曲线和方程的数学教案设计(精选6篇)
篇1:曲线和方程的数学教案设计
关于曲线和方程的数学教案设计
教学目标
(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.
(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.
(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.
(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.
(5)进一步理解数形结合的思想方法.
教学建议
教材分析
(1)知识结构
曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.
(2)重点、难点分析
①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.
②本节的难点是曲线方程的概念和求曲线方程的方法.
教法建议
(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.
(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.
(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.
(4)从集合与对应的观点可以看得更清楚:
设表示曲线上适合某种条件的点的集合;
表示二元方程的解对应的点的坐标的集合.
可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做.同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得.教学中对课本例2的解法分析很重要.
这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即文字语言中的几何条件数学符号语言中的等式数学符号语言中含动点坐标 ,的`代数方程简化了的,的代数方程
由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程.”
(5)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”.
教学设计示例
课题:求曲线的方程(第一课时)
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.
(2)进一步理解曲线的方程和方程的曲线.
(3)初步掌握求曲线方程的方法.
(4)通过本节内容的教学,培养学生分析问题和转化的能力.
教学重点、难点:求曲线的方程.
教学用具:计算机.
教学方法:启发引导法,讨论法.
教学过程:
【引入】
1.提问:什么是曲线的方程和方程的曲线.
学生思考并回答.教师强调.
2.坐标法和解析几何的意义、基本问题.
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程.
(2)通过方程,研究平面曲线的性质.
事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.
【问题】
如何根据已知条件,求出曲线的方程.
篇2:曲线和方程的数学教案设计
一、教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.(3)掌握直线方程各种形式之间的互化.(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.教学建议
1.教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.2.教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.二、教学设计示例
直线方程的一般形式
教学目标:
(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.(2)理解直线与二元一次方程的关系及其证明
(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.教学重点、难点:直线方程的一般式.直线与二元一次方程
(、不同时为0)的对应关系及其证明.教学用具:计算机
教学方法:启发引导法,讨论法
教学过程:
下面给出教学实施过程设计的简要思路:
教学设计思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点
(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的次数为一次.肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是
(或其它形式),也属于二元一次方程,因为未知数有两个,它们的次数为一次.肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的次数为一次”.启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.学生或独立研究,或合作研究,教师巡视指导.经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
……
教师组织评价,确定方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率
存在或不存在.当
存在时,直线的截距
也一定存在,直线的方程可表示为,它是二元一次方程.当
不存在时,直线的方程可表示为
形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线
上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程
解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如
这样,要么形如
这样的方程”.同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式.这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如
(其中、不同时为0)的二元一次方程.启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如
(其中、不同时为0)的二元一次方程都表示一条直线吗?
不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?
师生共同讨论,评价不同思路,达成共识:
回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程
(其中、不同时为0)系数
是否为0恰好对应斜率
是否存在,即
(1)当
时,方程可化为
这是表示斜率为、在轴上的截距为的直线.(2)当
时,由于、不同时为0,必有,方程可化为
这表示一条与
轴垂直的直线.因此,得到结论:
在平面直角坐标系中,任何形如
(其中、不同时为0)的二元一次方程都表示一条直线.为方便,我们把
(其中、不同时为0)称作直线方程的一般式是合理的.【动画演示】
演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.(三)练习巩固、总结提高、板书和作业等环节的设计在此从略
高二年级数学教案设计:曲线和方程
一、教学目标
(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.(5)进一步理解数形结合的思想方法.教学建议
教材分析
(1)知识结构
曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.(2)重点、难点分析
①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.②本节的难点是曲线方程的概念和求曲线方程的方法.教法建议
(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.(4)从集合与对应的观点可以看得更清楚:
设
表示曲线
上适合某种条件的点的集合;
表示二元方程的解对应的点的坐标的集合.可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即
(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做.同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得.教学中对课本例2的解法分析很重要.这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即
文字语言中的几何条件
数学符号语言中的等式
数学符号语言中含动点坐标,的代数方程
简化了的,的代数方程
由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程.”
(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”.二、教学设计示例
课题:求曲线的方程(第一课时)
教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步理解曲线的方程和方程的曲线.(3)初步掌握求曲线方程的方法.(4)通过本节内容的教学,培养学生分析问题和转化的能力.教学重点、难点:求曲线的方程.教学用具:计算机.教学方法:启发引导法,讨论法.教学过程:
【引入】
1.提问:什么是曲线的方程和方程的曲线.学生思考并回答.教师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,研究平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.【问题】
如何根据已知条件,求出曲线的方程.【实例分析】
例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.首先由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设
是线段的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点的坐标
是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标
是方程①的任意一解,则
到、的距离分别为
所以,即点
在直线
上.综合(1)、(2),①是所求直线的方程.至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设
是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程
吗?可见,这个证明过程就表明一种求解过程,下面试试看:
解法二:设
是线段的垂直平分线上任意一点,也就是点
属于集合由两点间的距离公式,点所适合的条件可表示为
将上式两边平方,整理得
果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解如下问题:
例2:点
与两条互相垂直的直线的距离的积是常数
求点的轨迹方程.分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.求解过程略.【概括总结】通过学生讨论,师生共同总结:
分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:
首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:
(1)建立适当的坐标系,用有序实数对例如
表示曲线上任意一点的坐标;
(2)写出适合条件的点的集合;
(3)用坐标表示条件,列出方程;
(4)化方程
为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.下面再看一个问题:
例3:已知一条曲线在轴的上方,它上面的每一点到
点的距离减去它到
轴的距离的差都是2,求这条曲线的方程.【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.解:设点
是曲线上任意一点,轴,垂足是
(如图2),那么点
属于集合由距离公式,点
适合的条件可表示为
①
将①式
移项后再两边平方,得
化简得
由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于
轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.【练习巩固】
题目:在正三角形
内有一动点,已知
到三个顶点的距离分别为、、,且有,求点
轨迹方程.分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为
.根据条件,代入坐标可得
化简得
①
由于题目中要求点
在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为
【小结】师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?
