液压千斤顶设计说明书

关键词: 液压式 机械式 液压 起重

液压千斤顶设计说明书(精选6篇)

篇1:液压千斤顶设计说明书

液压千斤顶研究设计报告

一、液压千斤顶功能分析。

千斤顶是一种起重高度小(小于1m)的最简单的起重设备。它有机械式和液压式两种。机械式千斤顶又有齿条式与螺旋式两种,由于起重量小,操作费力,一般只用于机械维修工作,在修桥过程中不适用。液压式千斤顶又称油压千斤顶,是一种采用柱塞或液压缸作为刚性顶举件的千斤顶,其结构紧凑,工作平稳,有自锁作用,故使用广泛。其缺点是起重高度有限,起升速度慢。

液压千斤顶充分运用了帕斯卡原理,实现了力的传递和放大,使得用微小的力就可以顶起重量很大的物体。在液压千斤顶中,除了其自身所具有的元件外,还需要一种很重要的介质,即工作介质,又叫液压油。液压油的好坏直接影响到千斤顶能否正常地工作。因此,就需要液压油具有良好的性能。在液压千斤顶中,液压油所应该具备的功能有以下几点:

1.传动,即把千斤顶中活塞赋予的能量传递给执行元件。

2.润滑,对活塞、单向阀、回油阀杆和执行元件等运动元件进行润滑。3.冷却,吸收并带出千斤顶液压装置所产生的热量。

4.防锈,防止对液压千斤顶内的液压元件所用的金属产生锈蚀。除此之外,液压油还需要有以下这些工作性能的要求。1.可压缩性。可压缩性小可以确保传动的准确性。2.粘温特性。要有一个合适的粘度并随温度的变化小。

3.润滑性。油膜对材料表面要有牢固的吸附力,同时油膜的抗挤压强度要高。

4.安定性。油不能因热、氧化或水解而变化,使用的寿命要长。5.相容性。对金属、密封件、橡胶软管、涂料等有良好的相容性。液压千斤顶广泛使用在电力维护,桥梁维修,重物顶升,静力压桩,基础沉降,桥梁及船舶修造,特别在公路铁路建设当中及机械校调、设备拆卸等方面。由于液压用途广泛,所以行程范围也需要比较广。

二、液压千斤顶工作原理

液压千斤顶工作时,扳手往上走带动小活塞向上,油箱里的油通过油管和单向阀门被吸进小活塞下部,扳手往下压时带动小活塞向下,油箱与小活塞下部油路被单向阀门堵上,小活塞下部的油通过内部油路和单向阀门被压进大活塞下部,因杠杆作用小活塞下部压力增大数十倍,大活塞面积又是小活塞面积的数十倍,由手动产生的油压被挤进大活塞,由帕斯卡原理(液压传递压强不变的原理,受力面积越大压力越大,面积越小压力越小)知大小活塞面积比与压力比相同。这样一来,手上的力通过扳手到小活塞上增大了十多倍(暂按15倍),小活塞到大活塞力有增大十多倍(暂按

图1帕斯卡原理图

15倍),到大活塞(顶车时伸出的活动部分)力=15X15=225倍的力量了,假若手上用每20公斤力,就可以产生20X225=4500公斤(4.5吨)的力量。工作原理就是如此。当用完后,有一个平时关闭的阀门手动打开,油就靠汽车重量将油挤回油箱。

三、自锁原理

图2单向阀自锁

单向阀自锁:为了能实现千斤顶在支撑中实现自锁,此设计采用单向阀组成设计回路。在液压千斤顶在小油缸与大油缸之间设置有一个单向阀。在手柄向上提升带动小油缸中的小活塞时,由于小油缸与大油缸之间设有单向阀,此时单向阀处于关闭状态,大油缸中的油液并不会回流至小油缸。在手柄下压带动活塞压油液时,小油缸与大油缸之间的单向阀处于开启状态,而小油缸与储油装置之间的单向阀处于关闭状态,油液进入大油缸将负载顶起。将负载顶到目标高度后,大油缸与小油缸之间的单向阀仍处于工作状态,油液只能存在大油缸之中,负载无法下行,形成自锁。

液压千斤顶顶起重物后,靠液压单向阀能起锁紧作用,但专业人士都知道,液压系统都有泄漏现象,压力越大泄漏越严重,液压缸内高压油一泄漏液压杆肯定要下行,时间越长下滑越明显。这说明液压千斤顶顶起的重物自锁时间不能过长,这势必对操作者造成一定的心里压力,为了避免液压系统因泄漏而造成的不良后果,消除操作者心里负担,我们的设计除液压自锁外,还设置了机械自锁装置。

机械自锁:在大活塞螺旋杆和液压千斤顶外壳设计锁紧螺母,当液压千斤顶在任意高度顶起重物需要锁紧时,旋紧锁紧螺母,使之与液压千斤顶外壳顶端完全接触,外载荷由锁紧螺母传给液压千斤顶的外壳,液压缸活塞不承受载荷,液压系统可以卸荷。锁紧螺母与螺旋杆采用梯形螺纹传动,顶起重物后,由手动旋合锁紧螺母,达到锁紧目的(如图3)。

四、结构设计

(1)螺旋传动机构,增大起重行程

液压千斤顶中的活塞杆是千斤顶顶起重物的执行部件,液压杆的长度,就是千斤顶顶起重物的最大行程。要增大液压千斤顶顶起重物的行程,就必须增加活塞杆的长度,这势必增大了液压千斤顶的体积和输油量。为了避免这些困惑,将活塞杆进行改良设计,如图4所示,加设螺旋配合机构,采用梯形螺纹传动,能承受较大的载荷,由于螺旋杆能上下螺旋移动,就增大了液压千斤顶的有效行程。螺旋杆顶部设计通孔,可以利用加长杆与之配合,旋转螺杆,便能在顶起重物的状态下增大顶起高度行程,当然也可以在没有顶起重物时预先旋转螺纹提升螺旋杆达到提高行程的目的。在不需要增大起重行程时,螺旋杆旋进活塞杆,保持原

图4

图3螺母锁紧装置

来的起重行程。

(2)扳手省力结构

液压千斤顶虽然能利用帕斯卡原理,利用大油缸面积大于油缸截面面积缩小力。但考虑到材料强度及设备体积原因(小油缸面积不能过小,要保证一定的壁厚及小活塞的压杆

图5油泵扳手

稳定,大油缸面积不能过大),大油缸与小油缸的截面积之比一般设计在10到20 之间(我们设计取15)。我们发现这个面积比只能将力缩小到原载荷的十五分之一。这是远远不够的,所以我们将手动油泵扳手设计成杠杆(如图5)。最左端竖直杆与底座相连,右边与滑套相连的为活塞杆,横杆为扳手。根据杠杆原理,各部分设计合理距离以及杆长设计合理,这个可将力缩小为小活塞受力的十五分之一。这样就可将力缩小至负载的1/225。(3)出油装置

