五年级下册数学长方体与正方体奥数练习题

关键词:

五年级下册数学长方体与正方体奥数练习题(精选8篇)

篇1:五年级下册数学长方体与正方体奥数练习题

长方体和正方体

(一)一、知识要点

在数学竞赛中,有许多有关长方体、正方体的问题。解答稍复杂的立体图形问题要注意几点: 1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;

2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化; 3.求一些不规则的物体体积时,可以通过变形的方法来解决。

二、精讲精练 【例题1】 一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)

练习1:

1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。

【例题2】 有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)

练习2:

1.有一个形状如下图的零件,求它的体积和表面积。(单位:厘米)。

2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?

体积为4^3-1^3=64-1=63立方厘米 表面积不变,大小为6×4²=96平方厘米 【例题3】 一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。原正方体的表面积是多少平方厘米?

练习3:

1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?

2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?

【例题4】 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。这个长方体的体积和表面积各是多少?

练习4:

1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?

依题意 长*宽+长*高=88 即长*(宽+高)=88 而长宽高都是质数,长*(宽+高)=11*(5+3)可知长宽高分别为11,5,3 长方体的体积是11*5*3=165立方厘米。

2.一个长方体的长、宽、高是三个连续偶数,体积是960立方厘米,求它的表面积。

960=10×96,而96=8×12,表面积是2×(10×12+10×8+8×12)=592平方厘米

3.一个长方体和一个正方体的棱长之和相等,已知长方体长、宽、高分别是6分米、4分米、25分米,求正方体体积。

(6+4+2)*4=48 48/12=4 4*4*4=64 所以体积为64立方分米 第14讲 长方体和正方体

(二)一、知识要点

在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。解答上述问题,必须掌握这样几点:

1.将一个物体变形为另一种形状的物体(不计损耗),体积不变; 2.两个物体熔化成一个物体后,新物体的体积是原来物体体积的和; 3.物体浸入水中,排开的水的体积等于物体的体积。

二、精讲精练

【例题1】 有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?

练习1:

1.有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。问水面高多少?

【例题2】 将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。

练习2:

1.有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。现将三块铁熔成一个大正方体,求这个大正方体的体积。

2.将表面积分别为216平方厘米和384平方厘米的两个正方体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。

【例题3】 有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?练习3:

1.有一个小金鱼缸,长4分米、宽3分米、水深2分米。把一块假山石浸入水中后,水面上升0.8分米。这块假山石的体积是多少立方分米?

2.有一块边长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。取出铁后,水面下降了0.5厘米。这个长方体容器的底面积是多少平方厘米?

【例题4】 有一个长方体容器(如下图),长30厘米、宽20厘米、高10厘米,里面的水深6厘米。如果把这个容器盖紧,再朝左竖起来,里面的水深应该是多少厘米?

练习4:

1.有两个长方体水缸,甲缸长3分米,宽和高都是2分米;乙缸长4分米、宽2分米,里面的水深1.5分米。现把乙缸中的水倒进甲缸,水在甲缸里深几分米?

2.有一块边长2分米的正方体铁块,现把它煅造成一根长方体,这长方体的截面是一个长4厘米、宽2厘米的长方形,求它的长。

【例题5】 长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。这个长方体的体积是多少立方厘米?

练习5:

1.一个长方体,不同的三个面的面积分别是25平方厘米、18平方厘米和8平方厘米,这个长方体的体积是多少立方厘米?

2.一个长方体,不同的三个面的面积分别是35平方厘米、21平方厘米和15平方厘米,且长、宽、高都是质数,这个长方体的体积是多少立方厘米?

3.一个长方体的体积是48立方厘米,并且长、宽、高是三个连续的偶数。这个长方体的表面积是多少平方厘米?

长方体和正方体(三)

一、知识要点

解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。

二、精讲精练

【例题1】 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?

练习1:

1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米? 大正方体的表面积为3*3*6=54 小正方体的表面积为1*1*6*27=162 162-54=108 2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?