篇3:曲线和方程的数学教案设计
关键词:问题驱动,高中数学,概念课,教学,曲线方程
一、引言
《普通高中数学课程标准》对数学作了这样的阐述:“数学课程的基本理念之一:倡导积极主动、勇于探索的学习方式,学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。”同时,高中数学课程设立“数学探究”“数学建模”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造了有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。这就要求我们在教学中,首先要立足于课堂教学的改革,彻底告别“一言堂”和“注入式”模式,把教学民主、教学互动、激励机制引进课堂,充分发挥学生学习的自主性。但受应试教育的影响,目前高中数学概念课教学状况令人堪忧,具体体现在以下几方面:教师不顾学生学习感受,逐字逐句地讲解且一讲到底,课堂中师生缺乏对话的空间;学生的学习是被动的,课堂中学生缺乏自主学习的空间,且学生和学生之间及学生和文本之间的对话都是缺失的。如此,学生很难领悟数学概念的内涵及外延,久而久之,学生学习数学的兴趣和能力会越来越低,若不扭转这一局面,将不利于学生终身的发展。
二、理论溯源
James Hiebert和Thomas P.Carpenter从关于学习心理学的著作中取材,提出了一个思考概念理解的最新框架。他们认为:理解的程度是由联系的数目和强度来确定。一个数学概念的彻底理解,是指它和认知主体现有的知识网络是由更强的或更多的联系联络着。
Shlomo Vinner认为,数学概念的学习过程分为四个阶段:使用单个的表象;在同一水平上使用多个表象;在同一水平的表象之间建立并产生联系;综合表象,并且在表象之间可以转换。在概念学习过程中,表象比定义起着更重要的作用。Anna Sfard认为:大多数数学概念在被思考时,既可以作为对象,又可以作为过程。在作为对象思考时,考虑得更多的是概念的结构性;在作为过程思考时,考虑得更多的是概念的运算性。他认为,数学概念的形成过程是一个从运算过程到结构对象的迁移。这个过程是一个漫长的、困难的内部过程,它由三个阶段组成:内部化、压缩和对象化。曹才翰教授和章建跃教授认为:概念同化学习过程包括:揭示概念的本质属性;对概念进行特殊的分类,讨论这个概念包含的各种特例,突出概念的本质特征;使新概念与已知认知结构中的有关概念建立联系,把新概念纳入已有概念体系中;使用肯定例证与否定例证让学生辨认,使新概念与已有结构中的相关概念分化;将新概念纳入相应概念体系中,使有关概念融会贯通,组成一个整体。
通过上面理论的溯源,我对《曲线与方程》的设计有了初步的设计构想:设计问题驱动揭示概念本质与帮助学生积极主动建构对知识的理解;设计问题与探究问题应考虑学生认知因素;问题的设计与展开要关注课堂教学的效率。
三、教学设计与实践
(一)教学内容解析
“曲线与方程”是《普通高中数学课程标准》规定的教学内容。这一内容既是直线与方程、圆与方程理论的一般化,也是进一步学习椭圆、双曲线、抛物线的指导思想。尽管学习这一内容是学生体会并理解圆锥曲线与其方程的基础,但是更为重要的是使人们通过坐标系这座桥,可以利用方程以及代数的运算来研究曲线,这正是这一内容成为数学核心概念的原因,也是曲线与方程这一概念的核心之所在。通过学生对曲线与方程的概念的理解,培养学生的坐标法思想,使学生明白求出曲线方程的真正意义在于利用曲线的方程去研究曲线。其主要内容有:曲线的方程与方程的曲线的概念,求曲线的方程,坐标法的基本思想等。其中第一和第三为第一课时的内容,第二和第三为第二课时的内容。
(二)教学目标解析
依据《普通高中数学课程标准》的相关理念和要求并结合学生的实际情况,我将本课的教学目标设计成以下四个方面:通过实例理解曲线的方程与方程的曲线概念,能判断已经学习过的特殊的曲线与方程之间是否具有互为表示的关系;通过实例体会求曲线的方程的基本步骤,能求出给定了几何特征的曲线的方程;通过实例体会不同的平面直角坐标系对同一曲线方程的影响,体会如何“恰当”地建立平面直角坐标系;通过一些简单曲线的方程及其研究,体会坐标法的基本思想。
(三)教学问题分析
1.如何理解曲线与其方程之间的关系?学生可以很流利地背出曲线与其方程应该满足的两条, 但是如何证明“一条曲线与一个方程之间具有互为表示的关系”, 这是学生学习时可能遇到的第一个教学问题, 也是第一课时的教学难点。这个教学问题可以结合“直线与其方程”“圆与其方程”进行说明。
2.在求曲线的方程时, 如何建立平面直角坐标系?这是学生会遇上的第二个教学问题, 也是第二课时的教学难点。教学时, 教师应通过实例, 帮助学生总结出建立坐标系的基本要点, 并用具体问题让学生通过练习进行体会。
3.在将曲线上的点应该满足的几何特征转化为点的坐标应满足的等式后, 常常遇上“将所得等式化简得到所求方程”的问题。对于有些复杂的等式, 化简是一个学生不易把握的问题, 学生在此极易出错, 这是第三个教学问题。教学时不能因为这个问题而使教学偏离重点, 因此教师可适当使用信息技术工具解决这个问题。
4.学生学习时, 可能会因更多地关注代数运算而忽略数学思想的提炼, 这个教学问题的解决, 需要教师有目的地进行引领。
(四)问题驱动设计
[问题1]
如果你邀请朋友在你所在城市的某餐馆聚会,你会怎样告诉他(她)聚会的地点?例如,如果聚会地点在“文二路北,古翠路东的翠苑新村五区”(如图一),你会怎样说?
设计意图:通过建立平面直角坐标系,用坐标来刻画点的位置,为后面用点与坐标的对应关系来研究曲线与方程的关系作准备,同时让学生体会坐标法思想。
师生活动:教师提出问题让学生思考,然后通过建立平面直角坐标系,给出聚会地点的坐标(如上图)。
[问题2]
请你先在纸上画出一条直线与一个圆,然后与你同桌同学所画的图形进行比较,你们所画的图形一致吗?如果大家画的直线与圆都一样,要研究直线与圆的位置关系,该怎么办?