图6底部油通道

上述已阐明如何将负载顶起。在工作结束的时候需要卸载,这就需要一个将大油缸中的油液排除的装置。图6为底部油通道示意图。可以看出,1通道为油液进入手动油泵的通道(油液存储在外油箱中)。图6中的2出口就是工作结束卸载时油液的通道。考虑到千斤顶正常工作时油液不能从大油缸中流出,因此在2通道口装有一个手动阀,在工作结束后打开手动阀,让油在负载的作用下流回外油箱中,完成卸载。

五、设计心得

这次设计的大作业,是现代机械设备中应用较为广泛的一种伸缩传动装置——千斤顶。由于理论知识不足,而且平时几乎没有设计的经验,在一开始的时候有些手忙脚乱,不知道该从什么地方入手。在本次大作业的完成过程中,让我感触最深的就是要不断地查阅资料和修改图纸使得我们的设计更加符合现实生活中的标准。我们作为机械工程专业的学生,最重要的就是要时时刻刻与实际相结合,所设计的每一个机械部件、每一个零件都必须不离实际。与艺术家可以尽情的幻想不同,一切不切实际的构想就永远只能是幻想,永远无法成为设计。与此同时,在设计的过程中,需要用到AutoCAD软件进行制图。因此为了更加有效率地绘制各种零件图、装配图,我们必须学会熟练的掌握它。

在设计过程结束后,我自己学到了不少的知识,也让我捡起了很多遗忘的知识。在整个设计中我明白了很多东西,也培养了我工作和与人合作的能力,而且我也充分地体会道路在创造设计过程的艰辛和成功时的喜悦。尽管这个设计做得并不优秀,但这个在设计过程中所学到的东西将是我人生路上强有力的垫脚石,对我日后的工作、设计都会有很大的益处。

篇2:液压千斤顶设计说明书

目 录

1、引言..................................................................1 1.1 液压千斤顶的分类.................................................1

2、液压千斤顶发展现状及常见故障排除......................................1 2.1 国外发展情况.....................................................1 2.2 国内发展情况.....................................................2 2.3 液压千斤顶的特点.................................................2 2.4 液压千斤顶优缺点.................................................2 2.5 液压千斤顶常见故障排除...........................................3

3、液压千斤顶的组成结构及工作原理........................................3 3.1 液压千斤顶的组成.................................................3 3.2 液压千斤顶的结构图...............................................4 3.3 液压千斤顶工作原理...............................................4

4、液压千斤顶结构设计....................................................5 4.1 内管设计.........................................................5 4.2 外管设计.........................................................6 4.3 活塞杆设计.......................................................6 4.4 导向套的设计.....................................................7 4.5 液压千斤顶活塞部位的密封.........................................9

5、液压千斤顶装配图.....................................................10

6、结论.................................................................11 参考文献................................................................12 致谢....................................................................13

XXXX学院xxxx届毕业论文

1、引言

液压千斤顶是典型的利用液压传动的设备,液压千斤顶具有结构紧凑、体积小、重量轻、携带方便、性能可靠等优点,被广泛应用于流动性起重作业, 是维修、汽车、拖拉机等理想工具。其结构轻巧坚固、灵活可靠,一人即可携带和操作。千斤顶是用刚性顶举件作为工作装置,通过顶部托座或底部托爪在小行程内顶升重物的轻小起重设备。本次对液压千斤顶进行设计可以了解液压千斤顶的原理以及应用。通过查阅大量文献,和对千斤顶各部件进行设计使我熟悉了千斤顶内液压传动原理,同时也在以前书本学习的基础上对液压传动加深了理解。1.1 液压千斤顶的分类

液压千斤顶分为通用和专用两类。

通用液压千斤顶适用于起重高度不大的各种起重作业。它由油室、油泵、储油腔、活塞、摇把、油阀等主要部分组成。

工作时,只要往复扳动摇把,使手动油泵不断向油缸内压油,由于油缸内油压的不断增高,就迫使活塞及活塞上面的重物一起向上运动。打开回油阀,油缸内的高压油便流回储油腔,于是重物与活塞也就一起下落。

专用液压千斤顶使专用的张拉机具,在制作预应力混凝土构件时,对预应力钢筋施加张力。专用液压千斤顶多为双作用式。常用的有穿心式和锥锚式两种。

2、液压千斤顶发展现状及常见故障排除

2.1 国外发展情况

早在20世纪40年代,卧式千斤顶就已经开始在国外的汽车维修部门使用,但由于当时设计和使用上的原因,其尺寸较大,承载量较低。后来随着社会需求量的增大以及千斤顶本身技术的发展,在90年代初国外绝大部分用户已以卧式千斤顶替代了立式千斤顶。在90年后期国外研制出了充气千斤顶和便携式液压千斤顶等新型千斤顶。充气千斤顶是由保加利亚一汽车运输研究所发明的,它用有弹性而又非常坚固的橡胶制成。使用时,用软管将千斤顶连在汽车的排气管上,经过15~20秒,汽车将千斤顶鼓起,成为圆柱体。这种千斤顶可以把115t重的汽车顶起70cm。Power-Riser Ⅱ型便携式液压千斤顶则可用于所有类型的铁道车辆,包括装运三层汽车的货车、联运车以及高车顶

XXXX学院xxxx届毕业论文

车辆。同时它具有一个将负载定位的机械锁定环,一个三维机械手,一个全封闭构架以及一个用于防止杂质进入液压系统的外置过滤器。另外一种名为Truck Jack 的便携式液压千斤顶则可用于对已断裂的货车转向架弹簧进行快速的现场维修。该千斤顶能在现场从侧面对装有70~125t级转向架的大多数卸载货车进行维修,并能完全由转向架侧架支撑住。它适用于车间或轨道上无需使用钢轨道碴或轨枕作承。2.2 国内发展情况

我国千斤顶技术起步较晚,由于历史的原因直到1979年才接触到类似于国外卧式千斤顶这样的产品。但是经过全面改进和重新设计,在外形美观、使用方便、承载力大、寿命长等方面,都超过了国外的同类产品,并且迅速打入欧美市场。经过多年设计与制造的实践,除了卧室斤顶以外,我国研究规格齐全并形成系列产品。2.3 液压千斤顶的特点

液压千斤顶是一种将密封在油缸中的液体作为介质,把液压能转换为机械能从而将重物向上顶起的千斤顶。它结构简单、体积小、重量轻、举升力大、易于维修。但同时制造精度要求较高,若出现泄漏现象将引起举升汽车的下降,保险系数降低,使用其举升时易受部位和地方的限制。传统液压千斤顶由于手柄、活塞、油缸、密封圈、调节螺杆、底座和液压油组成。它利用了密闭容器中静止滚体的压力以同样大小向各个方向传递的特性。

