关键词:
信号与系统授课教案(精选5篇)
篇1:信号与系统授课教案
0.1 概述
绪论部分对教科书起到一个导读的作用,对数字信号、数字信号处理系统的组成及其处理的基本概念、数字信号处理的历史、现状和发展趋势等作了简略地介绍,对本课程讨论的内容范围作了描述。通过这些内容的介绍,提供一条学习本课程的学习主线,使学生了解到数字信号处理课程在信息技术中的地位和作用,激发学习的兴趣,增强学好的信心。由于本课程是电气信息类专业的专业基础课,基础性较强,因此,要求学生在“信号与系统”、“数字电子技术基础”等前期课程的学习基础上,灵活地了解和掌握以下一些内容:
(1)数字信号处理的发展简史。(2)数字信号处理系统的优点。(3)数字信号处理系统的基本组成。(4)数字信号处理的实现方法。(5)数字信号处理的应用。
0.2教学要点
1.信号的分类
(1)按连续性分
模拟信号(analog signal)、离散时间信号(discrete time signal)、数字信号(digital signal)
(2)按确定性分
确定性信号(deterministic signal)、随机信号(random signal):
(3)按信号的自变量数目分
一维信号(one-dimension signal)、二维信号(two-dimension signal)和多维信号(multi-dimension signal)。
本课程主要研究一维、确定的离散时间信号。2.数字信号处理系统
(1)数字信号处理(digital signal processing, DSP)的定义
(2)数字信号处理系统的组成
数字信号处理系统(digital signal processing system)
A/D转换器(模拟数字转换器)的功能。A/D转换一般要经过抽样(或采样)(sampling)、保持(holding)、量化(quantizing)及编码(coding)4个过程。在实际电路中,采样和保持、量化和编码往往都是在转换过程中同时实现的。
D/A转换器(数字模拟转换器)是A/D转换的逆过程。(3)数字信号处理系统的实现方式 实现方法有软件实现和硬件实现两种。
若数字信号处理器是数字计算机或微处理机,则对输入信号进行的预期处理是通过软件编程来实现的,这种实现方法称为软件实现,其优点具有多用性。若数字信号处理器是数字信号处理芯片或数字硬件组成的专用处理机,则称为硬件实现,其特点是处理速度快,能实现实时信号处理。3.数字信号处理系统的优点
与模拟信号处理系统相比:
(1)优点:精度高、灵活性高、可靠性强、容易大规模集成以及多维处理等。(2)不足:复杂性、功耗和成本等。4.数字信号处理的发展与应用
数字信号处理学科主要涉及离散时间线性时不变系统分析、离散时间信号时域分析及频域分析、离散傅里叶变换(DFT)理论等众多领域。数字信号处理的发展与应用的需求是密切相关的。了解数字信号处理的发展简史有助于把握数字信号处理发展方向。
(1)由简单运算走向复杂运算:全并行乘法器在运算速度上和运算精度上均为复杂的数字信号处理算法提供了先决条件。
(2)由低频走向高频。(3)由一维走向多维。5.本课程的主要研究内容
本课程主要讨论数字信号处理的基本理论和方法,以离散时间信号的运算与分析方法、离散时间处理系统的分析方法与设计为主线进行开展,内容涉及离散时间信号与系统的时域分析和变换域(z域、频域)分析、离散傅里叶变换(DFT)理论、快速傅里叶变换(FFT)、离散时间系统结构、数字滤波技术等。6.相关参考书
(1)唐向宏主编,数字信号处理,浙江大学出版社,2006。
(2)唐向宏,数字信号处理-原理、实现与仿真,高等教育出版社,2007。
(3)唐向宏主编,MATLAB及在电子信息类课程中的应用,电子工业出版社,2006。(4)程佩青,数字信号处理教程(第二版),清华大学出版社,2001。
(5)A.V.Oppenheim, R.W.Schafer.Discrete-time Signals Processing, Prentice-Hall, Inc.,1997.黄建国,刘树棠译,离散时间信号处理,科学出版社,1998。
第1章
离散时间信号与系统
1.1 教学要点 本章主要介绍离散时间信号与离散时间系统的基本概念,着重阐述离散时间信号的表示、运算,离散时间系统的性质和表示方法以及连续时间信号的抽样等。本章内容基本上是“信号与系统”中已经建立的离散时间信号与系统概念的复习,因此,作为重点教学内容,在概念上需要强调本章在整个数字信号处理中的地位,巩固和深化有关概念,注意承前启后,加强相关概念的联系,进一步提高运用概念解题的能力。讲授本章需要解决以下一些问题:
(1)信号如何分类。
(2)如何判断一个离散系统的线性、因果性、稳定性。(3)线性时不变系统(LTI)与线性卷积的关系。(4)如何选择一个数字化系统的抽样频率。(5)如何从抽样后的信号恢复原始信号。
因此,在讲授本章内容时,应从离散时间信号的表示、离散时间系统以及离散时间信号的产生为主线进行展开。信号的离散时间的表示主要涉及序列运算(重点是卷积和)、常用序列、如何判断序列的周期性等内容;离散时间系统主要涉及离散时间系统的属性(线性、时不变性、因果性、稳定性以及如何判断)、线性时不变系统(LTI)的差分方程描述以及输入和输出的关系等内容;离散时间信号的产生的主要涉及抽样间隔的限制条件以及由抽样信号恢复原始信号等内容。
1.2 教学内容
1.2.1 离散时间信号
1.离散时间信号及表示方式
(1)离散时间信号的定义;(2)序列表示、(3)数学表达式表示、(4)图形表达。2.序列的运算
(1)序列的基本运算:移位、和、积、时间尺度变换、翻褶、卷积和等。序列通过运算后将生成新序列(离散时间信号)。
(2)序列的卷积和:用图形求解卷积和过程、有限长序列卷积和的起始位置和终止位置的确定。
3.常用序列
(1)单位冲激序列、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦型序列。单位冲激序列、单位阶跃序列及矩形序列之间的关系。4.序列的周期性
(1)周期序列的定义;(2)如何判断序列的周期性以及周期大小。
1.2.2 离散时间系统
1.离散时间系统
离散时间系统的功能、基本概念:系统激励、系统响应等。2.线性时不变系统(1)线性系统的定义;(2)时不变系统(又称移不变系统)的定义;(3)线性时不变系统(LTI)的定义。
3.线性时不变系统的差分方程描述 4.单位冲激响应与系统响应
(1)单位冲激响应(单位脉冲响应)的定义;(2)线性时不变系统对任意输入序列的响应;(3)线性时不变系统可用单位冲激响应来描述。
5.线性时不变系统的性质 交换律、结合律、分配律。
6.线性时不变系统的因果性与稳定性
(1)因果系统的定义;(2)LTI系统是因果系统的充要条件;(3)稳定系统的定义;(4)LTI系统是稳定系统的充要条件。
1.2.3 连续时间信号的抽样
1.连续时间信号抽样的基本原理
(1)离散时间信号获取方法;(2)连续时间信号抽样(采样)的数学模型;(3)抽样信号与原连续信号的关系;(4)抽样周期、抽样频率、抽样角频率的关系。
2.抽样定理