设计意图:通常情况下,不同学生画出的图形是不一致的。如果是在平面直角坐标系中,只要给出了直线与圆的方程,那么不同学生画出的直线与圆应该是一样的位置关系,提此问题主要是让学生增加曲线与方程的感性认识,并由此认识坐标系的重要作用,进一步体会坐标法思想。
[问题3]
(1) 画出两坐标轴所成的角在第一、三象限的平分线m, 并写出其方程; (2) 画出函数y=2x2 (-1≤x≤2) 的图象C。
(选择二位学生自制的计算机软盘或投影片,请二位学生各自操作,将其展示在投影仪上。取较好的解答定格,如图2-1。)
师:这二位同学解答很好。请大家对照直线m及方程,对照抛物线的一倍分C及方程,谈谈符合某种条件的点的集合M和C分别与其方程是怎样联系起来的?(鼓励学生观察、联想,进行数学交流。学生讨论后选其两个回答,再口述一遍。)
生甲:如果M (x0, y0)是m上的任意一点,它到两个坐标轴的距离一定相等,因此x0=y0,那么它的坐标(x0, y0)是方程x-y=0的解;反过来,如果(x0, y0)是方程x-y=0的解,即(x0, y0),那么以这个解为坐标的点到两坐标轴的距离相等,它一定在这条平分线m上.为此把直线m与方程x-y=0密切地联系了起来。
生乙:如果点M (x0, y0)是C上的点,那么(x0, y0)一定是y=2x2的解;反过来,如果(x0, y0)是方程y=2x2的解,那么以它为坐标的点一定在C上。
师:学生甲的回答清楚地说明了直线m完整地表示方程x-y=0,而方程x-y=0完整地表示了直线m。但学生乙的回答是否完满,请同学们思考,发表见解,并用最短的语言写在投影片上。(老师巡视后选一张投影展示定格。)学生乙的回答忽略了-1≤x≤2,从而点集C与方程y=2x2的解的集合G无法建立一一对应关系。
师:请这位同学进一步阐明自己的见解。
生:就本题而言,如(3, 18)∈G,但P (3, 18)∈C.方程漏掉了制约条件-1≤x≤2.为此正确的理解是:如果点M (x0, y0)是C上的点,那么(x0, y0)一定是y=2x2 (-1≤x≤2) 的解;反过来,如果(x0, y0)是方程y=2x2 (-1≤x≤2) 的解,那么以它的坐标为点一定在C上。
师:这样的见解才确切地反映了点集C与方程y=2x2 (-1≤x≤2) 的解集G是一一对应的。从而,抛物线的一部分C完整地表示了方程y=2x2 (-1≤x≤2) ,而方程y=2x2 (-1≤x≤2) 完整地表示了C。现在我们来考虑以下这个问题:点集C还是抛物线的一部分,方程却是y=2x2,不加任何制约条件,那么,此时的点集C与方程的解集是一个什么样的关系呢?(鼓励学生勇于探索,为合理推理铺垫.学生讨论后口答。)
生丙:曲线C上的任一点P的坐标(x0, y0)一定是y=2x2的解;但若(x0, y0)是y=2x2的解,以它为坐标的点不一定在C上,有一部分在y=2x2 (x<-, 1x>2) 的图象上。
师:回答得很好。我们再来考虑一个问题:点集C是抛物线y=2x2,而方程还是y=2x2 (-1≤x≤2) ,它们的关系又是怎样呢?(进一步引导学生积极参与并多向思维,学生口答。)
生丁:曲线C上点的坐标不一定是y=2x2 (-1≤x≤2) 的解;而以y=2x2 (-1≤x≤2) 的解为坐标的点却一定在C上。
师:以上两个问题反映了点集C与方程的解集不是一一对应的两种截然不同的不完整的关系,那么怎样才能使点集C与方程的解是一一对应的呢?为了研究方便,从曲线是点按照某种条件运动所成的轨迹的意义来说,我们也把直线看成曲线,在平面直角坐标系中,将点和有序实数对(x, y)联系起来,而二元方程(x, y)=0的任一个解恰是一个有序实数对。现在我们一起归纳一下要具备的条件(学生讨论、口答)。
师:同学们讨论得很好。曲线C和二元方程f (x, y) =0应具备以下两个条件:1.若P (x0, y0) ∈C, 则f (x0, y0) =0成立;2.若f (x0, y0) =0, 则P (x0, y0) ∈C。
师生活动:(1)让学生先思考,然后教师引领学生阅读教科书上的“定义”,给出曲线的方程与方程的曲线的概念:如果曲线C上的点的坐标都是方程f (x, y)=0的解;反过来,以方程f (x, y)=0的解为坐标的点都是曲线C上的点,那么,方程f (x, y)=0叫做曲线C的方程,曲线C叫做方程f (x, y)=0的曲线。(2)教师引导学生总结出:若P={M M满足条件p (M)},Q={(x, y) f (x, y)=0},则“方程f (x, y)=0叫做曲线C的方程,曲线C叫做方程f (x, y)=0的曲线”等价于“P、Q之间存在一一对应关系”。
[问题4]
我们知道,圆心在(0, 1),半径为2的圆C可用方程x2+ (y-1) 2=4表示,可这是为什么呢?
设计意图:通过对本问题的研究,让学生发现圆与其方程之间的关系和直线与其方程之间的关系完全类似,以此加深学生对曲线与方程的概念的理解。
师生活动:(1)教师结合讲解给出下列过程:
设点M (x0, y0)是圆C上任意一点,则:
因此 (x0-0) 2+ (y0-1) 2=4,即M (x0, y0)的坐标是方程x2+ (y-1) 2=4的解。
反过来,设是方程x2+ (y-1) 2=4的解,则:
(x0-) 02 (10) (y0-) 12 (28) 4,即 (x0-) 02 (10) (y0-) 12 (28) 2。
所以,(x0, y0)对应的点M满|MC|-2,即点M在(0, 1)为圆心,2为半径的圆C上。
(2)给出
P={M |MC|=2,点C的坐标为 (0, 2) },
帮助学生体会到:P、Q之间存在一一对应关系。
四、设计体会
1.在概念设计和实施概念教学时,教师不仅应关注概念的形成,而且要充分关注知识间的联系以及知识所体现出来的思想方法。但是,如果设计离学生原有的认知环境、认知水平有较大差异的话,在教学实施时是很难达到预期目标的。因此,进行概念教学设计时,了解学生是非常重要的。
2.通常情况下对教学内容的解析,不仅可以明确内容中所涉数学概念的核心是什么,概念是否是核心概念,而且还能为确定教学目标提供依据。但有些情况下教学目标是不唯一的,不同目标在教学中所占的份量(或比重)也是不同的。因此,按照各教学目标所占的份量来产生教学重点是一件自然的事情。
3.问题的设计与展开要考虑学生的认知基础;要注意符合学生的认知习惯;要思考所学知识所需要的知识基础,要弄清楚所学的内容。它的知识基础在哪里?这个基础学生是否已经掌握?我们设计的问题要建立在学生已有的知识基础上。问题的设计与展开要注意激发学生的学习兴趣,激发学生探究的热情。因为,通过问题激发学生学习的兴趣,激发学生探究的热情,不仅可以促进学生主动学习,长期坚持下去,还可让学生真正喜欢上这门学科。
4.如何提出吸引学生的问题是关键,创设有意义的问题情境是一个思考角度,但若能提出切中要害、又处于学生最近发展区的问题,会更有价值。对学生来讲,过于抽象、概括的问题,大都会引起学生思维的障碍。所以,在对问题的设计和展开过程中,教师要充分考虑学生的认知习惯和认知风格,要注意合理分解问题,要注意由简单到复杂、由具体到抽象。
参考文献
[1].普通高中数学课程标准 (实验) [M].人民教育出版社, 2003年4月.