2.4 液压千斤顶优缺点

液压传动的优点:(1)体积小、重量轻,例如同功率液压马达的重量只有电动机的10%~20%。因此惯性力较小,当突然过载或停车时,不会发生大的冲击;(2)能在给定范围内平稳的自动调节牵引速度,并可实现无极调速,且调速范围最大可达1:2000(一般为1:100)。(3)换向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换;(4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制;(5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长;(6)操纵控制简便,自动化程度高;(7)容易实现过载保护。(8)液压元件实现了标准化、系列化、通用化、便于设计、制造和使用。

液压传动的缺点:(1)使用液压传动对维护的要求高,工作油要始终保持清洁;(2)对液压元件

XXXX学院xxxx届毕业论文

制造精度要求高,工艺复杂,成本较高;(3)液压元件维修较复杂,且需有较高的技术水平;(4)液压传动对油温变化较敏感,这会影响它的工作稳定性。因此液压传动不宜在很高或很低的温度下工作,一般工作温度在-15℃~60℃范围内较合适;(5)液压传动在能量转化的过程中,特别是在节流调速系统中,其压力大,流量损失大,故系统效率较低。

2.5 液压千斤顶常见故障排除 重载时顶杆不能升起。当千斤顶顶到某一高度后,顶杆就不再升高这表明千斤顶内缺少工作油,应予补足。顶杆抖动。这说明回油阀关闭不严,可将回油阀针再向里拧紧一些。若仍不能顶起,且压杆周围漏油,则为顶杆密封圈损坏,应予更换。若不能顶起且压杆周围也无漏油,再检查回油阀和进油阀门能否关严包括压杆筒体端面接合处的密封垫圈情况若上述均无异常,则为顶杆密封圈损坏或其固定螺栓松动,应予更换或拧紧。空载时顶杆就不能升起。首先检查千斤顶的油量,不足时应添加。若千斤顶不缺油可将千斤顶回油阀针松开,拆下加油孔油塞,然后用脚踩住千斤顶底座,双手向上拔起顶杆再压下去,如此反复拔、压顶杆几次,以排除空气若做完上述检查后,拧紧加油孔油塞和回油阀,再试空顶若此时顶杆仍不能上升,应将千斤顶放平,拆去回油阀,检查阀与座的接触情况是否良好,若有脏物,应予清除若有坑、槽、不平应予更换。最后检查进油阀门是否密封良好,顶杆密封圈有无损坏或脱落,若有则及时更换。漏油。千斤顶的漏油部位多在座与筒体结合处、顶杆周围、回油阀的锁紧螺纹处、加油孔的固定油塞处、压杆周围等。漏油原因多为密封垫圈损坏必须及时更换。

3、液压千斤顶的组成结构及工作原理

3.1 液压千斤顶的组成

液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。

动力元件(油泵)它的作用是把液体利用原动机的机械能转换成液压力能,是液压传动中的动力部分。

执行元件(油缸、液压马达)它是将液体的液压能转换成机械能。其中,油缸做直线运动,马达做旋转运动。

XXXX学院xxxx届毕业论文

控制元件 包括压力阀、流量阀和方向阀等,它们的作用是根据需要无级调节液压动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。

辅助元件 除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件及邮箱等,它们同样十分重要。

工作介质 工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。

3.2 液压千斤顶的结构图

液压千斤顶结构图1所示,工作时通过上移6手柄使7小活塞向上运动从而形成局部真空,油液从邮箱通过单向阀9被吸入小油缸,然后下压6手柄使7小活塞下压,把小油缸内的液压油通过10单向阀压入3大油缸内,从而推动2大活塞上移,反复动作顶起重物。通过1调节螺杆可以调整液压千斤顶的起始高度,使用完毕后扭转4回油阀杆,连通3大油缸和邮箱,油液直接流回邮箱,2大活塞下落,大活塞下落速度取决于回油阀杆的扭转程度。

图1 液压千斤顶内部结构示意图

3.3 液压千斤顶工作原理

XXXX学院xxxx届毕业论文

图2 液压千斤顶工作原理图

1—油箱 2—放油阀 3—大缸 4—大活塞 5—单向阀 6—杠杆手柄 7—小活塞 8—小缸体

9—单向阀

液压千斤顶的工作原理如图所示,大缸体3和大活塞4组成举升缸;杠杆手柄

6、小缸体

8、活塞

7、单向阀5和9组成手动液压泵。活塞和缸体之间保持良好的配合关系,又能实现可靠的密封。当抬起手柄6,使小活塞7向上移动,活塞下腔密封容积增大形成局部真空时,单向阀9打开,油箱中的油在大气压力的作用下通过吸油管进入活塞下腔,完成一次吸油动作。当用力压下手柄时,活塞7下移,其下腔密封容积减小,油压升高,单向阀9关闭,单向阀5打开,油液进入举升缸下腔,驱动活塞4使重物G上升一段距离,完成一次压油动作。反复地抬、压手柄,就能使油液不断地被压入举升缸,使重物不断升高,达到起重的目的。如将放油阀2旋转90°(在实物上放油阀旋转角度是可以改变的),活塞4可以在自重和外力的作用下实现回程。这就是液压千斤顶的工作过程。

4、液压千斤顶结构设计

设计液压千斤顶的额定载荷为19600N,初定额定压力为15Mpa。千斤顶的最低使用高度为192mm,最高使用高度为277mm。4.1 内管设计

根据以上设计要求可以得到如下计算结果:

XXXX学院xxxx届毕业论文

F=P×A 得到A=19600/9.8/150=13.3cm2

所以内管的直径D=42mm,长为115mm,有效长度为85mm 这里: F=外部作用力(㎏f)A=内管的作用面积(cm2)P=被传递的压力(㎏f/cm2)

内管的壁厚δ为 δ=δ0+C1+C2

根据公式δ0>PmaxD/2δp(m)δp=δb/N 查机械设计手册可知δb=550(无缝钢管,牌号20)N为安全系数一般取5 δ0>15×0.042/(2×550/5)=0.002m=2mm δ=δ0+C1+C2=3mm 上式中C1为缸筒外径公差余量

C2为腐蚀余

缸筒壁厚的验算

根据公式Pn≤0.35δs(D12-D2)/D12MPa 0.35×550×0.00054/0.002304=50MPa Pn=15MPa 所以缸筒的臂厚完足满足设计需要的要求。4.2 外管设计