(1)带限的连续信号的定义;(2)奈奎斯特(Nyquist)抽样定理;(3)基本概念:奈奎斯特率(Nyquist rate)、奈奎斯特间隔、奈奎斯特频率(Nyquist frequency)或折叠频率、频谱混叠等;(4)数字角频率与模拟角频率的关系。
3.连续信号的重构
(1)连续信号的重构原理;(2)低通滤波器的功能;(3)理想低通滤波器的参数设置。
1.2.3 本章相关的MATLAB命令及应用
1.离散时间信号的MATLAB表示 2.离散时间信号运算的实现 3.差分方程的MATLAB求解 4.连续信号的离散与重构
第2章 离散系统的变换域分析与系统结构
2.1 教学要点
在对信号进行描述和分析时,通常采用两种方法:时域描述法、变换域描述法。所谓时域描述法是指信号的变化和系统对信号的处理过程是时间的函数,自变量是时间变量;变换域描述法是指信号的变化和系统对信号的处理过程不是时间的直接函数,自变量不是时间变量,例如在“信号与系统”中,利用傅里叶变换将时域变换成频域,这时对信号和系统的描述则是采用频率变量。与模拟信号类似,对离散时间信号和系统的描述与分析也可采用这两种描述方法。在第一章中,对离散时间信号和系统的描述与分析就是采用时域法。由于变换域描述的最大优点可把时域中复杂的描述简化,例如可将第一章中求解离散系统的差分方程转化为简单的代数方程,使其求解大大简化,也使得对系统的特性分析更加方便。所以在第二章中引入z变换这一数学工具。
本章主要介绍z变换的定义、收敛域及基本性质、逆z变换、系统函数和频率响应等基本知识。因此,讲授本章需要解决以下一些问题。
(1)z变换的定义、收敛域。
(2)序列z变换收敛域与序列特性之间的关系。(3)求逆z变换的方法。(4)如何求系统函数。
(5)如何用极点分布判断系统的因果性和稳定性。(6)如何求系统的频率响应。(7)如何判断系统的类型。
2.2 讲授内容
2.2.1 z变换与z逆变换
1.z变换与收敛域
(1)z变换的定义;(2)z变换的收敛域(ROC);(3)零点、极点的求法;(4)序列的类型与其z变换的收敛域的关系,着重强调如何由极点分布确定对应序列的类型。
2.z逆变换
(1)围线积分法(留数法)
围线积分法(留数法)的基本原理;围线积分法(留数法)的求解步骤。(2)部分分式展开法
部分分式展开法的基本原理;部分分式展开法的求解步骤。
(3)幂级数展开法(长除法)
幂级数展开法(长除法)的基本原理;序列类型与分子分母多项式的排列关系。3.z变换的基本性质
线性、移位、z域尺度变换、z域求导数、时域卷积和定理、z域复卷积定理、帕塞瓦尔定理等。在讲解这些性质时,着重要强调这些性质的应用问题以及注意它们收敛域的变化。2.2.2 离散系统的系统函数
1.系统函数
系统函数的两种定义:(1)零状态响应的z变换与输入信号的z变换之比;单位冲激响应的z变换。
2.系统函数与差分方程的关系
着重讲解如何利用z变换以及z变换的性质求系统函数,强调z变换使问题简化的重要性。3.系统的因果稳定性
着重强调如何从z域角度,分析系统的因果性和稳定性。将时域的因果条件转化为系统函数的收敛域问题或极点分布情况的判断。将时域的稳定条件转化为系统函数的收敛域是否包含单位园的判断。
2.2.3 系统的频率响应与系统的类型
1.系统频率响应
系统频率响应的定义、系统的幅度响应以及对输入信号的幅度产生影响、系统的相位响应以及它对输入信号的延时产生影响。
2.系统频率响应的周期性
系统频率响应的周期性的证明、在离散时间系统“高、低频”的含义。3.离散系统的滤波特性
当系统输入为正弦序列时,则输出为同频率的正弦序列,其幅度受幅度响应加权,而输出的相位则为输入相位与系统相位响应之和。从频率角度分析系统对输入信号响应过程。
4.系统函数零、极点分布对系统频率响应的影响 5.系统的类型
(1)按系统对频率的不同选择性分类:低通滤波器、高通滤波器、带通滤波器、带阻滤波器、全通滤波器。
(2)按系统单位冲激响应的长度分类:无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。
(3)按系统函数零点分布位置分类:最小相位延时系统(全部零点在单位园内)和最大相位延时系统(全部零点在单位园外)。
6.z变换与拉氏变换的关系
2.2.4 本章相关的MATLAB命令及应用
1.z变换与z逆变换的MATLAB实现
2.有理多项式的部分分式展开与多项式的乘除 3.MATLAB对系统的描述及各系统模型的转换 4.离散LTI系统的时域响应与频率响应
第3章 离散时间傅里叶变换
3.1 教学要点
数字信号处理中有三个重要的数学变换工具,即z变换、傅里叶变换和离散傅里叶变换,利用这些变换可以将信号和系统在时域空间和频域空间相互转换,大大方便对信号和系统的分析和处理。
三种变换互有联系,但又不同,各有自己的特点。通过第二章的讲解,使学生知道,表征一个系统的频域特性用傅里叶变换;z变换是傅里变换的一种推广,在z域进行分析问题会感到既灵活又方便,单位圆上的z变换就是傅里叶变换,因此用z变换分析频域特性也很方便。离散傅里叶变换(DFT)不同于傅里叶变换和z变换,它将信号的时域和频域都进行离散化,是离散化的傅里叶变换,更便于用计算机进行处理。由于离散傅里叶变换(DFT)具有快速算法FFT,因此,在用计算机分析和处理信号时,全用离散傅里叶变换(DFT)进行,具有重要的应用价值,然而利用离散傅里叶变换(DFT)对模拟信号进行频域分析,只能是近似的,如果使用不当,会引起更大的误差。
本章主要介绍非周期序列的傅里叶变换及性质、周期序列的离散傅里叶级数及性质,重点讨论有限长序列离散傅里叶变换(DFT)的定义、性质、有限长序列的线性卷积和圆周卷积的关系及DFT应用时要注意的几个问题。讲授本章需要解决以下一些问题:
(1)序列傅里叶变换(DTFT)的定义及性质,它与z变换的关系;(2)周期序列的离散傅里叶级数的周期性以及离散频谱的物理意义;(3)有限长序列与周期序列的关系;
(4)有限长序列离散傅里叶变换(DFT)的定义及性质;
(5)有限长序列的线性卷积和圆周卷积的关系,如何利用圆周卷积代替线性卷积;(6)利用DFT对模拟信号进行频域分析时,应注意哪些问题。
3.2 讲授内容
3.2.1 非周期序列傅里叶变换及其性质
1.非周期序列傅里叶变换
非周期序列傅里叶变换的定义;非周期序列的频谱特性;非周期序列傅里叶变换存在的条件;序列傅里叶变换与z变换的关系。2.非周期序列傅里叶变换的性质 这部分内容的讲解,对主要通过序列傅里叶变换与z变换的关系来完成教学。重点讲授序列的傅里叶变换的对称性。
3.序列的傅里叶变换、z变换和拉氏变换三者的关系
3.2.2 周期序列的离散傅里叶级数(DFS)及性质
1.离散傅里叶级数(DFS)
离散傅里叶级数的定义、周期序列频谱成分及物理含义、周期序列频谱的周期性。
2.离散傅里叶级数的性质
线性、移位、调制特性、周期卷积和、周期序列相乘等,着重强调如何计算周期卷积和以及在应用这些性质时要注意周期大小。3.2.3 有限长序列的离散傅里叶变换(DFT)
1.DFT的定义
有限长序列与周期序列的关系、DFT的定义。着重强调有限长序列的频谱的离散性以及DFT隐含有周期性。2.DFT与z变换的关系