[2].束云松.问题解决与反思学习[J].《中学数学研究》, 2009年第10期.
[3].钱珮玲.如何认识数学教学的本质[J].《数学通报》, 2008年第10期.
篇4:曲线和方程的数学教案设计
关键词:圆锥曲线参数方程 高中数
学解题
DOI:
10.16657/j.cnki.issn1673-9132.2016.09.146
圆锥曲线定义中,通过椭圆定义、双曲线定义、圆锥曲线上的点与两个焦点之间的关系进行解题。在解题的过程中,需要对上述三者有个清晰的认识,树立等价转换思想,加强数形结合的建设,由点到面,促进教学层次的深化,从而提升学生在圆锥曲线参数方程上的理解,进而为有效解决数学难题提供重要支撑。
一、创新性思维:利用圆锥曲线方程解决高中数学题中常见的最值问题
传统的数学学习方式是通过广泛地做题,不断进行数学题型的训练,从而获得学习成绩的提升。目前,针对学生学习特点与学习进度,通过设计典型习题,注重培养创新思维,从而举一反三,快速提升学生对于数理认识,加强对数学的感知能力,使数学成绩得到提升。后者更加注重人性化,以学生为中心,避免数学题练习的低质量与低学习效率。
例1: 椭圆
椭圆一个内接四边形ABCD,其各边与坐标轴平行,求此四边形的最大面积与最大周长。
由题目可以进行推断,将思路不要仅仅限于局部,启用创新性思维,不断与其他知识展开联想,打开解题的突破点。
解析:根据题目可以假设A(acosθ,bsinθ),通过对四边形的观察,可以得到其四边与坐标轴分布保持平行,推断四边形ABCD为矩形,其面积可以表示为S=4(acosθ×bsinθ)=2absin2θ。当S表示为最大值,sin2θ为最大值,其值为1;当sin2θ=1时,S=2ab,四边形ABCD的周长可以表示为 L = 4( bsinθ+ acosθ) = 4( a2+b2)1 /2sin(θ+β)·sinβ= a÷( a2+ b2)1 /2,cosβ= b ÷( a2+b2)1 /2,当sin(θ+β) 为最大值时,四边形的周长为最大,sin(θ+β)值为1,LMAX=4(a2+b2)1/2
二、探索性思维:采用定义与正余弦定理求焦点三角形
高中数学中,存在一定数量难点,对于学生的学习能力提出了新的要求,要求学生在实际的解题过程中,能够充分发挥探索性思维,通过总结与小组合作,提升数学解题能力。在圆锥曲线参数方程的应用解题中,单一性题目较少,复合型、复杂性题目较多,难度系数也随之增加。如何充分发挥探索性思维,需要学习不拘于形式,通过对基础知识的深度理解,正确把握解题的精髓。
例2:已知双曲线
P为双曲线上任意一点,∠F1PF2=θ,求△F1PF2的面积。
在本题中,在结合基础知识的基础上,通过对定义的深度理解,巧用正余弦定理,进而利用面积公式与正余弦定理得到相应的答案。
解析:
通过与圆锥曲线中的双曲线定义能够得到,
即 (3)
通过对(3)与(2)进行分析与研究,可以
推出
在上式(1)中代入三角形面积
进而完成此题的解答。
三、自主学习能力提升:采用圆锥曲线参数方程解决范围问题
高中学习阶段,强调自主学习与合作学习相结合,通过自主学习发现自身存在的问题,并采取有效措施加以解决,从而促进自身学习水平的提升[4]。在高中数学解题中,通过对科学思维的合理运用,能够对数学习题轻松解答。
例3 : 椭圆方程
与x轴的正半轴相交,交点表示为M,如果 该方程上有一点N,ON垂直于MP,求椭圆离心率的范围。
学生在自主学习过程中,面对疑难问题时不应立即求助,依据自身对基础知识的掌握程度,发挥自出探究精神,对疑难问题提出挑战,从而提升自身数学解题的能力与水平。
解析:根据题目可知。M的坐标可以用(a,0)表示。假设N点坐标为(acosθ,bsinθ),同时,结合ON⊥MP可以得到
对上式进行化简,可以推出:
由于ON⊥MP,结合方程b2=c2-a2,所有离心率e的范围是
四、圆锥曲线参数方程应用过程中应注意的问题
圆锥曲线参数方程在应用中强调对各种知识的综合运用,通过合理运算思维与结构,实现对数学问题的求解。在此过程中,要求学生掌握基础知识的基础上,更加注重对知识的灵活运用。因此,学生在学习圆锥曲线参数方程相关基础知识时,应注重多写、多问、多记,打下扎实的基本功,从而能够在解题中,摸透数学题目的内涵,快速解题。
五、结语:
高中数学在高中教育体系中占据着极为重要的位置,需要教师在教学活动中,在加强对基础知识的教学时,注重学生对基础知识的运用。通过典型题目的专题讲解,促进学生成绩的提升。
参考文献:
[1]毛芹.圆锥曲线参数方程在高中数学解题中的应用[J].理科考试研究:高中版,2014(21).