立式千斤顶的外管主要的作为是用来储存多余的液压油,在无电动源作用的情况下,外管起了一个油箱的作用。

由上可知道内管的内径为42mm 可得V内=AH=3.14×2.12×8.5=117.7cm2 外管的外径D=66mm 可得V外=AH=3.14×3.32×10=341.94cm2 △V= V外-V内=341.94-117.7=224.24cm2 所以△V>V内,完全满足要求。4.3 活塞杆设计

XXXX学院xxxx届毕业论文

活塞杆是液压缸传递力的重要零件,它承受拉力,压力,弯力,曲力和振动冲击等多种作用力,所以必须有足够的强度和刚度,由于千斤顶的液压缸无速比要求,可以根据液压缸的推力和拉力确定。

可根椐内管的内径D=42mm,初步确定活塞杆的外径为d=30mm 活塞杆强度的计算:

活塞杆在稳定的工况下,只受纵向推力,可按下式进行计算 δ=F×10-6/(nd2/4)<= δp MPa 可得δ=19600×10/(0.03×3.14/4)=27.7 查表可知δp的许用应力为100-110MPa(无缝钢管)所以δ<δp

所以活塞杆的设计要求强度完全满足。

活塞杆弯曲稳定性验算可以用实用验算法活塞杆弯曲计算长度为Lf= KSm具体可以根据机械设计手册表中选取。4.4 导向套的设计

活塞杆导向套装在内管的有杆侧端盖内,用以对活塞杆进行导行,内装有密封装置以保证缸筒有杆腔的密封,导向套采用非耐磨材料时,内圈可设导向环,用以作活塞杆的导向。-6

图3 导向套

根据千斤顶的受力方式,可以作以下分析

XXXX学院xxxx届毕业论文

图4 活塞杆导向套受力分析图

如图4所示,垂直安放的千斤顶,无负载导向装置,受偏心轴向载荷9800N,L=0.1m时

M0=F1L Nm Fd=K1 M0/LG N 可得M0=9800×0.1=9800Nm Fd= K1 M0/LG(N)

可得Fd=1.5×9800/0.057=2.5×105N 在上式中

Fd-----------------导向套承受的载荷,N M0----------------外力作用于活塞上的力矩,N.m F1-----------------作用于活塞上的偏心载荷,N L------------------载荷作用的偏心矩,m

XXXX学院xxxx届毕业论文

LG-----------------活塞至导向套间距,m。D、d---------------分别为活塞及活塞杆外径,m 4.5 液压千斤顶活塞部位的密封

图5 液压千斤顶活塞部位密封图

在大活塞与大油缸配合部位采用的尼龙碗形密封件与O形密封圈组合而成的组合密封装置,由于橡胶具有良好的弹性,受力时迫使尼龙碗的唇边与缸壁贴合,起良好的密封作用。

缺点如图:

图6 液压千斤顶活塞密封缺点分析图

密封圈处在小孔口,缸中的超高压工作油在限位孔处存在极大的压力差,会使密封圈在此处遭受极大的撕拉作用。从而产生损伤,形成轴向沟痕。此沟痕随着起重物的加

XXXX学院xxxx届毕业论文

重,限位孔直径的增大以及超越限位孔次数的增多而变大加深,最终会破坏了密封圈的密封性能。致使活塞不能推动重物上升。为此。要求密封圈材质的强度要高。由于面柱与面柱面的配合始终存在一定的误差,为了避免因为油液单独进入一边空隙造成压力不平衡而引起活塞卡死现象,可以在活塞与大油缸配合的活塞头上适当开辟油沟,平衡各边压力。

5、液压千斤顶装配图

图7液压千斤顶

XXXX学院xxxx届毕业论文

图8 单向阀装配图

6、结论

毕业设计是大学学习阶段一次非常难得的理论与实际相结合的学习机会,通过这次对液压千斤顶理论知识和实际设计的相结合,锻炼了我的综合运用所学专业知识,解决实际工程问题的能力,同时也提高了我查阅文献资料、设计手册、设计规范能力以及其他专业知识水平,而且通过对整体的掌控,对局部的取舍,以及对细节的斟酌处理,都使我的能力得到了锻炼,经验得到了丰富,并且意志品质力,抗压能力以及耐力也都得到了不同程度的提升。这是我们都希望看到的也正是我们进行毕业设计的目的所在,提高是有限的但却是全面的,正是这一次毕业设计让我积累了许多实际经验,使我的头脑更好的被知识武装起来,也必然让我在未来的工作学习中表现出更高的应变能力,更强的沟通力和理解力。

XXXX学院xxxx届毕业论文

参考文献

XXXXX 主编 《液压与气压传动》 机械工业出版社,2009 XXXXX 主编 《机械设计基础》 国防科技大学出版社,2008 XXXX 主编 《公差配合与几何精度检测》 人民邮电出版社,2007 XXXX 主编 《液压原件》 机械工业出版社,1982 XXXX 主编 《液压传动》 冶金工业出版社,1998 XXXX,XXXX主编。《液压传动概论》 机械工业出版社,1992 XXXX主编。《液压原件》 机械工业出版社,1982 XXXX主编。《液压传动》 中央广播电视大学出版社,1995 XXXX主编。《液压传动》 冶金工业出版社。1998

XXXX学院xxxx届毕业论文

致谢

大学四年即将结束,在这短短的四年里,让我结识了许许多多热心的朋友、工作严谨教学相帮的教师。毕业设计的顺利完成也脱离不了他们的热心帮助及指导老师的精心指导,在此向所有给予我此次毕业设计指导和帮助的老师和同学表示最诚挚的感谢。

毕业设计是对我大学四年的总结,因而投入了极大的热情和很高的积极性,更幸得指导老师的悉心指导,使我能够顺利完成毕业设计,感谢老师在百忙之中还时常来对我们进行指导,老师总是不厌其烦,耐心细心的指导我们,让我们受益匪浅。同时老师实事求是,不摆架子的作风也让我很是敬佩。

其次,要向给予此次毕业设计帮助的老师们,以及同学们以诚挚的谢意,在整个设计过程中,他们也给我很多帮助和无私的关怀,在此感谢他们。

篇3:家用汽车电动液压千斤顶的设计

本文设计的电动液压千斤顶由24V直流电动机、偏心轮机构、柱塞缸、两级伸缩式柱塞缸和多个液压控制阀体及操作控制器等原件组成。使用时,把电动液压千斤顶的电源插头与轿车蓄电瓶连接,通过直流驱动电动机转动,电动机带动泵体往复运动,液压泵压入油液,油液经回路管道进入缸体,产生推力使柱塞往右慢慢运动。在此同时,连接油箱的液压油回路上的管道内具有弹性的小球打开,缸体通过吸油管回路管道将液压油液吸入缸体中[1]。柱塞杆往左移动时,缸体的左半部分油腔液压油油压增大,这时与油箱联通的小球产生作用,阻塞管道,而与两级伸缩式套筒油缸的弹簧小球打开,油液经管道回路输入顶升两级伸缩式套筒油缸的下腔,迫使大活塞向上运动,顶起车辆。活塞杆再次右移时,与两级伸缩式套筒油缸相联接的油路上的弹簧小球堵塞管道。柱塞杆来回不停地移动,就能不断地把油液压入两级伸缩式套筒油缸下腔,汽车逐渐升起。如果汽车被顶举到合适的位置,这时候若打开电磁换向阀,液压油便经过二位二通电磁换向阀和管道回路回到油箱。