表面积增加=8*6*1/2*1/2-6*1*1=6.表面积增加了6平方米.【例题2】 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?

练习2:

1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?

2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?

3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?【例题3】 一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?

练习3:

1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?

2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?

【例题4】 一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?

练习4:

1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米?

2.把一个长、宽、高分别为7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积的和最大,求它们的表面积和是多少平方厘米?

篇2:五年级下册数学长方体与正方体奥数练习题

(二)【例题1】 有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)

练习1:

1.有一个形状如下图的零件,求它的体积和表面积。(单位:厘米)。

2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?

【例题2】 一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了100平方厘米。原正方体的表面积是多少平方厘米?

练习2:

1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?

2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?

【例题3】 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?

练习3:

1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?

2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米? 【例题4】 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?

练习4:

1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?

2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?

3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?

【例题5】 一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?

练习5:

1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?

2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?

【例题4】 一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?

练习4:

1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。要把它们粘成一个大的长方体,这个长方体的表面积最大是多少平方厘米?最小是多少平方厘米?

2.把一个长、宽、高分别为7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积的和最大,求它们的表面积和是多少平方厘米?

4 分数应用题

(二)1、甲数是乙数的,乙数是丙数的,甲、乙、丙三个数的和是152,甲、乙、丙三个数各是多少?

2、某中学为某贫困山区的同学奉献爱心,学校共收得捐款2000元,已知初二年级捐款数额是一年级的多200元,初三年级捐款数额又是初一年级的2倍少200元,求初一年级共捐款多少元?

3、甲数的等于乙数的,甲、乙两数的和是162,甲、乙两数各是多少?

4、某校有的学生是男生,男生的想当医生,全校想当医生的学生的是男生,那么全校女生的几分之几想当医生?

5、已知一班学生是二班学生的,一班的女生人数是一班学生人数的,二班的男生人数是二班学生人数的,那么两班女生总人数占两班学生总人数的几分之几?

6、仓库里的大米和面粉共有2000袋,大米运走 5

长方体和正方体

篇3:五年级下册数学长方体与正方体奥数练习题

片断一:

教师出示解决的问题:一个长方形操场长200米, 宽100米。小明沿着操场周围跑了5圈。小明一共跑了多少米?

教师请了一位学生板演, 他是这样列式的: (200+100) ×5。从学生的板演中看出来, 在他的脑子里对长方形这个概念还缺少深刻的印象, 教师需要借助直观的图形来帮助他理解题意。

教师:200+100是什么意思?

生:就是长加宽的和。学生边回答教师边板书如右图所示:

教师:你们觉得这是长方形吗?

生:这不是长方形。

教师: (200+100) ×5意思就是在这两条边上来回走5次。 (同时配上手势) 可是题目告诉我们小明是沿着操场跑了5圈。操场是什么形状的?

生:题目告诉我们操场是长方形的。

教师:这与题目的意思一样吗?还差什么呢?

生:还少了一条长和一条宽。

教师:是啊, 要再画一条长和一条宽才是一个完整的长方形。 (教师边说边把图形补充完整) 如右图所示:

教师:知道这个算式错哪里了吗?应该怎么改?

生:要在200加100的和后面先乘2再乘5。

点评:在这个教学片断中, 教师充分利用数形结合的思想方法, 帮助这位学生明白了自己错在哪里, 以及做错的原因, 使这位学生加深了对题目意思的理解, 也加深了对长方形特征的理解, 同时提高了学生解决问题的能力。在今后的学习中, 学生能自觉运用画图来帮助自己理解题意。

片断二:

教师出示问题:小英用一根长40厘米的铁丝, 围成一个最大的正方形, 这个正方形的边长是多少厘米?如果将它围成一个长15厘米的长方形, 这个长方形的宽是多少厘米?