[2]陈尧明.直线参数方程教学设计[J].教学月刊:中学版,2011(23).
[3]李淑燕.用圆锥曲线的参数方程解题例谈[J].数理化学习:高三,2011(7).
[4]陈传熙.“圆锥曲线的参数方程”的教学困惑与对策分析[J].数学通报,2010(49).
[5]梁伟彬.浅析直线与圆锥曲线问题的几种解法[J].中学数学,2012(5).
篇5:高中数学《曲线和方程》说课稿
作为一名人民教师,编写说课稿是必不可少的,说课稿可以帮助我们提高教学效果。那要怎么写好说课稿呢?下面是小编为大家整理的高中数学《曲线和方程》说课稿,仅供参考,希望能够帮助到大家。
高中数学《曲线和方程》说课稿 篇1各位领导、专家、同仁:
你们好!
我是广安市乐善中学的数学教师蒋永华。我说课的内容是“曲线和方程”。下面我从教材分析、教学方法、学法指导、教学程序、板书设计以及评价六个方面来汇报对教材的钻研情况和本节课的教学设想。恳请在座的专家、同仁批评指正。
一、关于教材分析
1、教材的地位和作用
“曲线和方程”是高中数学第二册(上)第七章《直线和圆的方程》的重点内容之一,是在介绍了“直线的方程”之后,对一般曲线(也包括直线)与二元方程的关系作进一步的研究。这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“形”与“数”的相互转化开辟了途径,同时也体现了解析几何的基本思想,为解析几何的教学奠定了一个理论基础。
2、教学内容的选择和处理
本节教材主要讲解曲线的方程和方程的曲线、坐标法、解析几何等概念,讨论怎样求曲线的方程以及曲线的交点等问题。共分四课时完成,这是第一课时。此课时的主要内容是建立“曲线的方程”和“方程的曲线”这两个概念,并对概念进行初步运用。我在处理教材时,不拘泥于教材,敢于大胆进行调整。主要体现在对曲线的方程和方程的曲线的定义进行归纳上,通过构造反例,引导学生进行观察、讨论、分析、正反对比,逐步揭示其内涵,然后在此基础上归纳定义;再一点就是在得出定义之后,引导学生用集合观点来理解概念。
3、教学目标的确定
根据教学大纲的要求以及本节教材的地位和作用,结合高二学生的认知特点,我认为,通过本节课的教学,应使学生理解曲线和方程的概念;会用定义来判断点是否在方程的曲线上、证明曲线的方程;培养学生分析、判断、归纳的逻辑思维能力,渗透数形结合的数学思想;并借用曲线与方程的关系进行辩证唯物主义观点的教育;通过对问题的不断探讨,培养学生勇于探索的精神。
4、关于教学重点、难点和关键
由于曲线和方程的概念体现了解析几何的基本思想,学生只有透彻理解了这个概念,才能用解析法去研究几何图形,才算是踏上解析几何的入门之径。因此,我把曲线和方程的概念确定为本节课的教学重点。另外,由于曲线和方程的概念比较抽象,加之刚刚进入高二的学生抽象思维能力还不是很强,因此,他们对曲线和方程关系的“纯粹性”与“完备性”不易理解,弄不清它们之间的区别与联系,易产生“为什么要规定这样两个关系”的疑问。所以,对概念的理解,尤其是对“两个关系”的认识是本节课的难点。
如何突破这一难点呢?由于学生在学习本节之前,已经有了用方程表示几何图形的感性认识(比如用方程表示直线、抛物线、双曲线等)。因此,突破这一难点的关键在于利用学生积累的这些感性认识,通过分析反例,来揭示“两个关系”中缺少任何一个都将破坏曲线与方程的统一性(即扩大概念的外延)。
二、关于教学方法与教学手段的选用
根据本节课的教学内容和学生的实际水平,我采用的是引导发现法和CAI辅助教学。
(1)引导发现法是通过教师的引导、启发,调动学生参与教学活动的积极性,充分发挥教师的主导作用和学生的主体作用。在教学中通过设置疑问,创造出思维情境,然后引导学生动脑、动手、动口,使学生在开放、民主、和谐的教学氛围中获取知识,提高能力,促进思维的发展。
(2)借助CAI辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的。(这也符合教学论中的直观性原则和可接受性原则。)
(3)教具:三角板、多媒体。
三、关于学法指导
古人说得好,“授人以鱼,只供一饭;教人以渔,终身受用。”我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习、享受学习。因此,在本节课的教学中,引导学生开展“仔细看、动脑想、多交流、细比较、勤练习”的研讨式学习,加大学生的参与机会,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们“会观察”、“会类比”、“会分析”、“会归纳”的能力。
四、关于教学程序的设计
首先是“复习引入”。我先引导学生回顾本章第二节中直线与二元一次方程的关系,并让学生指出二者能互相表示时满足的条件。然后,在此基础上提出“平面直角坐标系中一般曲线和二元方程之间要建立这样的对应关系,也就是能互相完整地表示时,需具备什么样的条件呢?”从而引出将要学习的课题――曲线和方程。这样引入课题显得比较自然,也符合由特殊到一般的思维认知规律。同时,直线与二元一次方程的关系也为下面研究一般曲线与二元方程的关系提供了一个实际模型。(本环节用时约分钟。)
第二个环节“设疑导思”。在课题引出之后,我把刚才引入课题时的问题(即:一个二元方程f(x,y)=0的解与平面直角坐标系中一般的曲线C上的点需满足什么样的条件,就可以用方程f(x,y)=0来表示曲线C,同时曲线C也可以来表示这个方程f(x,y)=0?)再次交给学生,让他们进行思考、讨论,然后请学生
内容如下:
代表发表意见,我适当地集中学生的观点,并逐步将其归结为两点:①曲线上点的坐标满足方程f(x,y)=0,②以方程f(x,y)=0的解为坐标点在曲线上(学生用类比的方法和积累的用方程表示曲线的感性认识,是可以猜想出这一条件的),但我对学生的观点不作评判(这样就留下了悬念)。这样设计的意图在于:此思考题是本节课的核心问题,在这里提出来是为了给学生一个明确的学习目标;同时,也是为了通过问题给学生营造出思维情境,调动起他们的思维。给学生留下悬念,是为了激发他们的学习热情和求知欲望,从而使他们主动参与到后面的教学活动中来。(本环节用时约分钟。)