有限长序列的离散傅里叶变换(DFT)是z变换在单位圆上等距离的抽样值、是序列的频谱 在 上的N点等间隔抽样。
3.离散傅里叶变换(DFT)的性质
在讲解DFT的性质时,应与傅里叶变换的性质对照讲授。对应于傅里叶变换中的时移性质和线性卷积定理,DFT有循环移位性质和循环卷积定理。
(1)离散傅里叶变换(DFT)适用于有限长序列,和 只有N个值,但隐含周期性。
(2)循环移位(又称圆圆移位)与线性移位的区别、循环移位实现步骤。(3)圆周卷积(循环卷积和)的求解过程。(4)DFT的对称性。
4.有限长序列的线性卷积与圆周卷积的比较(1)具有不同的卷积特性
序列的线性卷积对应于频域的DTFT或z变换相乘、有限长序列的圆周卷积对应于频域的DFT相乘。
(2)对运算对象的要求不同
线性卷积的对象可以是有限长或无限长非周期序列,若两个序列的长度分别为 和,则线性卷积获得的序列 的长度为:。
圆周卷积的对象是两个同长度(若长度不同,可用补0的方法达到相同的长度)的有限长序列,并且圆周卷积的结果也是具有同一长度的有限长序列。
(3)两种卷积的关系 若两个序列分别是长度为 和 的有限长序列,则两个序列的线性卷积 有 个只有当圆周卷积的长度时,可以用圆周卷积代替线性卷积。非零值。点圆周卷积 是线性卷积 以 为周期的周期延拓序列的主值序列。即
3.2.4 频域抽样定理
1.时域抽样导致频域周期延拓,频域抽样导致时域周期延拓。2.对有限长序列的频谱抽样不产生时域混叠的条件限制。
3.2.5 利用DFT处理连续时间信号时注意的问题
1.采用DFT进行数字频谱分析的参数选择
采样频率、频谱分辨率、DFT点数、最小记录长度。2.频谱泄露
频谱泄漏的定义、频谱泄漏产生的原因、减少频谱泄露的方法。
3.栅栏效应
栅栏泄漏的定义、栅栏泄漏产生的原因、减少栅栏泄露的方法。3.2.6 本章相关的MATLAB命令及应用
1.求系统幅度响应函数与相位响应函数
2.傅里叶变换的MATLAB实现
第4章 数字滤波器的基本结构
4.1 教学要点
数字滤波器是语音与图像处理、模式识别、雷达信号处理、频谱分析等应用中的一种基本的处理部件,它能满足滤波器对幅度和相位特性的严格要求,避免模拟滤波器所无法克服的电压漂移、温度漂移和噪声等问题。从频率角度来看,离散LTI系统对信号的响应过程实质上是对信号滤波的过程,这时,离散LTI系统称为数字滤波器。通过前面三章的教学,使学生学习和掌握了描述数字滤波器的方法:单位冲激响应和系统函数。本章将从系统的实现角度,讨论如何利用系统函数设计数字滤波器的结构,以及结构对系统性能有什么影响等问题。讲授本章需要解决以下一些问题:
(1)实现一个数字滤波器需要的三种基本运算单元和表示方式。(2)研究滤波器实现结构的意义。(3)系统函数与数字滤波结构的关系。(4)IIR数字滤波器的基本结构。(5)FIR数字滤波器的基本结构。
4.2 教学内容
4.2.1 数字滤波器类型及结构表示方法
1.数字滤波器的功能:数字滤波器是指输入和输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的器件。
2.数字滤波器的基本运算单元:加法器、单位延时器和常数乘法器。3.基本运算单元的表示:方框图、信号流图。
4.研究数字滤波器结构的意义:不同结构所需的存储单元及乘法单元数不同,前者影响复杂性,后者影响运算速度。
5.系统函数与数字滤波结构的关系:数字滤波器的基本结构主要由系统函数决定,同一系统函数采用不同的表达形式可获得不同系统结构图。
4.2.2无限长单位冲激响应数字滤波器的特点与基本结构
1. IIR数字滤波器的特点。
2. IIR数字滤波器的基本结构:直接Ⅰ型、直接Ⅱ型(典范型)、级联型、并联型。3.不同结构的特点:主要涉及运算速度快慢、各基本节的误差是否相互影响、误差大小、调整零极点位置难容等。
4.2.3有限长单位冲激响应数字滤波器的特点与基本结构
1.FIR数字滤波器的特点。
2.FIR数字滤波器的基本结构:横截型(卷积型、直接型)、级联型。
3.不同结构的特点:主要涉及运算速度快慢、各基本节的误差是否相互影响、误差大小、调整零极点位置难容等。
4.2.4数字滤波器的格型结构
1.全零点FIR数字滤波器的格型结构。2.全极点IIR数字滤波器的格型结构。3.零极点IIR数字滤波器的格型结构。
4.2.5 本章相关的MATLAB命令及应用
1.系统互联函数命令
2.系统不同结构的实现 3.系统格型结构的实现函数
第5章 快速傅里叶变换 5.1 教学要点
在理论上,快速傅里叶变换(FFT)并非一种新的变换,而是离散傅里叶变换(DFT)的一种有效的计算方法。利用DFT的周期性和对称性等性质,可以减低DFT的计算复杂度,且长度越长,减低的效果越明显。因此,在工程上,FFT具有十分重要的应用价值。
本章主要介绍按时间抽选的基-2FFT算法(DIT-FFT)和按频率抽选的基-2FFT算法(DIF-FFT)的基本原理、算法特点,离散傅里叶逆变换的快速算法(IFFT)和数字信号处理的FFT实现。
因此讲授本章时,强调学习本掌握FFT的基本原理和使用方法。
5.2 教学内容
5.2.1 快速计算DFT的改进途径.直接计算N点DFT的运算量
(1)数字滤波器结构不同,所需的存储单元及乘法单元数则不同,前者影响复杂性,后者影响运算速度。
(2)分析直接计算DFT的复数乘法次数、实数乘法次数,以及复数和实数加法次数。2.减少运算量的基本途径
(1)的性质:共轭对称性、周期性、可约性和特殊值。
(2)减少DFT运算量的基本思想: 3.快速DFT的类型 时域-FFT、频域-FFT 减少乘法次数。将长序列的DFT分解为若干个短序列的DFT的组合,从而大大减少运算量。
5.2.2 时间抽选基-2FFT算法(DIT-FFT)
1.DIT-FFT算法的基本原理
使用的条件、算法原理、基本蝶形运算结构、DIT-FFT算法的流程图的绘制等。2.DIT-FFT算法的特点
(1)“同址”或“原位”运算。采用原位运算结构,便于节省存储单元,降低设备成本。(2)输入序列的排列顺序,输出序列的排列顺序。(3)蝶距规律。(4)系数因子的确定。3.DIT-FFT算法的运算量
复数乘法次数、实数乘法次数,以及复数和实数加法次数。
5.2.2 频率抽选基-2FFT算法(DIF-FFT)
1.DIF-FFT算法的基本原理
使用的条件、算法原理、基本蝶形运算结构、DIF-FFT算法的流程图的绘制等。2.DIF-FFT算法的特点
(1)“同址”或“原位”运算。采用原位运算结构,便于节省存储单元,降低设备成本。(2)输入序列的排列顺序,输出序列的排列顺序。(3)蝶距规律。(4)系数因子的确定。3.DIF-FFT算法的运算量(1)复数乘法次数、实数乘法次数,以及复数和实数加法次数。(2)频率抽选FFT算法与时间抽选的FFT算法的区别。
频率抽选FFT的计算量与时间抽选的FFT算法相同,频率抽选FFT算法也具有原位计算的优点,与时间抽选FFT算法的主要区别是蝶形运算结构不同。
5.2.3 离散傅里叶逆变换的快速算法
(1)比较IDFT公式与DFT公式的区别(2)利用FFT结构实现IFFT
5.2.4 数字信号处理的FFT实现
1.线性卷积的FFT实现
(1)两个有限长序列和的线性卷积直接计算量。