这题的第二个问题对三年级的学生来说还是有一定难度的, 是已知长方形的周长与长求宽的逆向思维的问题。目的是想让优秀的学生吃得饱, 让他们体会到通过跳一跳能摘到桃子的快乐。经过一番认真的思考, 只有四五名学生举手, 教师请其中一位会做的学生上来板演, 学生是这样列式的:15×2=30 (厘米) , 40-30=10 (厘米) , 10÷2=5 (厘米) 从这位学生的解题步骤上看出来, 他解决问题的思路非常清晰。于是教师请这位学生说说他是怎么想的。这时教师根据学生的回答画出下面的图示流程:

画完后, 教师请听明白的学生再一次说说每步的意思:先算两条长共有30厘米, 再从周长40厘米中减去30厘米 (教师用黑板擦擦去两条长, 表示减去的意思) 得10厘米, 就是剩下两条宽, 最后用10除以2得5厘米。也就是一条宽5厘米。

通过图示与讲解, 有一部分学生恍然大悟, 由不懂变懂了。

另一位学生是这样列式的:40÷2-15=5 (厘米) 。教师问学生这种方法知道什么意思吗?只有几位学生表示看得懂, 大部分学生说不明白。

教师是这样用图形帮助学生理解算理的。图示流程如下:

教师边画边讲解:40除以2就是把长方形的周长平均分成两份, 算出其中的一份, 就是一条长和一条宽的和, 再从和里减去一条长, 剩下就是一条宽了。

生:噢, 原来是这么一回事, 看懂了。

点评:在上面的教学片断中教师巧妙应用数形结合的教学方法, 把抽象的问题变成可以让学生看得见的图形, 把抽象的问题形象化, 在学生脑海里留下深刻的印象, 达到最佳的教学效果。

教学反思:

数形结合思想就是根据数学问题的条件和结论之间的内在联系, 既分析其代数含义又揭示其几何意义, 使问题的数量关系和空间形式巧妙、和谐地结合起来, 通过数与形的相互转化来解决数学问题的思想。其实质是将抽象的数学语言与直观的图像结合起来, 关键是代数问题与图形之间的相互转化, 它可以使代数问题几何化, 几何问题代数化。数形结合的思想, 包含“以形助数”和“以数辅形”两个方面, 其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数量之间的联系。

篇4:五年级下册数学长方体与正方体奥数练习题

师:同学们,喜欢做游戏吗?好!下面我们就做一个小游戏。

出示方法与规则:请两个小组选出代表上台,下面的同学比划图形,谁猜得多那组就获胜。(多媒体展示)

游戏结束,刚才的小游戏获胜的是哪个组?好,咱们比一比后面的环节哪个小组能获胜。有没有信心?

刚才游戏中出现的长方形、正方形、三角形、圆形再加上平行四边形、梯形,这些图形叫做平面图形,长方体、正方体、圆柱这些图形叫做立体图形。今天我们就一起来认识一下立体图形中的长方体和正方体。(板书课题:认识长方体和正方体)

【评析】教师从游戏入手,在游戏中体验平面图形与立体图形的区别,既回顾了旧知,又唤起了学生探究新知的欲望。

二、小组探究,体验长方体和正方体的特征

1、认识长方体、的面、棱、顶点。

1、认识面、棱、顶点。

师:长方体和正方体大家都不陌生.现在,举起你手中的长方体,(环视)闭上眼睛用手摸一摸,你有什么感觉?

生:滑滑的,有面。

师:刚才有同学说,有“面”真棒!你知道什么是面吗?(老师摸一摸,告诉同学什么是面。)(教师板书:面)

师:再摸一摸还有什么感觉?

生:有边,有点硌手

师:真棒!两个面相交的地方有一条边,这条边叫做“棱”。(板书:棱)

师:还有什么?