接下来我就引导他们进行“实例探究”。首先用电脑投影例题1,让学生对例题进行分析、讨论,并动手画图,然后口答二者的关系。最后,由我给予订正,同时用电脑显示相关结果。设计此例的目的是让学生从正面认识曲线和方程互相完整表示时所具有的两个关系,即“(1)如果点M(x0,y0)是C1上的点,那么(x0,y0)一定是方程的解;反过来,(2)如果(x0,y0)方程的解,那么以(x0,y0)为坐标的点必在C1上。”显然,它满足刚才学生自己所提出的两个条件。(也就是抛物线上的点与方程的解形成了一一对应的关系。)
尽管学生知道了曲线和方程互相完整表示时所具有的这样两个关系,但学生此时可能还会存有这样的疑问:“曲线与方程互相完整表示时一定要满足这样两个关系吗?缺少一个会怎样呢?”学生的这一疑问也正是本节课的教学难点所在。为了突破这一难点,我在例1的基础上分别构造出两个反例,一个是在原有抛物线上“长出”一部分,即“曲线多了”的情形,另一个是将原来的抛物线“剪去”一段,即“曲线少了”的情形。接着在教师的引导下,让学生分别对两个反例进行充分地观察、分析、讨论(当然,这里要给学生留足时间)。通过这些认知活动的开展,学生能够发现:问题1中(反例1),虽然以方程的解为坐标的点都在曲线C2上,但曲线C2上的点的坐标不全满足方程(可举例验证),也就是C2上“混进”了其坐标不是方程解的点,从而导致曲线C2上的点和方程解不是一一对应的关系,它们不能互相完整地表示,即“曲线多了”。此时,它满足同学自己提出的“两个关系”中②不满足①。问题2(反例2)中,曲线C3上的点的坐标都满足方程,但以方程的解为坐标的点不全在曲线C3上(也可举例说明),也就是曲线上“缺漏”其坐标是方程解的点,同样导致曲线C3上的点与方程的解也不是一一对应的关系。显然曲线C3与方程不能互相完整地表示,即“曲线少了”。此时,它满足“两个关系”中的①不满足②。由此,学生可以得出结论:“两个关系”中缺少任何一个,曲线和方程都不能互相完整地表示。这样就使本节课的教学难点被突破了。这里对反例的设置是在例1的基础上进行演化的,没有另外构造反例,目的是让学生能更好地进行正反对比,从而易于发现问题,形成深刻的印象。这一环节的教学是在教师的引导下采用研讨的方式进行的,这样处理有助于调动学生学习积极性,增强课堂参与意识,培养学生的观察能力和逻辑思维能力。(本环节用时约分钟)
通过上一环节的实例探究和反例分析,实际上已经揭示了曲线和方程对应关系的本质属性,但学生对此还缺乏一种逻辑上的准确表述。因此,接下来就是引导学生在刚才的探讨基础上“归纳定义”。首先向学生提出这样的问题:如果将例1中能完整表示曲线的这个方程称为“曲线的方程”,那么我们该如何定义“曲线的方程”?这时可引导学生思考:为了避免两个反例中曲线与方程关系的“不完整性”,我们应该作出怎样的限制?随着这一问题的解答,自然也就得出了定义。事实上,这一环节是在暴露定义产生的过程,目的是让学生从中学到处理数学问题的思想和方法,培养学生的数学素质。另外,在归纳出定义后,又引导学生用集合对定义进行重新表述,这样可以使学生对曲线与方程的关系进行再认识,从而强化对概念的理解。(本环节用时约分钟)
接下来,我给学生准备了一道练习题,通过练习一方面可以加深学生对定义的理解;另一方面也旨在了解学生对概念的掌握情况,以便调节后面的教学节奏。同时,通过两个引申提问(一个是怎样修改图形,可使曲线是方程的曲线,另一个是如何修改方程可使方程是曲线的方程。),对题目作进一步的探讨。这样有利于培养学生的发散思维,促使良好思维习惯的形成。(练习用时约分钟)
处理完练习以后,又引导学生对概念进行初步运用(目的还是为了加强对概念的理解)。首先我将例2、例3分别投影在屏幕上,然后引导学生分析解题思路,并根据学生的分析进行补充讲解,最后师生共同完成解答。对例3的证明在理清思路后,由我将证明过程板书出来,目的是给学生起一个示范作用,让学生掌握正确的书写格式,培养学生严谨推理的习惯。另外,在解完例题之后,又引导学生对解题过程进行回顾,并归纳出具有一般性的结论,这样既有利于解题技能的形成,又可培养学生良好的解题习惯。(本环节用时约分钟)
课堂小结我是引导学生从知识内容和思想方法两个方面进行小结的。通过小结使学生对本节课的知识结构有一个清晰的认识。在小结时不仅概括所学知识,而且还对所用到的数学方法和涉及的数学思想也进行归纳,这样既可以使学生完成知识建构,又可以培养其能力。(用时约分钟)
最后布置作业。所布置的作业都是紧紧围绕着“曲线和方程”的概念及运用。通过作业来反馈知识掌握效果,巩固所学知识,强化基本技能的训练,培养学生良好的学习习惯和品质。另外,设计选作题是为了给学有余力的学生留出自由发展的.空间。(用时约分钟)
五、关于板书设计
我将板书设计为“提纲式”。这样设计主要是力求重点突出,能加深学生对重点知识的理解和掌握,便于记忆,从而提高教学效果。
六、关于评价
在授课过程中,我根据学生对课堂提问及例习题的解答情况,及时调节课堂节奏,“易”则可加快,“难”则应放慢速度,并借用富有启发性的、阶梯性的提问对学生进行思维引导。
课后,我将通过统计《课堂练习反馈表》、批改作业以及与学生谈话等方式,来了解学生对“曲线与方程”概念的掌握情况,检查教学目的的实现程度。同时,根据收集的这些教学反馈信息来对下一步教学工作作出必要的调整和改进。另外,通过对作业的评判和统计课堂练习完成情况,有助于学生认识自我,让他们获得成就感,从而增强其自信心,培养学生积极进取的学习态度。
以上,我从六个方面阐述了对“曲线和方程”这一节内容的有关分析和教学设想。不妥之处,敬请各位专家、同仁指正。谢谢大家!
