g(x)存在唯一的零点x0(得2(x02)ex01,x02ex0,ex01),再由均值不等式可得 x02f(x)minf(x0)ex0ln(x02)11lnex0x0220x02x02

(因为可证x01)所以欲证结论成立. x例6 求证:elnx2.

x证法1

(例5的证法)用导数可证得ex1(当且仅当x0时取等号),x1lnx2(当且仅当x1时取等号),所以欲证结论成立.

x证法2

(例2的证法)设f(x)elnx,得f(x)ex1(x0). x可得f(x)是增函数且g11110,g(0)0,所以函数g(x)存在唯2e1.52一的零点x0(得ex01,x0ex0),再由均值不等式可得 x011lnex0x02(因为可证x01)x0x0 f(x)minf(x0)ex0lnx0所以欲证结论成立. 注

欲证函数不等式f(x)g(x)(xI,I是区间),只需寻找一个函数h(x)(可以考虑曲线yh(x)是函数yf(x),yg(x)的公切线)使得f(x)h(x)g(x)(x2)且两个等号不是同时取到,而这用导数往往容易解决. 下面再给出例5和例6的联系.

对于两个常用不等式exx1,lnxx1,笔者发现yex与ylnx互为反函数,yx1与yx1也互为反函数,进而得到了本文的几个结论.

定理

已知f(x),g(x)都是单调函数,它们的反函数分别是f1(x),g1(x). (1)若f(x)是增函数,f(s)g(s)恒成立,则f1(t)g1(t)恒成立;

11(2)若f(x)是减函数,f(s)g(s)恒成立,则f(t)g(t)恒成立; 11(3)若f(x)是增函数,f(s)g(s)恒成立,则f(t)g(t)恒成立; 11(4)若f(x)是减函数,f(s)g(s)恒成立,则f(t)g(t)恒成立. 证明

下面只证明(1),(4);(2),(3)同理可证. (1)设不等式f(s)g(s)中s的取值范围是A,当sA时,f(s),g(s)的取值范围分别是fA,gA,得不等式f1(t)g1(t)中t的取值范围是fAgA,所以

1tfAgA,x0A,tgx(0x),gt. ()0由f(s)g(s)恒成立,得g(x0)f(x0). 由f(x)是增函数,得

f1(x)也是增函数,所以f1(g(x0))f1(f(x0))x0g1(g(x0)),即f1(t)g1(t). 得tfAgA,f1(t)g1(t),即欲证结论成立. (4)设不等式f(s)g(s)中s的取值范围是A,当sA时,f(s),g(s)的取值范围分别是fA,gA,得不等式f1(t)g1(t)中t的取值范围是fAgA,所以

1tfAgA,x0A,tgx(0x),t. ()0g由f(s)g(s)恒成立,得g(x0)f(x0). 由f(x)是减函数,得

f1(x)也是减函数,所以f1(g(x0))f1(f(x0))x0g1(g(x0)),即f1(t)g1(t). 得tfAgA,f1(t)g1(t),即欲证结论成立. 推论1

已知f(x),g(x)都是单调函数,它们的反函数分别是f1(x),g1(x). (1)若f(x),g(x)都是增函数,则f(s)g(s)恒成立f1(t)g1(t)恒成立; (2)若f(x),g(x)都是减函数,则f(s)g(s)恒成立f1(t)g1(t)恒成立. 证明

(1)由定理(1)知“”成立.下证“”:

因为g(x)是增函数,g1(t)f1(t)恒成立,g1(x),f1(x)的反函数分别是g(x),f(x),所以由“”的结论得g(s)f(s)恒成立,即f(s)g(s)恒成立. (2)同(1)可证.

推论2

把定理和推论1中的“,”分别改为“,”后,得到的结论均成立. (证法也是把相应结论中的“,”分别改为“,”.)

在例5与例6这一对姊妹结论“eln(x2),lnxe2”中ye与ylnx互为

x反函数,yln(x2)与ye2也互为反函数,所以推论2中的结论“若f(x),g(x)都11是增函数,则f(s)g(s)恒成立f(t)g(t)恒成立”给出了它们的联系.

xxx

第四篇:放缩法是不等式证明中一种常用的方法

放缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。下面举几个例子说明这个问题。

例 1已知

,求证:

分析 由把可想到二项式系数的和为,由可想到二项式定理,利用放缩法构造出二项式定理公式,从而得出结论。 转化成

证明设且。

对任意,有

将上述各式叠加:

例 2 求证:

分析左式是n个因式连乘的形式,应把各因式化为分式,通过放缩,使之能交替消项,达到化简的目的。由于右式是,因此所放缩后的因式应与有关。证明

分析左式很难求和,可将右式拆成n项相加的形式,然后证明右式各项分别大于左式各项,叠加得出结论。

证明

总之,如何确定放缩的尺度,是应用放缩法证明中最关键、最难把握的问题。但是,只要抓住了欲证命题的特点,勤于观察和思考,许多问题都能迎刃而解。

第五篇:常用均值不等式及证明证明

这四种平均数满足HnGn

AnQn

、ana

1、a

2、

R,当且仅当a1a2

an时取“=”号

仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)由以上简化,有一个简单结论,中学常用

均值不等式的变形:

(1)对实数a,b,有a

22

2b22ab (当且仅当a=b时取“=”号), a,b02ab

(4)对实数a,b,有

aa-bba-b

a2b2

2ab0

(5)对非负实数a,b,有

(8)对实数a,b,c,有

a2

b2c2abbcac

abcabc(10)对实数a,b,c,有

均值不等式的证明:

方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序

不等式法、柯西不等式法等等

用数学归纳法证明,需要一个辅助结论。

引理:设A≥0,B≥0,则ABAnnAn-1B

n

注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0

,A+B≥0 (用数学归纳法)。

当n=2时易证;

假设当n=k时命题成立,即

那么当n=k+1时,不妨设ak1是则设

a1,a2,,ak1中最大者,

kak1a1a2ak1 sa1a2ak

用归纳假设

下面介绍个好理解的方法琴生不等式法

琴生不等式:上凸函数fx,x1,x2,,xn是函数fx在区间(a,b)内的任意n个点,

设fxlnx,f

x为上凸增函数所以,

在圆中用射影定理证明(半径不小于半弦)

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:不等式的证明方法 下一篇:均值不等式的证明方法