生:这里尖尖的。

师:这里是三条棱相交的地方,叫做“顶点”。(板书:顶点。)

【评析】通过自己动手感知长方体的面、棱、顶点,引导学生多种感官参与,建立面、棱、顶点的概念。

2、小组研究长方体的特征

现在我们已经知道了长方体各部分的名称,你想知道他们各部分的奥秘吗?好,请同学们观察手中的长方体完成“合作探究”第一部分—活动一。

小组展示并根据提示完成板书。

师利用课件总结。

面:长方体有6个面,每个面都是长方形(可能有两个面是正方形),相对的两个面完全相同。

棱:长方体有12条棱,每相对的4条棱相等。

顶点:有8个顶点。

【评析】学生自己在小组合作中获得新知,体验自主探索的乐趣,教师通过多媒体验证学生的认识,学生能形成新的知识结构,顺利解决本节课的重点内容。

3、长方体的长、宽、高。

出示长方体框架,问:看这个长方体框架,仔细观察,相交于同一顶点的棱有几条?指出这三条棱的长度叫做长方体的长、宽、高。

现在,把手中的长方体平放在桌子上,小组内互相说一说它的长、宽、高。

哪个小组愿意上台展示一下!

展示:同一个长方体,摆放位置不同,长、宽、高不同,

指出:平放在桌上的长方体,相交于同一顶点的三条棱中,垂直于桌面的棱的长度叫做高,其余两条长的为长,短的叫宽.

4、小组探究正方体特征

刚才我们认识了长方体的特征下面请同学们利用探究长方体特点的方法研究正方体的特点,完成“合作探究”第二部分—活动二:

小组展示并根据提示完成板书。

师小结。

出示长方体变成正方体的动画。

看一看新得到的长方体与原来的长方体相比长、宽、高有什么变化?

生:长、宽、高相等,长方体变成了正方体。

师:那说明正方体是特殊的长方体。

【评析】利用动画演示的方法让学生体验正方体是特殊的长方体。

5、对比长方体和正方体的相同点和不同点。它们有什么关系?

同学们,我们已经掌握了长方体和正方体的特征,看一下黑板,你能根据板书总结出长方体和正方体的相同点和不同点吗?

通过相同点和不同点你觉得长方体和正方体有什么关系呢?

三、达标检测,体验数学与生活的密切联系

1、自主练习第2题

2、课外实践:思考怎样计算长方体和正方体的棱长总和?

【评析】这两个问题让学生不仅巩固了新知,而且发展了空间观念。

四、自我反思,体验收获的快乐

篇5:五年级下册数学长方体与正方体奥数练习题

小学五年级数学下册长方体与正方体测试题

一、填空(每题2分,共20分)

1.一个长方体长7cm,宽6cm,高cm,这个长方体6个面中,最大面的面积是()平方厘米,最小的面的面积是()平方厘米。它的表面积是()平方厘米。

2、把一个5分米正方体木块锯成两个完全一样的正方体,表面积比原来增加了()平方分米。

3、一对无盖的玻璃鱼缸,长7分米,宽和高都是5分米,制造这对鱼缸至少需要鱼缸()平方分米。

4、一个长方体的长和宽都是4厘米,高是3厘米,这个长方体有()个面是长方形,有()个面是正方形,表面积是()平方厘米。

5、一个长方体的长、宽、高都扩大3倍,它的表面积扩大()倍,体积扩大()倍。6、4.07立方米=()立方米()立方分米 9.08立方分米=()升=()毫升

7、一个正方体的表面积是72平方分米,占地面积是()平方分米. 8.一个长方体的体积是30立方厘米,长6厘米,宽5厘米,高()厘米.

9.用一根12分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是()立方分米.

11、用3个棱长4分米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少()平方分米.

12、平方厘米,体积是()立方厘米.

表面积是()

14、一个长方体的体积是96立方分米,底面积是16立方分米,它的高是()分米.

添翼教育五下数学

8.一个长方体水池,长20米,宽10米,深2米,占地________平方。[ ]

①200

②400

③520 9.3个棱长是1厘米的正方体小方块排成一行后,它的表面积是 [ ] ①18平方厘米

②14立方厘米

③14平方厘米

④16平方厘米

10.一个棱长是4分米的正方体,棱长总和是________分米.