(2)用圆周卷积(循环卷积)来代替线性卷积的原理、使用的条件以及计算量。(3)线性卷积的FFT实现步骤。2.线性相关的FFT算法实现
(1)线性相关的概念。
(2)线性相关的FFT原理、使用的条件以及实现步骤。3.分段卷积
(1)分段卷积的目的以及如何分段。
(2)分段卷积通的两种方法:重叠相加法和重叠保留法。
(一)重叠相加法 ①重叠相加法的基本原理 ②重叠相加法的实现步骤
(二)重叠保留法
①重叠保留法的基本原理 ②重叠保留法的实现步骤 *5.2.5 线性调频z变换
1.线性调频z变换定义 2.CZT的算法基本原理
3.线性调频z变换与离散傅里叶变换(DFT)的比较
第6章 无限长单位冲激响应数字滤波器的设计
6.1教学要点
数字信号处理主要包括离散时间信号分析与离散时间系统(又称为数字滤波器)的设计和实现。在前面章节,我们着重讲授了离散时间信号和系统的基础知识、如何利用z变换和离散傅里叶变换(DFT)来分析离散时间信号和系统,以及在应用DFT分析问题时,如何降低DFT的运算复杂度,提高它的运算速度。在本章和下一章则着重介绍了两种数字滤波器:IIR滤波器和FIR滤波器的设计方法,并比较它们各自的特点。因此让学生掌握这两种滤波器的设计原理和设计方法是十分重要的,因为实际的滤波器可能是这两种滤波器的组合。
滤波器是一类信号处理系统,它分为两大类:模拟滤波器和数字滤波器,功能是保留有用的信号分量而滤除无用的信号分量,使输出信号满足设计要求。一般的滤波器的作用是通过一定频率的信号,而过滤其它频率成份。模拟滤波器(analog filter)是用电阻、电容、电感和放大器等设计和实现的滤波器,数字滤波器(digital filter)是用加法器、乘法器和延迟器等设计和实现的。
本章主要介绍滤波器的性能特性和类型、巴特沃思(Butterworth)滤波器的特性,重点介绍用冲激响应不变法和双线性变换法设计IIR数字滤波器的变换原理以及模拟滤波器的数字化方法。因此,讲授本章需要解决以下一些问题:
(1)设计数字滤波器的一般步骤。(2)模拟低能滤波器的设计方法。
(3)根据模拟滤波器设计数字滤波器的两种方法:冲激响应不变法和双线性变换法。
域到 域的变换。
(5)从低通数字滤波器到各种数字滤波器的频率变换:平面变换法,直接在 域进行。(4)从模拟滤波器低通原型到各种数字滤波器的频率变换:从
6.2教学内容
6.2.1 数字滤波器的性能指标与设计步骤
1.数字滤波器的分类
滤波器可广义地理解为一个信号选择系统。它让某些信号成分通过,阻止或衰减另外一些成分。数字滤波器有多种分类,一般来说,主要有以下几种分类方法:
(1)按单位冲激响应长度分类
无限长单位冲激响应数字滤波器(IIR)、有限长单位冲激响应数字滤波器(FIR)。(2)按有无递归结构分类
递归型和非递归型。递归表现为实现过程中出现反馈回路。
通常,IIR滤波器的系统函数有分母,需用递归型结构实现;FIR滤波器的系统函数无分母,需用非递归型结构实现(特殊情况可以用递归型结构实现)。
(3)按频率响应的通带特性分类
低通滤波器、高通滤波器、带通滤波器、带阻滤波器和全通滤波器。
2.数字滤波器的描述方式
通常滤波器有四种描述方式:差分方程、单位冲激(脉冲)响应、系统函数、频率响应函数 3.数字滤波器的技术要求
(1)频率响应的幅度特性指标
通带、过渡带及阻带; 通带截止频率、阻带截止频率、通带内允许的最大衰减、阻带内允许的最小衰减。
(2)相位响应的特性指标
线性相位、非线性相位
(3)数字滤波器的设计的基本原理
数字滤波器的设计就是按照给定的滤波处理系统的性能要求,设计一个因果、稳定的数字系统去逼近这个性能要求,并且用一个有限精度的运算去实现这个系统。滤波器性能一般用系统频率特性 来说明,具体涉及以下三个参数:(1)平方幅度函数说明幅度特性(2)相位函数说明系统相位特性(3)群延时
4.IIR数字滤波器设计的一般步骤(1)IIR数字滤波器设计方法(2)IIR数字滤波器设计步骤
6.2.2 冲激响应不变法
1.冲激响应不变法的基本原理 2.模拟滤波器的数字化方法
3.冲激响应不变法的实现步骤 4.冲激响应不变法的优缺点和适用范围
5.模拟滤波器设计方法
(1)幅度平方函数确定系统函数的基本原理(2)巴特沃思滤波器
6.相关的MATLAB函数命令的使用
6.2.3 双线性变换法
1.双线性变换法的基本原理
2.模拟滤波器的数字化方法 3.双线性变换法的实现步骤
4.双线性变换法的优缺点和适用范围 5.相关的MATLAB函数命令的使用
6.2.4 IIR数字滤波器的频率变换
1.频率变换设计IIR数字滤波器的常用设计方法 域到 域的变换法、平面变换法。
(1)域到 域的变换法
首先设计一个模拟原型低通滤波器,然后通过频率变换把它转变成所需要的模拟高通、带通或带阻滤波器,最后再使用冲激响应不变法或双线性变换法映射成相应的数字高通、带通或带阻滤波器。该方法的缺点是有混叠失真,因此不能用于数字高通和带阻滤波器的设计。
(2)平面变换法 首先设计一个模拟原型低通滤波器,然后采用冲激响应不变法或双线性变换法将它转换成数字原型低通滤波器,最后通过频率变换把数字原型低通滤波器变换成所需要的数字高通、带通或带阻滤波器。
2.原型低通滤波器和实际模拟滤波器之间的频率与平面变换关系 3.数字低通滤波器设计各类IIR数字滤波器 6.2.5 本章相关的MATLAB命令及应用
1.冲激响应不变法设计函数 2.双线性变换设计函数 3.频率变换设计法设计函数
第7章 有限长单位冲激响应数字滤波器的设计
7.1教学要点
本章主要介绍FIR数字滤波器的特点、性质和设计,并较比较IIR滤波器和FIR滤波器各自的特点。由于FIR数字滤波器始终是稳定,而且在单位冲激序列满足一定条件下,可以实现严格的线性相位,因此FIR数字滤波器应用广泛。
FIR数字滤波器设计不能利用模拟器的设计结果,因此相同功能的IIR滤波器和FIR滤波器,其设计方法是在不相同的。本章主要介绍两种设计方法:窗函数设计法和频率采样设计法。因此,讲授本章需要解决以下一些问题:
(1)线性相位FIR滤波器的特点、线性相位条件以及的频率响应特点。(2)窗函数设计方法。(3)频率采样设计方法。(4)IIR与FIR滤波器的比较。
7.2教学内容
7.2.1 线性相位FIR数字滤波器的特点
1.线性相位概念
2.线性相位FIR滤波器的条件和特点(1)相位特点
(2)幅度特点
(3)四类FIR数字滤波器特性
根据单位冲激响应 的奇偶对称性和 的取值奇偶,对线性相位FIR滤波器的幅度响应的讨论可分为四种情况:
① 偶对称,为奇数
FIR滤波器的幅度特性的特点是:关于、、偶对称,可以实现所有滤波特
性(低通、高通、带通、带阻等)。② 偶对称,为偶数
FIR滤波器的幅度特性的特点是:对 呈奇对称(),不能实现高通滤波器或
带阻滤波器。
③ 奇对称,为奇数
FIR滤波器的幅度函数的特点是:当、、时,只能实现带通滤波器。
④ 奇对称,为偶数
FIR滤波器的幅度函数的特点是:当、时,不能实现低通、带阻滤波器。
3.线性相位FIR数字滤波器零点分布特点 7.2.2窗函数设计法
1.设计原理
2.窗函数设计法的不足
3.常用窗函数及选取原则(1)常用窗函数
(2)窗函数的选取原则