2 底板油路设计

板的设计过程充分考虑了机械加工的可行性。图1为底板油路设计图,柱塞杆向右移动时,柱塞缸内的油压减小,而油箱内的油压很高,导致弹簧小球被顶开。而两级伸缩式套筒油缸比柱塞缸内的油压高,弹簧小球2将堵塞联接两级伸缩式套筒油缸的管道,此时液压油吸入柱塞缸内。柱塞杆向左移动时,柱塞缸内的压力变大,油箱内的油压不高,导致弹簧小球把油路堵塞[2]。而两级伸缩式套筒油缸比柱塞缸内的油压相对低,弹簧小球2将打开联接两级伸缩式套筒油缸的管道,液压油被压入两级伸缩式套筒油缸,从而抬升负载的高度。当负载需放回时,将二位二通电磁换向阀打开,液压油经过管道和二位二通电磁换向阀流进油箱。如果油路出现堵塞现象时,系统内的油压将增大,此时底板的安全阀被顶开,油液流进油箱。

3 柱塞缸设计

柱塞缸体结构示意图如图2所示。本次设计的柱塞缸体由密封工作腔体、柱塞组成。为了减小液压缸千斤顶的外形尺寸,便于携带,本次设计的千斤顶液压缸体采用两级活塞驱动。第一级活塞缸的活塞是第二级活塞缸的缸体,伸出时可以获得很长的工作行程,缩回时保持很小的外形结构。当压力油从无杆腔进入时,活塞有效面积最大的缸筒开始伸出,当行至终点时,活塞有效面积次之的缸筒开始伸出。伸缩式液压伸出的顺序是由大到小依次伸出,可获得很长的工作行程,外伸缸筒有效面积越小,伸出速度越快[3]。因此,伸出速度有慢变快,相应的液压推力由大变小;这种推力、速度的变化规律,正适合各种自动装卸机械对推力和速度的要求。而缩回的顺序一般是由小到大依次缩回,缩回时的轴向长度较短,占用空间较小,结构紧凑。常用于工程机械和其他行走机械,如起重机、翻斗汽车等的液压系统。

4 电机选择

按照设计的电动液压千斤顶使用有关要求,并查找对照机械类设计手册,系统工作的最大力为F=2.0×104N;确定系统的压力p=25.0MPa;假定第二级液压缸的上升速度V=0.01m/s;依照GB2348—80标准中标准值选用原则,取d=32mm;系统流量Q=8.038×10-4m3。

此时液压缸用来支撑汽车的功率为:

式中,p电机为电机的额定功率,单位W;ŋm为机械损失,一般取0.9;ŋv为容量损失,取1。

带入数据,得电机额定功率p电机=250W。根据机械设计手册和有关知识查询,选用电压为24V、直流、额定功率250W、转速n=60r/min的电动机[4]。

5 确定顶升液压缸的参数

此次设计要求液压缸的实际伸缩量大概是200mm。因此,经考虑推算,决定使用伸缩式套筒液压缸。本次课题设计中,在查阅有关机械设计手册后,确定液压缸的第一级行程为h1=110mm,第二级行程h1=100mm。伸缩式液压缸缸体在运动过程中的运动速度和输出力都在不断发生变化。

6 液压缸的缸筒厚度计算

本次设计中采用标准液压缸的外径,查机械设计手册知道,第一级液压缸的参数选为d=50mm,D=60mm。

式中,φ为强度系数,φ=1;c为计入厚度公差及腐蚀的附属厚度;py为实验压力,p<16MPa,py=1.5p MPa。

7 活塞杆设计计算

液压缸在工作时,对运动的速度比没有要求。按照相关经验公式,取杆的直径,结合表1液压缸工作压力与活塞杆直径的数据,取d=22.4mm。根据《机械设计手册》液压缸活塞杆的外径尺寸系列,活塞杆的外径圆为18mm[5]。

8 强度校核

这里仅对主要零件的强度进行计算,以及一些焊接部位的计算进行校核。

(1)缸体与缸盖焊接强度校核。缸底连接缸底用对焊,如图3所示。

焊缝的拉应力为:

式中,D1为液压缸外径,D1=60mm;D2为焊缝底径,D2=42mm;F为液压缸输出的最大推力,单位N;ŋ为焊接效率,通常取0.7。

(2)柱塞缸缸体强度校核。柱塞缸缸壁较薄,作用与缸体上的力较大,故需要校核,缸体受到的力为拉力,校核如下:

式中,σ为缸体横向拉应力,单位MPa;F为缸体受到的横向拉力,单位N;d1为缸体外径,单位mm;d为缸体的内径,单位mm。满足设计要求。

(3)活塞杆校核。在本次设计中,活塞杆主要受到压缩,所以主要对活塞杆压缩时的杆压力进行校核。

式中,σ为活塞杆的压缩变形的应力,单位N;F为柱塞杆承受的最大压力,单位N;A为柱塞杆截面面积,单位m;其中活塞杆承受的最大压力为20000N。满足设计要求。

9 结论

按照相关要求,利用课余时间查找相关资料及结合本科所学专业知识,在指导老师的帮助下,如期保质保量地完成了使用性能好、体积小、重量轻、操作方便好的小型车用电动液压千斤顶。经过查询和参考查阅有关机械类的设计资料和液压与气压传动方面的文献资料后,依据液压千斤顶的基本工作原理,通过明确设计目标,经过一系列计算,一步步完成了此次优化设计的电动液压千斤顶的电机的选用、千斤顶的液压缸缸体外型和相应部位的零件的结构外型设计、使用材料的选用,然后又对主要零件结构进行了一系列的校核计算。

参考文献

[1]左键民.液压与气压传动[M].北京:机械工业出版社,2013.

[2]湛从昌.液压可靠性与故障诊断[J].液压传动优点,2012,12(2):11-13.

[3]张坚.液压故障排除400问[M].长沙:湖南科学技术出版社,2009.

[4]马履中.机械原理与设计[M].北京:机械工业出版社,2009.