[ ] ①16

②24

③32

④48 11.由3个棱长是1厘米的正方体拼成的长方体的表面积是

[

] ①18

②16

③1④12 12.下图是用8个小方块拼成的,如果拿走1个小方块,它的表面积比原来()

[

] A.大了

B.小了

C.没有变化

13.一个正方体是用8个小正方体方块拼成的,如果拿走1个小方块,它的表面积比原来

[

] A.大了

B.小了

C.没有变化

添翼教育五下数学

7.做一个长方形状的鱼缸,长8分米,宽3分米,高5分米,需要玻璃多少平方分米?

9.把一块棱长8厘米的正方体钢坯,锻造成长16厘米,宽5厘米的长方体钢板,这钢板有多厚?(损耗不计)

10.一个长方体机油桶,长8分米,宽2分米,高6分米.如果每升机油重0.72千克,可装机油多少千克?

11.3个棱长都是8厘米的正方体,拼成一个长方体,表面积是多少?

12.在一个长30米,深2.2米的长方体蓄水池里面贴瓷砖,瓷砖是边长为0.2米的正方形,问: ①这个蓄水池的占地面积是多少? ②贴完这个蓄水池共需瓷砖多少块? ③这个蓄水池最大能需水多少?

添翼教育五下数学

篇6:五年级下册数学长方体与正方体奥数练习题

第1课时 长方体

教学内容: 长方体的认识

教学目标:

1.初步认识立体图形、认识长方体的特征。

2.通过观察、想象、动手操作等活动进一步发展空间观念。3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。教学重点:

掌握长方体的特征。教学难点:

通过观察、想象、动手操作等活动进一步发展空间观念 教学过程

一、复习导入 1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)

2.投影出示教材第18页的主题图。提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?

3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又具有什么特征呢?引出新课并板书课题。

二、新课讲授

1.认识长方体的面、棱、顶点。

(1)请学生拿出自己准备的长方体学具,摸一摸,说一说。你有什么发现?(长方体有平平的面)板书:面

(2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。板书:棱

(3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。板书:顶点

(4)师生在长方体教具上指出面、棱、顶点。学生依次说出名称。2.研究长方体的特征。(1)面的认识。

①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前

后,上

下,左

右。

②引导学生观察长方体的6个面各是什么形状的?

板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。教师分别出示这两种情况的教具。

③引导学生进一步验证长方体相对的面的特征。板书:相对的面完全相同。

④请学生完整叙述长方体面的特征。(2)棱的认识。教师出示长方体框架教具,引导学生注意观察:

①长方体有几条棱?②这些棱可分为几组?③哪些棱的长度相等?通过以上三个问题,分组讨论,实际测量。根据学生汇报后并板书:相对的棱长度相等。教师:请大家把长方体棱的特征完整地总结一下。

(3)顶点的认识。课件演示:先闪动三条棱再分别闪动三条棱相交的点。师:请你们按照一定的顺序数一数,长方体有几个顶点? 板书:8个顶点。

指名让学生把长方体的特征完整地总结一下。3.认识长方体的直观图。

(1)请学生拿出长方体学具,放在桌面上观察,最多能看到它的几个面?(三个面)

(2)怎样把长方体画在纸上或黑板上。4.认识长方体的长、宽、高。

(1)讨论:要知道长方体12条棱的长度,只要量哪几条棱就可以了?

(2)归纳:我们把相交于同一个顶点的三条棱的长度分别叫做长方体的长、宽、高。习惯上,长方体的位置固定以后,我们把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高。

(3)拓展:老师将长方体横放、竖放,让学生分别说出长方体的长、宽、高。

三、课堂作业

1.完成教材第19页“做一做”。

2.完成教材第21页练习五的第1、2、3、6、7题。

(1)第1题:此题是让学生观察长方体纸巾盒,说出各个面的形状,哪些面形状是相同的?各个面的长和宽各是多少?同桌合作。(2)第2题:求长方体的棱长和。

(3)第4题:让学生通过观察,发现长方体棱之间的关系,如:各组棱互相平行;与其中一条棱垂直的几条棱相互平行等。(4)第6题、第7题学生独立完成。

四、课堂小结

今天我们认识了长方体,知道了长方体的相关知识,谁愿意来说一说,这节课你有什么收获?