4.窗函数法设计步骤
7.2.3频率采样法设计FIR数字滤波器
1.设计原理
2.线性相位的约束
满足,为奇数的情况。
(2)对于第二类线性相位FIR滤波器,即满足,为偶数的情况。
(3)对于第三类线性相位FIR滤波器,即满足,为奇数的情况。
(4)对于第四类线性相位FIR滤波器,即满足,为偶数的情况。
3.频率采样法的设计步骤
(1)对于第一类线性相位FIR滤波器,即7.2.4 本章相关的MATLAB命令及应用
1.窗函数设计法的相关函数 2.频率抽样法设计函数
3.其它方法设计FIR滤波器的相关函数
第8章 数字信号处理中的有限字长效应
8.1 教学要点
在数字系统中,无论是用硬件还是用软件实现的数字信号处理系统,目前数的表示总是用有限长的二进制数码来表示,这种用有限字长表示数(精度有限)的方法必然给原有无限精度数字信号处理系统带来影响,这种影响称为数字信号处理中的有限字长效应。本章简要介绍有限字长效应在将模拟信号量化为数字信号过程中的A/D量化效应、将系统参数(如数字滤波器系数)表示为有限位二进制数时产生的系数量化效应以及在运算过程中由于字长限制而进行尾数处理引起的计算误差。
因此,教学过程中,要求学生了解和掌握以下一些内容:
(1)二进制数的表示及定点制的量化误差;
(2)在二进制定点数的运算中,什么情况会出现溢出,什么情况需要量化,溢出和量化分别会带来哪些问题。
(3)为什么要对量化误差采用统计分析方法,它对量化误差做了哪些假设。(4)如何利用系数量化效应来确定系统极点位置的变化。
8.2 教学内容
8.2.1 量化与量化误差
1.二进制数的表示及特点(1)基本概念
定点制、浮点制、分组浮点制;原码、反码和补码;截尾、舍入。
2.定点制的量化误差及A/D量化效应
(1)定点制截尾误差(2)定点制舍入误差
3.A/D变换的量化效应
8.2.2 有限字长对数字系统的影响
1.系数量化对滤波器零点、极点位置的影响
2.FFT算法的有限字长效应
篇2:信号与系统授课教案
信号的Z域表示式通常可用下面的有理分式表示
为了能从信号的Z域象函数方便地得到其时域原函数,可以将F(z)展开成部分分式之和的形式,再对其取Z逆变换。
MATLAB的信号处理工具箱提供了一个对F(z)进行部分分式展开的函数[WTBZ]residuez它的调用形式: [r,p,k]=residuez(num,den)其中,num、den分别表示F(z)的分子和分母多项式的系数向量;r为部分分式的系数;p为极点;k为多项式的系数。若F(z)为真分式,则k为零。借助residuze函数可以将F(z)展开成:
numzr1rn denz1p1z11pnz1 k1k2z1kmn1zmn
例1 试用MATLAB计算
Fz
183z14z2z3的部分分式展开。
解 计算部分分式展开的[WTBZ]MATLAB程序如下:
%program10.6-1
num=[18];
den=[183-4-1];
[r,p,k]=residuez(num,den) 程序运行结果为
r=0.36000.24000.4000
p=0.5000-0.3333-0.3333
k=[]
从运行结果中可以看出p(2)=p(3),表示系统有一个二阶的重极点,r(2)表示一阶极点前的系数,而r(3)就表示二阶极点前的系数。对高阶重极点,其表示方法是完全类似的,所以该F(z)的部分分式展开为:
0.360.240.4Fz 10.5z110.3333z110.3333z12 b0b1z1b2z2bmzmnumzFz12ndenz1a1za2zanz2 利用MATLAB计算H(z)的零极点与系统特性
如果系统函数H(z)的有理函数表示形式为
那么系统函数的零点和极点可以通过MATLAB函数roots得到,也可用函数tf2zp得到,tf2zp的调用形式为:
[z,p,k]=tf2zp(b,a)
b1zmb2zm1bm1Hza1zna2zn1an1
式中,b和a分别为H(z)的分子多项式和分母多项式的系数向量,它的作用是将H(z)的有理函数表示式转换为零点、极点和增益常数的表示式,即
zz1zz2zzm Hzk zp1zp2zpn
例2 已知一离散因果LTI系统的系统函数为
z12z2z3Hz 10.5z10.005z20.3z3求该系统的零极点。
解 将系统函数改写为
z22z1Hz3 z0.5z20.005z0.3
用tf2zp函数求系统的零极点,程序如下:
%program10.6-2
b=[121];
a=[1-0.5-0.0050.3];
[r,p,k]=tf2zp(b,a) 运行结果为
r=-
1-1
p=0.5198+0.5346i
0.5198-0.5346i
-0.5396
k=1
若要获得系统函数H(z)的零极点分布图,可以直接应用zplane函数,其调用形式为: zplane(b,a)式中,b和a分别为H(z)的分子多项式和分母多项式的系数向量。它的作用是在Z平面画出单位圆、零点和极点。
如果已知系统函数H(z),求系统的单位脉冲响应h[k]和频率响应H(ejΩ),则可应用impz函数和freqz函数。
例3 已知一离散因果LTI系统的系统函数为
2z2z1 Hz321z0.5z0.005z0.3
试画出系统的零极点分布图,求系统的单位脉冲响应h[k]和频率响应H(ejΩ),并判断系统是否稳定。
解 根据已知的H(z),用zplane函数即可画出系统的零极点分布图。利用impz函数和freqz函数求系统的单位脉冲响应和频率响应时,需要将H(z)改写成:
z12z2z3Hz 10.5z10.005z20.3z3程序如下:
%program10.6-3
b=[121];
a=[1-0.5-0.0050.3];
figure(1);zplane(b,a);
num=[0121];
den=[1-0.5-0.0050.3];
h=impz(num,den);figure(2);stem(h,′.′)xlabel(′k′)title(′ImpulseRespone′)[H,w]=freqz(num,den);figure(3);plot(w/pi,abs(H))xlabel(′Frequency\omega′)title(′MagnitudeRespone′)利用MATLAB计算Z变换
MATLAB的符号数学工具箱提供了计算Z变换的函数ztrans和Z逆变换的函数iztrans,其调用形式为:
F=ztrans(f)
f=iztrans(F)
式中,f为信号的时域表达式的符号对象,F表示信号f的象函数表达式的符号对象。符号对象可以应用函数sym实现,其调用格式为:
S=sym(A)
式中,A为待分析表示式的字符串;S为符号数字或变量。例4 试分别用ztrans函数和iztrans函数求:
(1)f[k]=cos(ak)ε(k)的Z变换;Fz(2)1z2的Z逆变换。
解(1)求f[k]的Z变换的程序如下:
%program10.6-4(1)
f=sym(′cos(a*k)′);
F=ztrans(f)运行结果为
F=(z-cos(a))*z/(z^2-2*z*cos(a)+1)即
zzcosa cosakk2 z2zcosa1(2)求F(z)逆变换的程序为
%program10.6-4(2)