篇4:液压千斤顶设计说明书

液压支架 推移千斤顶 倒装设计

1、推移千斤顶介绍

1.1、推移千斤顶的工作原理

当活塞腔进液,活塞杆腔出液时,在液体压力作用下活塞杆外伸并产生推力。

当活塞杆腔进液,活塞腔出液时,在液体压力作用下活塞杆缩回并产生拉力。移架力等于液体作用在活塞腔面积上的力,推溜力等于液体作用在活塞杆腔面积上的力。

1.2、推移千斤顶的组成与结构特点

(1)缸筒,缸筒的材料,可焊性及加工精度等与立柱基本相同,由于压力低,各种要求不如立柱严格。这里采用27SiMn无缝钢管。

(2)缸底,大部分为耳座,销孔式连接头,有些推移千斤顶的缸体连接不是位于端部,而位于中部,直接焊在缸筒上。此处设计为耳座销孔式联接。

(3)活塞杆,大部分为实心杆体,杆径与缸径之差较大,一般外表面镀铬,尤其是推移千斤顶等,经常受矸石、浮媒、等摩擦和挤砸,要求表面坚硬耐磨。

(4)活塞组件,大部分采用装配式活塞,部分采用整体式活塞,而不是像立柱那样的焊接结构。密封导向大多用鼓型密组件,与立柱相同,个别浮动活塞千斤顶也可采用校断面山型密封圈。此处设计为整体式活塞,活塞底部安装有拆装螺钉。

(5)缸口组件,大都采用蕾型密封圈组件与防尘圈,个别也可用小断面楔形密封圈等,受力较小时,一般不采用专门的导向环。大多采用钢丝连接等固定方式,也可采用螺纹连接,很少采用卡环连接。

推移千斤顶结构如图1所示。

图1推移千斤顶装配图

1.3、采用倒装式,其特点如下:

1) 通过框架推杆千斤顶分别与输送机和支架相连,即推移千斤顶的底端铰接于支架底座的前端,另一端于框架后端铰接。

2) 框架前端通过铰接加长杆与输送机连接,框架在支架内可纵向滑动,用框架推杆做导向装置,抗弯强度高,导向性能好。

3) 千斤顶位于平面段框架推杆上方,通过耳环与推杆后部铰接,千斤顶有一定倾斜度。

2、推移千斤顶的设计

2.1、千斤顶内径计算

通常移架阻力与架型、吨位、支撑高度、顶板状况以及是否带压移架等因素有关。掩护式和支撑掩护式支架为250~300kN。本设计根据同类支架类比初取移架力为277 kN

推移千斤顶的内径由式(1)

(1)

代入数据 D=0.104m

式中 D—液压缸内径,m ;

Pb—泵站压力,MPa 。

根据液压缸GB2348—80给出的缸筒内径尺寸系列圆整成标准值,取D=100mm。

2.2、活塞杆直径计算

通常,1.5m长的一节溜槽对应一架支架,推溜力为150kN,薄煤层支架为100kN。本设计根据同类支架类比初取移架力为116 kN

推移千斤顶的活塞杆直径由式(2)计算,

(2)

代入数据得 d=0.087mm

由国家标准进行圆整,选取活塞杆直径为85mm。

2.3、千斤顶缸筒壁厚的计算

千斤顶缸体壁厚的计算如式(3)

(3)

式中:MPa—缸筒最大工作压力,40MPa。一般取安全阀额定工作压力为40 ;

—缸体材料许用应力,MPa。缸体材料选用27SiMn无缝钢管,查机械工程材料知:=σb1000MPa,安全系数取n=5,则。

代入数据得:δ≥0.011m

取δ=11mm,推移千斤顶缸筒外径DO=D+2δ=110+211=132mm:

2.4、千斤顶行程的确定

推移千斤顶的行程与推移步距有关,当推移步距为600mm时,推移千斤顶的行程为700~750mm,由于配套煤机的截深为600mm,这里选用千斤顶行程为750mm。

3、推移千斤顶校验

3.1、活塞杆直径强度校核

活塞杆直径强度按下式校验强度,即

(4)

式中 FL—液压缸负载,N。此处以液压缸最大负载计算,;

Pb —泵站工作压力,Pa。 Pb= 31.5MPa ;

—材料许用压力,Pa。,,为材料抗拉强度,Pa。n为安全系数,一般n=1.4。

代入数据式(4)得:

活塞杆直径强度达到要求,合格。

3.2、稳定性校验

当安装杆长度1与其直径d之比,并且杆件承受压负载时,则需校验稳定性。液承受的压负载FL,不能大于液压缸保持工作稳定性所允许的临界负载Fk。Fk的大小与活塞杆材料、端面形状、直径和安装长度有关。

液压缸的稳定条件为

(5)

式中 Fk—液压缸临界负载,N。;

nk—稳定安全系数,通常取 =2~4。

临界负载以不受偏心负载情况来计算

按等截面法,将活塞杆和缸体视为一个整体杆件。先比较细长比 与 大小,

得:

(6)

式中 L—活塞杆计算长度,即活塞杆在最大伸出时,活塞杆端支点和液压缸安装点间的距离,M。由推移千斤顶液压缸装配图知;L=1.855m;

n—末端条件系数,n=1。可由机械设计手册第五卷表37.7-68查出;

m—柔度系数,m=1。可由机械设计手册第五卷表37.7-69查出;

k—活塞杆截面回转半径,m。 ;

—活塞杆截面二次极矩, 。对于实心杆,为活塞直径,m。

根据式(6)可判断应按戈登—兰金公式计算临界负载,即

(7)

式中 —材料强度试验值,。可由机械设计手册第五卷表37.7-69查出;

—试验常数, 。可由机械设计手册第五卷表37.7-69查出;

将数据代入(7)计算结果为:

将 值代入式(5)得:介于2和4之间,此液压缸稳定性基本符合要求。

4、结束语

本设计采用倒装式,活塞与活塞杆整体联接的型式,其特点为

1)活塞和活塞杆为一整体,结构简单。

2)活塞与缸的密封采用鼓型密封圈组件实行双向密封,密封圈通过通过卡环固定。

3)导向套与活塞杆之间应安装导向环,通过蕾型密封圈实行单向密封,套口处安装防尘装置。

4)缸口导向套的固定可采用螺纹或固定钢丝.