高中数学《曲线和方程》说课稿 篇2我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:
一、教材分析
教材的地位和作用
“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!
根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。
二、教学目标
根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:
知识目标:
1、了解曲线上的点与方程的解之间的一一对应关系;
2、初步领会“曲线的方程”与“方程的曲线”的概念;
3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;
4、强化“形”与“数”一致并相互转化的思想方法。
能力目标:
1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;
2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;
3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。
情感目标:
1、通过概念的引入,让学生感受从特殊到一般的认知规律;
2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。
三、重难点突破
“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。
怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。
四、学情分析
此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。
高中数学《曲线和方程》说课稿 篇31、对教材地位与作用的认识
在高中数学教学中,作为数学思想应向学生渗透,强化的有:函数与方程思想;数形结合思想;分类讨论思想;等价转化及运动变化思想。不是所有的课都能把这些思想自然的容纳进去,但由于“曲线和方程”这一节在教材中的特殊地位,它把代数和几何两个单科自然而紧密地结合在一起,因而上述思想能用到大半,这不能不引起我们教师的重视。“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“依形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,用代数的方法研究几何问题。”曲线与方程”是解析几何中最为重要的基本内容之一.在理论上它是基础,在应用上它是工具,对全部解析几何的教学有着深远的影响,另外在高考中也是考察的重点内容,尤其是求曲线的方程,学生只有透彻理解了曲线与方程的含义,才算是找到了解析几何学习得入门之路。应该认识到这节“曲线和方程”得开头课是解析几何教学的“重头戏”!
2、教学目标的确定及依据
(大纲的要求)通过本小节的学习,要使学生了解解析几何的基本思想,了解用坐标法研究几何问题的初步知识和观点,理解曲线的方程和方程的曲线的意义,初步掌握求曲线的方程的方法.所以第一课我在教学目标上是这样设定的:
1).了解曲线上的点与方程的解之间的一一对应关系,领会“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单的判断与推理;
2).在形成概念的过程中,培养分析、抽象和概括等思维能力;
3)会证明已知曲线的方程。
本节课的教学目标定在“初步掌握”的水平上,但“初步”绝不等同于“含糊”,它反应在学生的学习行为上,即要求学生能答出曲线与方程间必须满足的两个关系,才能称作“方程的曲线”和“曲线的方程”,两者缺一不可,并能借助实例进一步明确这二者的区别。知识的学习与能力的培养是同步的,在具体操作上结合图形分析与反例,来辨析“两个关系”之间的区别,从认识特例到归纳出曲线的方程和方程的曲线一般概念,因而在形成概念的过程中,培养学生分析、抽象、概括的思维能力.会证明已知曲线的方程就能更进一步的理解曲线和方程概念的含义并为下节课求曲线的方程打基础.3、如何突破重难点
本小节的重点是理解曲线与方程的有关概念与相互联系,以及求曲线方程的方法、步骤.只有深刻理解了曲线与方程的含义,才能真正掌握好求曲线轨迹方程的一般方法,进一步学好后面的内容.曲线和方程的概念比较抽象,由直观表象到抽象概念有相当难度,对学生理解上可能遇到的问题是学生不理解“曲线上的点的坐标都是方程的解”和”“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系各自所起的作用。有的学生只从字面上死记硬背;有的学生甚至误以为这两句话是同义反复。要突破这一点,关键在于利用充要条件,函数图象,直线和方程,轨迹等知.识,正反两方面说明问题.本节课的难点在于对定义中为什么要规定两个关系(纯粹性和完备性)产生困惑,原因是不理解两者缺任何一个都将扩大概念的外延。
4、对教学过程的设计
今天要讲的“曲线和方程”这部分教材的内容主要包括“曲线方程的概念”,“已知曲线求它的方程”、“已知方程作出它的曲线”等。在课时安排上分为3个课时进行教学,具体的课时分配是:第一课时讲解“曲线与方程”和“方程与曲线”的概念及其关系;第二课时讲解求曲线的方程一般方法,第三课时为习题课,通过练习来总结、巩固和深化本节知识。如果以为学生不真正领悟曲线和方程得关系照样能求出方程,照样能计算某些难题,因而可以忽视这个基本概念得教学,这不能不说是一种“舍本逐末”得偏见。
在教材中,曲线和方程这一概念是随着知识的讲授而不断深化,逐步为学生所理解,因而教材中从直线开始,多次,重复地阐述,这说明其重要性.同时也说明理解它,掌握它确实需要一个过程.数学本身是很抽象,把数学和实际问题相结合才能激发学生的学习兴趣,真正达到素质教育的要求。根据以上考虑,确定了这节课教学过程的基本线索是:实际问题引入,提出课题→运用反例,揭示内涵→讨论归纳,得出定义→集合表述,强化理解→知识应用,反复辨析。