F=sym(′1/(1+z)^2′);
f=iztrans(F)程序运行结果为
f=Delta(n)+(-1)^n*n-(-1)^n 即
篇3:信号与系统授课教案
评教是学校面临的一项重要任务,内容较为广泛和复杂。在当前教育改革与发展的趋势中,有一个普遍引起关注的焦点:即提高教学质量,强化教师评估制度[1]。
在相当长的一段时间内,评教的重点都落在了学生的学习成绩上,然而老师的任务不仅要让学生学到技能,还要教他们做人的道理。完全以成绩作为衡量教师教学水平有失公允,需要以发展性的评价制度取代惩罚性的评价制度,改变领导与教师面对面的交谈,教师与学生面对面的交谈等评价方式。科学的评估体系是开展课堂教学质量评估的前提与根本。如果体系本身缺少科学性,就很难保证评估结果的真实性和有效性[2]。
2、模糊评判法
模糊评判法是一种基于模糊数学的评标方法。该评判法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价[3]。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
依据模糊数学的基本概念对模糊评价法中的相关术语定义如下:
(1)评价因素[4]:系统对招标项目评议的具体内容,例如价格,指标,参数,性能,规范等。为了便于权重分配和评议,可以按评价因素的属性将评价因素分成若干类,每一类视为单一评价因素,并称为第一级评价因素。第一级评价因素可以设置下属的第二级评价因素,第二级评价因素可以设置下属的第三级评价因素,依此类推。(2)评价因素值:系指评价因素的具体值。
(3)评价值:指评价因素的优劣程度。评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。
(4)平均评价值:系指评标委员会成员对某评价因素评价的平均值。
平均评价值=全体评标委员会成员的评价值之和÷评委数
(5)权重[5]:系指评价因素的地位和重要程度。第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1。
(6)加权平均评价值[6]:系指加权后的平均评价值。加权平均评价值=平均评价值×权重。
(7)综合评价值:系指同一级评价因素的加权平均评价值之和。
3、模糊评判法在教师授课质量评价中的应用
基于模糊评判法的评价教师授课质量的系统把影响到教师教学质量的因素分为四大部分,它们分别是教学态度、教学内容、教学方法和教学效果。
教学态度包括:
(1)教学工作认真负责,治学严谨,备课充分。
(2)征询学生意见,注重教学反馈,不断改进教学。
(3)关心学生,言传身教,注重教书育人。
教学内容包括:
(1)教学内容充实,新颖,信息量大。
(2)精选教学内容,教材处理得当。
(3)条理清楚,重点突出,有启发性。
(4)注重基本技能与方法的训练。
(5)注重理论与实际的结合,加强实战环节。
教学方法包括:
(1)因材施教,激发思维,培养能力。
(2)重视学生的创新能力培养,开展课堂讨论。
(3)采用现代教学手段及灵活多样的教学方式。
教学效果包括:
(1)学生学习本课程后,是否对该课程的基本理论、知识、技能有较好的把握。
(2)学习本课程后,是否有助于提高分析问题的能力,并能解决一些实际问题。
根据对学生的深度访谈,结合相关文献确立评估指标的维度,把这些影响教师授课质量的因素或因子分别赋予不同的权重。最后,学生通过评教,来反映教师教学质量。
基于模糊评判法评价教师授课质量系统将影响教师授课质量的因素分为四大部分,称之为一级指标。这四大部分分别是:教学态度、教学内容、教学方法和教学效果。这四部分包括十三小项,称之为二级指标。
按照指标级别的不同,作用不同,每一小项分别赋予不同的权重。系统的数据以及权重的分布和安排,主要依据平顶山学院2008-2009学年第一学期学生对教师教学情况的调查资料和自己周围的一些同学。
教学态度中,教学工作认真负责,治学严谨,备课充分,这一项权重占1分。征询学生意见,注重教学反馈,不断改进教学这一项权重为1分。关心学生,言传身教,注重教书育人,这一项权重占1分。
教学内容中,教学内容充实,新颖,信息量大,这一项权重占1分。精选教学内容,教材处理得当,这一项权重占1分。条理清楚,重点突出,有启发性,这一项权重占1分。注重基本技能与方法的训练,这一项权重占0.5分。注重基本技能与方法的训练这一项权重占0.5分。
教学方法中采用现代教学手段及灵活多样的教学方式占1.5分,重视学生的创新能力培养占1分等。然后,赋予优秀、良好、合格、不及格权重分别是1分、0.8分、0.6分、0.5分。
系统的数据以及权重的分布和安排,主要依据平顶山学院2008-2009学年学生对教师教学情况的调查资料,平顶山学院学生评教指标体系和自己周围的同学。平顶山学院学生评教指标体系如表1所示。
根据教师平时的教学表现,学生可以在评分指标中选择相对应的等级。根据各个小项对教师教学质量影响程度的大小,分别赋予不同的权重[7]。学生对教师评分之后,点击提交,成功提交之后,评分页面将数据传递到后台。如果,学生没有完全针对每一个小项都进行评分,系统会提示,还有多少项没有打分。
在系统后台,根据学生的打分,将各个打分小项的权重和与之相对应的评价等级值相乘。把所有的成绩累加起来,最后得到的分数就是学生对该教师评分的总分数。
4、系统功能设计与实现
系统功能需求指定了系统必须提供的服务。通过需求分析应该划分出系统必须完成的所有功能。具体说来,就是要分清系统中的角色,并且要理清每个角色可以进行的所有功能。
根据学生对教师的评教特点和实际情况,该系统以学生对教师打分业务为基础,突出前台管理。评教方面采取数据的方式,使用户能直观地管理数据信息,并能有效地管理每个学生对教师所打的分数。学生对教师评分,教师之间相互评分,专家对教师评分,可以为评教方向提供依据[8]。通过分析用户本身需求和客观需求,对系统的主要功能模块各项功能进行分析和设计,以便最终能开发出符合用户需求的系统。
基于模糊评判法评价教师授课质量的系统从评教发展现状谈起,结合用户实际需求提出本系统的总体结构和功能模块,然后通过系统结构设计、安全设计及前端开发,构建了一个以JAVA技术和SQL Server2000后台数据库为基础的,具备相关功能的评价教师授课质量的系统。
基于模糊评判法评价教师授课质量的系统中,应用SQL Server2000数据库管理系统和SQL语言原理,采用成熟的B/S结构,根据分析和讨论,实现评教工作管理,提供与用户交互的界面,为用户添加档案,并且为用户设置权限管理,完成评教系统的设计和开发。根据基于模糊评判法评价教师授课质量的系统的具体情况,应能完成以下功能:
(1)登录模块:该模块实现用户登录的功能,涉及到的主要用户为:管理员、教师、学生和专家。这四类用户均可以通过输入用户名与密码进行登录到与用户类型相对应的页面。
(2)信息管理模块:该模块实现管理信息的功能,涉及到的主要用户为:管理员和一般用户。一般用户包括老师,专家和学生。一般用户只能对信息进行查询,修改,增加等一般操作,但管理员可以在这些基础上进行删除操作。