5)缸底与缸筒通过焊接方式连接,缸底和缸体均设有进油孔,便于维护。

参考文献

1、孙家启,潘池林,李治能,石竹.Visual Basic程序设计教程.合肥:安徽理工大学出版社,2002

2、林建业主编.《液压传动设计手册》.上海人民出版社, 1995

3、江洪,郦祥林,李仲兴.SolidWorks2006基础教程.北京:机械工业出版社,2006

4、濮良贵 纪名刚主编.《机械设计》.第七版.高等教育出版社,2001

5、孙恒 陈作模主编.《机械原理》.第六版.高等教育出版社,2000

6、刘鸿文主编.《材料力学》.第四版.高等教育出版社,2004

7、哈尔滨工业大学理论力学教研组编.《理论力学》.第五版.高等教育出版社,2002版

篇5:螺旋千斤顶设计计算说明书

精04 张为昭 2010010591

目录

一、基本结构和使用方法-----------3

二、设计要求---------------------3

三、基本材料选择和尺寸计算-------3

(一)螺纹材料和尺寸---------3

(二)手柄材料和尺寸---------8

(三)底座尺寸---------------9

四、主要部件基本尺寸及材料-------9

五、创新性设计-------------------9

一、基本结构及使用方法

要求设计的螺旋千斤顶主要包括螺纹举升结构、手柄、外壳体、和托举部件几个部分,其基本结构如下图所示:

AA

该螺旋千斤顶的使用方法是:将千斤顶平稳放在木质支承面上,调整千 斤顶托举部件到被托举重物合适的托举作用点,然后插入并双手或单手转动 手柄,即可将重物举起。

二、设计要求

(1)最大起重量:Fmax25kN;(2)最大升距:hmax200mm;(3)可以自锁;

(4)千斤顶工作时,下支承面为木材,其许用挤压应力:[p]3MPa;(5)操作时,人手最大可以提供的操作约为:200N。

三、基本部件材料选择及尺寸计算

(一)螺纹材料和尺寸

考虑到螺旋千斤顶螺纹的传力特性选择的螺纹类型为梯形螺纹。(1)材料选择

千斤顶螺杆的工作场合是:经常运动,受力不太大,转速较低,故材料选用不热处理的45号钢。千斤顶螺母的工作场合是:低速、手动、不重要,故材料选用耐磨铸铁HT200。(2)螺杆尺寸设计

螺旋副受力如下图所示:

1、耐磨性设计

由上图螺旋副的受力分析可知,螺纹传动在旋合接触表面的工作压力为:

pFPF d2hHZd2h其中,轴向载荷:F=25kN。螺纹高:h,由选择螺纹的公称直径确定。

为了方便满足自锁性要求,采用单头螺旋,一般旋合圈数:Z10。

为方便计算,设螺纹参数中间变量:高径比耐磨性的要求是:

p[p]

H。d2其中[p]为满足耐磨性条件时螺纹副的许用压力。对于钢-铸铁螺纹螺母材料,由于千斤顶的工作速度较低,可认为滑动速度不大于3m/s。千斤顶中螺母为整体结构,螺母磨损后不能调整,但螺母兼作支承作用,故设计时可先认为 f=2.5,则可取此时的许用压力[p]为17MPa。

由螺旋副接触表面压力公式及耐磨性公式得到耐磨性设计公式:

d2FP h[p]对梯形螺纹,h0.5,代入上式求得: Pd2³19.352mm

查国标选梯形螺纹为公称直径d为Tr36,导程P为10mm,中径d2=31mm满足要求。代入高径比计算公式:

f=HZP==2.5 d2d2求得实际旋和圈数Z=7.75。

故暂定螺纹尺寸是公称直径d为Tr36,导程P为10mm,旋合 圈数Z=7.75。

2、强度设计

已知最大载荷为25kN,则在载荷最大时,螺杆受到扭矩:

dTmax=Fmax2tan(g+rn)

2其中螺纹中径:d2=31mm; 螺纹升角:g=arctannP»5.863°; pd2当量摩擦角:rn=arctanfn; 当量摩擦系数:fn=fcosa。

2由于螺杆-螺母为钢-铸铁材料,考虑到千斤顶既有稳定自锁,又有上升运动过程,故取摩擦系数f=0.14。又由于采用梯形螺纹,故牙型角a=30°。

联立以上各式解得螺杆受到的最大扭矩:

Tmax»97.408N×m

已知小径:d1=25mm,则由第四强度理论,危险截面应力:

sca=(4Fmax2Tmax2)+3()»74.220MPa 23pd10.2d1 已知45号钢屈服强度为355MPa,载荷稳定故取许用当量应

力:

[s]=ss4=88.75MPa

则有:sca<[s],即已选定螺纹可以达到强度条件。

3、自锁性设计

千斤顶由于其用途,要求具有自锁功能。由于自锁是针对停止状态所说,故摩擦系数f可取较大值0.14,由强度设计中的计算结果,此时当量摩擦角:rn»8.247°大于螺旋升角:g=arctan

nP»5.863°,所以自锁性条件可以满足。pd25

4、稳定性设计

稳定性条件:

Sc=Fcr³[S] Fmax由于千斤顶为传力螺旋,故取安全系数[S]=3.5。

由千斤顶结构,螺杆端部结构为一端固定,一自由式支承,长度 系数m为2.0。要求最大升距hmax为200mm,由装配图测量得到此 时从支承螺母中心到千斤顶顶部的等效长度L为325mm,螺杆的 柔度:

4L104 d1已知使用45号钢且不做热处理,则临界载荷:

2EIa2Ed12Fcr89.585kN(L)2(L)264Sc3.583.5故稳定性条件可以满足。

综上所述,螺杆选择Tr36,导程P=10mm即可满足设计条件。

(3)螺母尺寸设计

由螺杆中的设计,将旋和圈数Z定为7.75。一般来说螺母只需校核螺纹牙即可,而且由于螺母材料为铸铁,强度小于螺杆材料,故只需要校核螺母螺纹牙的剪切强度、弯曲强度和抗挤压强度即可,螺杆上的螺纹牙强度则不用校核。螺母螺纹牙受力如下图所示:

1、剪切强度校核

剪切强度条件:

t=Fmax£[t] Zpdb其中旋合圈数:Z为7.75; 螺纹公称直径:d=36mm;螺纹牙根部厚度:b=0.65P=6.5mm。耐磨铸铁许用剪切应力取为:[t]=40MPa。

代入各项数据得上述剪切强度不等式成立,即剪切强度满足要求。

2、弯曲强度校核

弯曲强度条件:

sb=其中牙高:h=5.5mm;

3Fmaxh£[sb] 2Zpdb耐磨铸铁许用弯曲应力取为:[sb]=50MPa。

代入各项数据得上述弯曲强度不等式成立,即弯曲强度满足要求。

3、抗挤压强度校核

由螺母螺纹牙受力图可得平均挤压应力:

a2=Fmax»6.023MPa sp=aZpd2hZpd2h/cos2Fmax/cos 已知螺母许用挤压应力:[sp]»1.5[sb]=75MPa,显然满足

sp<[sp]的抗挤压强度准则。

4、螺母外部尺寸设计

由基本结构图可以看到,螺母的外部形状可以看作是两个半径不同的同心圆柱连接在一起,这样设计的目的是保证螺母的定位。为了保证千斤顶的正常工作,需要设计这两个圆柱的尺寸以使其在工作中不会失效。