教材的编写也往往体现着教法.,例如,本节一开头说“我们研究过直线的各种方程,讨论了直线和二元一次方程的关系。”学生已经有了用方程(有时用函数式的形式出现)表示曲线的感性认识,在本节教学中充分发挥这些感性认识的作用。从人造地球卫星运行的轨道等生动形象的实际问题引入,引起学生的兴趣和好奇心以及对数学的应用有了更高的认识,更激发他们进一步学好数学的决心。(具体……)提出课题。运用学生熟知的知识,1)求线段AB的垂直平分线方程和2)作出方程y=x2的图象作为引例,从曲线到方程,从方程到曲线两方面入手分析了曲线上的点和方程的解之间的关系,为形成曲线和方程的概念提供了实际模型,但是如果就此而由教师直接给出结论,那就不仅会失去开发学生思维的机会,影响学生的理解,而且会使教学变得枯燥乏味,抑制了学生学习的主动性和积极性,接着用反例来突破难点。通过反例1)直线去掉第三象限部分,则方程y=x的解为坐标的点不都在曲线上,以及2)改方程为,那么曲线上就混有不满足方程的点坐标就此揭示“两者缺一”与直觉的矛盾,通过举反例和步步追问使我要的答案逐步明了,从而又促使学生对概念表述的严格性进行探索,学生自已认识曲线和方程的概念必须要具备的两个关系,培养学生分析,归纳问题的能力,自然得出定义。并且把这个关系板书到黑板上,以示这就是这节课的重点。为了在重难点有所突破后强化其认识,又用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。
然后通过运用与练习,纠正错误的认识,促使对概念的正确理解,通过反复重现,可以不断领悟,加强识记。所以安排了例1,例2(见课件)目的也在于帮助学生正确理解概念,通过解题辨析“两个关系”,实现本节课的教学目标,为此题目中的“曲线”和“方程”都力求简单,由此得出点在曲线上的充要条件。
曲线是符合某种条件的点的轨迹,为了下节课“求曲线的方程”的教学,安排了例3(见课件)证明曲线的方程,增加学生的感性认识,由于教材上有严谨的证明过程,让学生阅读并总结证明已知曲线的方程的方法和步骤,上升到理论上,可以培养学生独立思考,阅读归纳的能力。为了让学生更深入的理解这节课的主要内容,通过4个变式引申检查他们的掌握程度,但难度不能太大,我选择这样几个练习:(略)简单评讲后小结本课的主要内容,进一步强化“曲线和方程”概念中两个关系缺一不可,只有符合关系1)2)才能进行数与形的转化。由于下节课的内容是求曲线的方程,特地安排了一个思考探索题。
5、对学生学习活动的引导和组织
篇6:曲线轨迹方程的求法教案
高二年级数学组 王莉
一、教学目标
(1)使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法。(2)通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力。
(3)通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础。
二、教学重难点
1、重点:求动点的轨迹方程的常用技巧与方法。
2、难点:各种方法的灵活运用。
三、教学工具
(1)教师自制的多媒体课件、三角板,圆规(2)上课环境为多媒体大屏幕环境
四、教学方法
数形结合、合作探究
五、教学过程
1、高考导向。求的轨迹方程是解析几何的的基本问题,是高考中的一个热点和重点,近几年高考试题中以综合问题出现较多。
2、诊测补偿
(1)解析几何要要解决的两个基本问题是什么?(2)什么是动点的轨迹?(3)求动点的轨迹方程的常用方法 有哪些?
3、求曲线方程的步骤:
(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件p的点M的集合P={M︱p(M)};(3)用坐标表示条件p(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上。
4、求曲线的轨迹方程常采用的方法有直接法、定义法(待定系数法、相关点法、参数法。
题型一 直接法求曲线方程
1、如图已知F(1,0),直线l:x=-1,P为平面上的动点,过点P作l的垂线,垂足为Q,且 解:设
学后反思 当动点所满足的条件本身就是一些几何量的等量关系或这些几何条件简单明了易于表达时,只要将这种关系“翻译”成含x、y的等式就能得到曲线的轨迹方程,这种求轨迹方程的方法称之为直接法。题型二 利用定义或待定系数法求曲线方程
2、已知圆
,求动点P的轨迹方程。
C1x3: C1及圆
2y12 和圆
C2x3:
2y29
动圆M同时与圆
C2相外切.求动圆圆心M的轨迹方程。
分别外切于点A和点B,解: 设动圆M与圆 C1及圆
C2 ,半径为R,则 由两圆相切的定义知,这表明动点M到两定点
C1、C2的距离的差是常数2.根据双曲线的定义,动点M的轨迹为双曲线的左支(点M到到
C2 的距离大,C1的距离小),2b8 其中a=1,c=3,则
y2x18则其轨迹方程为(x≤-1).2学后反思
若动点轨迹的条件符合某一基本轨迹的定义,如圆、椭圆、双曲线、抛物线的定义,则可以直接根据定义求出动点的轨迹方程: 首先要结合圆锥曲线的定义,分析出曲线的类型,再按定义写出标准方程。
(例1)题型三 相关点法求曲线方程
(例2)
3、以原点为圆心,以r=2为半径的圆,过圆上任意一点p作x轴的垂线,求中点M的轨迹方程。
解:过圆上任意一点p向x轴作垂线,垂足为Q
即 学后反思
对涉及较多点之间的关系问题,可先设出它们各自的坐标,并充分利用题设建立它们之间的相关关系;再对它们进行转化和化简,最后求出所求动点坐标所满足的方程.这种根据已知动点的轨迹方程,求另外一点的轨迹方程的方法称为代入法或相关点法.题型四 用参数法求轨迹方程
2y4x的顶点O引两条互相垂直的直线分别与抛物线相交于A、4、过抛物线B两点,求线段AB的中点P的轨迹方程.解: 由题意知,两直线的斜率都存在.设直线OA的斜率为k,则OA:y=kx,OB: y1xk
ykx2y4x由 得1yxky24x同理由 得12x22kky21kk 设P(x,y),则
22y2x8y2x8 由②^2-2×①,得 即2y2x8 故线段AB的中点P的轨迹方程为学后反思
本题运用了参数法求轨迹.当动点P的坐标x、y之间的直接关系不易建立时,可适当地选取中间变量t,并用t表示动点的坐标x、y,从而得到动点轨迹的参数方程
xftygt 消去参数t,便可得到动点P的轨迹方程.其中应
注意方程的等价性和参数t与动点P(x,y)关系的密切性.(练习1)
(例4)
5、课堂练习
ABCDA1B1C1D1中, 是侧面 BB1C1C内一动点,若P到直线 BC1、如图,正方体
C1D1的距离相等,则动点 的轨迹所在的曲线是()与直线
A.直线 B.圆 C.双曲线 D.抛物线
2、等腰三角形ABC中,若一腰的两个端点分别为A(4,2)、B(-2,0),A为顶点,求另一腰的一个端点C的轨迹方程。
3、已知一条直线 L和它上方的一点F ,点F到L的距离是2,一条曲线也在L的上方,它上面的每一个点到 F的距离减去到L的距离的差都是2,建立适当地坐标系,求这条曲线的方程。
6、小结
求曲线的方程常用的几种方法
(1)直接法(2)定义法(待定系数法)(3)相关点法(4)参数法
六、作业
相关文章:
高二关于我的母亲作文600字01-13
预算软件操作手册01-13
电气安装与建筑工程论文提纲01-13
管线安装机电工程论文提纲01-13
如何让小学生学会倾听01-13
醉吟商小品/小品,醉吟商小品/小品姜夔,醉吟商小品/小品的意思,醉吟商小01-13
关于工程部的小品台词01-13
教师招聘面试《小摄影师》教案01-13
信息与控制工程学院相声小品话剧大赛策划书01-13