(3)评分模块:该模块实现对教师的评教,涉及到的主要人员是学生,教师和专家。学生只能够对自己的任课教师进行评教,同行之间可以评教,专家可以对相对应的专业的教师的授课质量进行评教。用户进入到评分模块以后,可以查看调查情况,其中包括已经对哪些老师进行了评教,对哪些老师还没有评教。可以选择相应的教师或者是通过所教课程,对教师进行评分操作。评分内容主要从教学内容,教学方法,教学态度和教学效果,四方面展开[10]。用户需要对评分页面中的每一个评分小项进行打分,否则,提交之后,会有相应的提示,比如:你还有三项没有评分。具体的评分过程,如图1所示。
(4)留言模块:主要是对留言信息的管理,如查看留言信息,回复留言信息。学生,教师等作为一般用户只能够对留言进行一些基本的操作,不可以对留言内容进行删除操作。只有管理员才能够进行这项操作。
(5)分数管理模块:主要是查询教师的得分情况。分数分为三部分,学生评教,教师之间互评和专家评教。成功登录系统后,教师进入到分数管理模块,可以查看自己的得分。其中包括教师编号,教师姓名,课程名,系别,年级,班级,学生评分,教师评分,专家评分和总得分,如图2所示。
(6)控制评教管理模块:该模块实现控制评教状态的作用。只有管理员才有这方面的操作。只有管理员开启评教状态后,学生,教师和专家才可以进行评教。否则,这些用户不允许评教。如图3所示。
(7)教师课程管理模块:该模块实现对教师和课程的管理功能。涉及到的主要人员为:学生,教师和管理员。每一个教师的编号对于自己所教得那门课相对应。一个教师可以教多门课。
5、结语
应用模糊评判法评价教师授课质量针对影响教学质量的众多原因,通过查阅大量的文献和调查分析,结合本校教学和评教经验,根据合理性、可操作性、独立性、定性和定量相结合等原则确定影响教学质量的因素,具有较好的安全性能,大大降低带评,错评,漏评等情况的发生,不仅能够运用到一般高校的教学评估工作中,更有利于本校教学评估工作的开展和使用。
摘要:为了更好地评价教师的授课质量,本文主要通过模糊评判算法,从教学态度,教学内容,教学方法和教学手段四个方面对教师的授课质量进行测评。应用Java技术,采用成熟的B/S结构,完成评教工作管理,实现教师授课质量评价系统。
关键词:模糊评判法,评价等级,授课质量评价
参考文献
[1]刘艳彬.大学本科教师课堂教学评估指标研究[J].科研管理,2010(5).
[2]李强.本科课堂教学质量评价的模糊数学方法[J].南通大学学报,2008(6).
[3]王秋萍.多级模糊综合评判在高校教师考评中的应用[J].数学的实践与认识,2008(4).
[4]姜伏莲.普通高校教师评价指标体系[J].泉州师范学院学报,2004(1).
[5]高浩中.模糊评判法在市政桥梁加固方案优选中的应用[D].上海:上海大学,2007.
[6]陈凤姣.模糊评判法在高校实验教学质量评价体系的应用[J].漳州师范学院学报,2010(4).
[7]李振平.模糊综合评判在教学评价中的应用[J].洛阳理工学院学报(自然科学版),2010(1).
篇4:信号与系统授课教案
关键词 信号与系统;数字信号处理;课程体系
中图分类号:G642.4 文献标识码:B 文章编号:1671-489X(2013)12-0083-02
周口师范学院电子与信息工程、自动化专业均把信号与系统、数字信号处理两门课程(以下简称“两门课程”)列入新专业教学计划中的两门主干专业基础课。如何教好和学好这两门课对学生能力和素质的培养具有至关重要而且深远的影响[1]。改革前,两门课存在内容重复量大,内容配合不好以及衔接不合理等问题,这些问题随着教学计划的完善造成的课时减少被进一步的激化。本文针对两门课程设置的现状和存在的问题,提出对原有课程体系教学内容进行优化整合的新思路,教学实践表明此方案缩短了教学时间,提高了教学质量,激发了学生的学习兴趣。
1 现阶段两门课程的教学内容和设置存在的主要问题
信号与系统主要介绍的是信号与系统分析的基本理论和分析方法、连续信号和离散信号的描述和线性时不变性和时域与变换域分析方法,它以工程数学和电路分析为基础,同时又是后续专业课如数字信号处理、自动控制原理等课程的基础。在周口师范学院最新的教学计划中,该课理论教学为68学时,实验教学为17学时。数字信号处理是通过对各种不同信号的分析,应用数字的方法,实现对不同信号的处理,达到所希望得到的信号,可见数字信号处理又是信号与系统在离散时域中的深入扩展。该课在学校最新的教学计划中的教学为63学时和45学时不等。
两门课在教学上主要存在下面几个问题。
1)理论教学的内容上存在内容重复和学时数的浪费,从而造成授课学时紧张。
2)两门课程的实验课程内容的安排没有考虑到相关课程的前后衔接,没有用一个系统的观念来设计实践环节。
3)学生对专业基础课和专业课的关系认识不到位,两门课程有一个共同的特点就是理论性很强,突出数学分析,工程概念薄弱[2],学生感到内容枯燥。
4)教学模式上存在偏颇,更偏向于理论,理论联系实际不够。
5)毕业设计时反映出所学的知识面偏窄,各学科知识的综合应用能力较为欠缺。
2 教学的改革实践
原来的课程设置严重影响学生对专业的兴趣和学习的效果。各门课程自身内容体系的最优不一定是整个教学计划的最优[3],因此,必须对两门课程进行改革与创新。为此,结合实际,从理论教学的内容与模式、实践教学的模式以及考核评价体系等几个方面进行有益的探索和改革。
2.1 理论教学内容的改革
针对两门课程内容重复和衔接的问题,提出理论教学内容的改革。具体处理:在讲授数字信号处理前,对离散信号和系统的时域与z域分析采用约10学时的时间来复习。在信号与系统中,对于离散时域分析和z变换两部分内容按计划用16~20学时来讲授。在这一部分的复习过程中,尝试采用优秀学生代替教师讲解部分内容的方法,教师进行适当的补充和小结。
2.2 理论教学模式的改革
针对传统课堂教学手段单调和两门课程公式推导繁杂等特点,提出利用MATLAB软件精心制作多媒体演示,把抽象的频谱、卷积、滤波、调制等概念形象化,激发学生学习兴趣,而习题、推导还采用传统的粉笔教学,多媒体和粉笔教学有机结合,使课堂教学达到最佳的教学效果。
2.3 实践教学模式的改革
目前,信号与系统实验课的内容是纯粹的硬件实验,学生对单一实验内容感到厌倦和没有兴趣,而数字信号处理没有开设实验课程。针对实验环节存在的主要问题,提出实验内容分为课内必修和课外选作两个系列,以及上机实验、综合实验和课程设计实验3个层次。以MATLAB为工具,从上机实验(安排在信号与系统实验的前半阶段)、综合实验(信号与系统实验的后半阶段和数字信号处理实验的前半阶段)、课程设计(数字信号处理实验的后半阶段)[4]等方面加强学生的实践,通过以上各实践环节,拓展传统意义上的实验的深度和广度。
2.4 考核评价体系的改革
改革后两门课程的成绩计算公式为:总成绩=实验成绩*30%+70%*(10%*平时成绩+20%*课程设计+70%*考试成绩)。课程改革后加大平时成绩的比重。
3 结束语
对两门课程进行整合和优化表明:改革后两门课程体系清晰完整,内容更趋科学,结构更趋合理,便于教学组织实施。提高了教学质量。
参考文献
[1]陈戈珩,王宏志.“信号与系统”和“数字信号处理”课程优化整合的探索与实践[J].长春工程学院学报:社会科学版,
2008,9(2):83-86.