由前述计算已知的螺母尺寸为:H=ZP=77.5mm,圆整后高度H=78mm,内螺纹大径D4=37mm。设螺母外部形状:小圆柱外径为D1=60mm,大圆柱外径为D2及小圆柱的高度为H1未知待求。

为防止大圆柱与千斤顶壳体的接触面被压坏,需要满足:

Fmax

sp=£[s]p2p(D2-D12)/4

对耐磨铸铁HT200,许用的抗压应力[sp]=设计大圆柱外径为:

1.5sb=100MPa,最后 3D280mm

为了防止大圆柱突出部分被剪断,需要满足:

t=Fmax£[t]

pD1(H-H1)对耐磨铸铁许用剪切应力为40MPa,最后设计小圆柱高度为:

H1=60mm 综上所述,螺旋千斤顶的螺纹选为公称直径d为Tr36,导程P=10mm。此

时螺母高度H=78mm,螺母外部小圆柱外径60mm,高60mm,大圆柱外径80mm。小圆柱表面与外壳体之间有基轴制配合关系,故选其公差带为h7。查标准 得:所选螺纹配合为中等旋合长度。由于千斤顶为中等精度机械设备,故查 标准得内螺纹公差带为6H,外螺纹公差带为6g。螺母外部小圆柱装配时对 精度要求不高,圆柱度公差取为9。螺母外部小圆柱与内部螺孔需要有一定 同轴度以保证千斤顶工作正常,但形位度要求不高,取同轴度公差为9。螺 母外部小圆柱轴线与大圆柱和外壳体的接触面还有垂直度的要求,也取公差 为9。整个螺母接触面都较重要,表面粗糙度Ra值选为3.2,未接触面Ra 可选为12.5以降低加工成本。

(二)手柄材料及尺寸(1)材料选择

综合考虑成本和强度,手柄的材料选用普通未经热处理的45号钢。(2)长度设计

由螺杆的强度设计可知,手柄需要提供最大97.408Nm的扭矩,则 手柄的有效作用长度应为:

TL=max»488mm

200N在实际设计中,由于手柄还要满足插入螺杆上部接头的要求,同时考虑 到千斤顶本身运动部件具有摩擦力,因此实际设计长度还要在此长度上 加上一部分,最终应设计长度为520mm。(3)直径设计

手柄在操作时会受到剪力和弯矩的作用,最大操作力为200N,最大扭矩为97.408Nm,则力的分布图如下所示:

剪力图

弯矩图

可见,危险截面在手柄与螺杆接头处。手柄的材料选为未经热处理的45号钢,设计手柄直径为D,则危险截面最大剪应力:

4200N t=23pD/4 危险截面最大弯曲正应力:

97.408N×m s=30.1D由第四强度理论,要使手柄正常工作,需要满足条件:

sca=s2+3t2£[s]

当安全系数为2时,许用应力[s]=600MPa=300MPa,代入第

s2 四强度理论计算式,并联立剪应力、切应力计算公式,求得手柄直径:

D=15mm 综上所述,手柄长520mm,直径15mm。

(三)底座尺寸

千斤顶使用时的下支承面为木材,许用挤压应力为3MPa,则由抗击压强度准则:

Fsp=max£[sp]=3MPa

S=其中S为下支承面尺寸,解上述不等式,得S³8334mm2,为满足易于组

sb装及各方向受力均匀的要求,选择下支承面为环形结构,内径尺寸为100mm可以满足准则要求,综合考虑到千斤顶本身具有的重量、体积和使用时的稳定性,将外径尺寸设计为180mm。

综上所述,下支承面设计为环形,内径100mm,外径180mm。

四、主要部件基本尺寸及材料

(1)螺杆螺纹:Tr36´10-6g,45号钢;

(2)螺母螺纹:Tr36´10-6H,HT200耐磨铸铁;(3)手柄:长度500mm,直径15mm,45号钢;

(4)底座:外径180mm,内径100mm,HT200灰铸铁。

五、创新性设计

(1)手柄加上橡胶手柄球而非普通塑料手柄球,既节约成本,又易于拆卸,减少千斤顶存放的体积;

(2)为了携带方便,给千斤顶外壳加上把手;(3)为提高外壳强度,给外壳加上肋板;

篇6:液压千斤顶设计说明书

用千斤顶“顶”掉6吨车重的货车与执法人员之间的 对话。看来偷鸡不成是把米啊!还是不能拿纳税人的财产,否则后果很严重的。我万万没有想到千斤顶到底是如何顶掉6吨多的货物的如果你也想知道那就接着读下去吧!

垫钢板、走S路线、跳磅……在一次次被识破后,超载货车又想出了一个歪招:检查时抬抬“屁股”,把重量“减”下去。昨天,一辆企图如法炮制的货车,没逃过执法人员的法眼。“装了那么多甘蔗,车子怎么这么轻?”昨天上午8点半,一辆由柳州方向开来的大货车途经桂柳高速僚田收费站进行超限检测时,地磅显示该车车货总重38.32吨。当班收费员目测觉得不对劲,当即向稽查中心报告。

在路政执法人员的监督下,货车司机再次将车辆开过地磅。令人不可思议的是,显示屏上的重量显示为44.82吨,比刚才测的重量多了6.5吨。执法人员再次检测确认,结果还是44.82吨。

路政执法人员仔细检查车辆,发现了其中的猫腻。执法人员指着方向盘下的一个遥控器问司机“你的车装了液压千斤顶吧?”

司机见被识破了,只好道出了货车“减肥”的秘密:原来,为了逃避路政部门对超载的处罚,他前不久到南宁花了6000多元,在货车上加装了一套设备。只要他轻按遥控器,货车的“屁股”就会稍稍抬起,车辆的重心就会往车前部移,而地磅检测的后轮,对地面的压力就会减小。

在记者的要求下,这名司机进行了演示,果然地磅显示的车货重瞬间“减肥”。

路政执法人员说:“这种液压千斤顶装在车底,又可以通过遥控开启,很难被发现。”本月初,路政执法人员得知有这样的设备,立即加强排查,在短短半个月的时间内,他们已查获了10多台这样的改装车,拆除液压千斤顶14套。

年关将至,货运物流市场火热。路政执法人员提醒货车驾驶员,为了自身和他人的安全,请自觉守法运输,任何企图蒙混获利的花招,只会令自己蒙受更大的损失。

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:液压千斤顶的设计开题报告 下一篇:液压课程设计