[2]陈华丽,程耕国.“信号与系统”和“数字信号处理”两课优化整合的探讨[J].中国电子教育,2009(3):48-51.
[3]李俊生,张立臣,蒋小燕.“电路分析”、“信号与系统”和“数字信号处理”课程的优化整合[J].常州工学院学报,
2009,22(6):89-92.
[4]张学敏,倪虹霞,吕晓丽,等.电子信息工程专业信号类课程教学改革实践探索[J].长春工程学院学报:社会科学版,
篇5:信号与系统授课教案
关键词:尺度变换,翻转,平移,MATLAB
在电子信息类专业教学中, 《信号与系统》是一门核心课程, 只有对信号分析清楚了才能更好地分析系统, 而信号的分析与处理均是对信号进行某种或一系列运算。信号运算包括信号的尺度变换、翻转、平移、相加、相乘、微分和积分[1,2], 实际应用中由上述运算组成的综合运算尤为常见, 方法有多种。
一、信号的综合运算
综合运算是指当f (t) 的自变量t变为±at±t0时f (±at±t0) (a, t0是给定的正实数) 的运算, 可以是扩展 (0<a<1) 或压缩 (1<a) , 也可能出现时间上的翻转或平移。下面结合实例来分析信号的综合运算。
已知f (t) 的波形如图1 (a) 所示, 如果将自变量t变为-t/2+1, 那么f (-t/2+1) 的波形可以通过以下方法获得:
解法1:先翻转, 再尺度变换, 最后平移。
首先, 把f (t) 的波形以纵轴为中心翻转180°得到f (-t) 的波形, 如图1 (b) 所示;然后, 把f (-t) 的波形以纵轴为中心, 在t轴扩展为原来的2倍, 得到f (-t/2) 的波形如图2 (a) 所示;最后, 把f (-t/2) 的波形进行平移运算。这里需要注意的是, 平移方向是向左还是向右?平移单位是多少?先将f (-t/2+1) 改写成f (-1/2* (t-2) ) , 在已知f (-t/2) 波形的前提下, 只需将f (-t/2) 的波形沿t轴正方向移动2个单位, 得到f (-1/2* (t-2) ) 的波形, 即f (-t/2+1) , 如图2 (b) 所示。
解法2:先尺度变换, 再平移, 最后翻转。
首先, 把f (t) 的波形以纵轴为中心, 在t轴扩展为原来的2倍, 得到f (t/2) 的波形如图3 (a) 所示;然后, 把f (t/2) 的波形向左平移2个单位得到f ( (t+2) /2) , 即f (t/2+1) , 如图3 (b) 所示;最后, 把f (t/2+1) 的波形以纵轴为中心翻转180°, 得到f (-t/2+1) 的波形如图2 (b) 所示。
解法3:先平移, 再翻转, 最后尺度变换。
首先, 把f (t) 的波形向左平移1个单位得到f (t+1) 的波形, 如图4 (a) 所示;然后, 把f (t+1) 的波形以纵轴为中心翻转180°得到f (-t+1) 的波形, 如图4 (b) 所示;最后, 把f (-t+1) 的波形以纵轴为中心, 在t轴扩展为原来的2倍, 得到f (-t/2+1) 的波形, 如图2 (b) 所示。
解法4:端点法。
根据变换前后端点函数值不变来确定变换后波形中各端点的位置。设t1和t2对应变换前f (t) 的左右端点坐标-2, 2, t11和t22对应变换后f (-t/2+1) 的左右端点坐标。由变换前后的端点函数值不变有:
由上述关系可求解出变换后信号的左右端点坐标t11和t22
即f (t) 的端点坐标t1=-2和t2=2分别对应变换后f (-t/2+1) 的端点坐标t11=6和t22=-2.
当然, 也可改变翻转、平移和尺度变换的先后顺序得到其他三种方法, 最终得到f (-t/2+1) 的波形, 结果相同。这里要注意一点, 就是所有运算都是针对自变量t来进行的。但是端点法最为简单, 特别适用于从f (±a1t±t1) 到f (±a2t±t2) 的运算, a1, a2, t1, t2为正常数。
二、信号运算的MATLAB实现
编写MATLAB程序, 完成信号运算并绘制波形[3]。先建立两个函数文件, u (t) 表示单位阶跃信号, f (t) 表示图2 (a) 中的信号。
然后, 编写M文件, 通过调用函数文件f (t) 进行各种运算, 结果如图5所示, 程序如下:
三、总结
信号运算是信号分析与处理的重点。本文分析了信号综合运算的求解方法, 并用MATLAB编程实现。前三种解法通过改变翻转、平移和尺度变换的顺序来实现, 需注意所有运算都是针对自变量t来进行的, 而且要以相应的参考点为中心进行变换。解法四根据变换前后端点函数值不变来确定变换后信号各端点的位置, 最为简单。总之, 上述方法都可用于求解信号运算, 使用者可以选择自己最擅长的方法, 能够做到举一反三。
参考文献
[1]陈后金, 胡健, 等.信号与系统[M].北京:清华大学出版社, 北京交通大学出版社, 2008:35-40, 48-50.
[2]吴大正, 杨林耀, 张永瑞.信号与线性系统分析[M].北京:高等教育出版社, 2009:30-35.