五、课后作业

完成练习册中本课时练习。

板书设计:

长方体

相交于一个顶点的三条棱的长度叫做长方体的长、宽、高。长方体的六个面都是长方形,特殊情况下两个相对的面是正方形。相对的面完全相同。相对的棱长度相等。

第2课时正方体

教学内容: 正方体的认识 教学目标:

1.通过观察、操作等活动,认识正方体、掌握正方体的特征。2.通过观察比较弄清长方体与正方体的联系与区别。

3.通过学习活动培养学生的操作能力,发展学生的创新意识和空间概念。教学重点:

认识正方体的特征。教学难点:

理清长方体和正方体的关系。教学过程

一、复习导入

1.回忆长方体的特征,请学生用语言进行描述。2.操作:同桌交流,分别说出长方体的棱在哪儿?几条棱可以分别分成几组?相交于同一个顶点的三条棱叫做什么?

教师:今天这节课,我们继续学习一种特殊的立体图形。(板书课题:正方体)

二、新课讲授

探索正方体的特征。1.想一想。正方体具有什么特征呢?我们在研究时应该从哪方面去思考?(也应该从面、棱、顶点这三个方面去考虑)2.合作学习。

学生根据手中的正方体学具,小组合作探究。3.集体交流。

(1)组:正方体有6个面,6个面大小都相等,6个面都是正方形。(2)组:正方体有12条棱,正方体的12条棱的长度相等。

(3)组:正方体有8个顶点。请学生到讲台前,手指正方体模型,按“面、棱、顶点”的特征有序地数一数,摸一摸,其他同学观察思考。教师问:怎样判断一个图形是不是正方体? 4.教学正方体和长方体的联系与区别:

老师出示一个正方体教具。请学生讨论:它是不是一个长方体? 学生充分讨论,集体交换意见。

学生甲组:这个物体的六个面都是正方形,它不是长方体。

学生乙组:长方体6个面是对面的面积相等,而这个物体是6个面的面积相等,所以我们也认为它不是长方体。

学生丙组:我们组有不同意见,因为我们认为它的6个面虽然都是正方形,不是长方形,但是正方形是特殊的长方形,它的12条棱也包括每组4条棱长度相等;6个面面积相等,也包括了相对的面面积相等这些条件,所以我们认为它是长方体。

教师根据学生的发言进行总结:正方体是特殊的长方体,长方体中包含着正方体,用集合圈表示为:

教师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。

三、课堂作业

1.教材第20页的“做一做”。2.教材第21~22练习五的第4、5、8、9题。

四、课堂小结

今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结)

五、课后作业

完成练习册中本课时练习。

板书设计

正方体

有6个面,都是正方形,每个面的面积相等。有12条棱,每条棱长度相等。有8个顶点。

2.长方体和正方体的表面积 第1课时长方体和正方体的表面积(1)

教学内容: 长方体和正方体的表面积概念,长方体和正方体表面积的计算(教材第24页例

1、例2,以及第25~26页练习六第1、2、3、4、6、7题)。

教学目标:

1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

2.会用求长方体和正方体表面积的方法解决生活中的简单问题。3.培养学生分析能力,发展学生的空间概念。教学重点:

掌握长方体和正方体表面积的计算方法。教学难点:

会用求长方体和正方体表面积的方法解决生活中的简单问题

一、复习导入】

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授

1.教学长方体和正方体表面积的概念。(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

2.学习长方体和正方体表面积的计算方法。

(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。(3)尝试独立解答。(4)集体交流反馈。

老师根据学生的解题思路进行板书。

方法一:长方体的表面积=6个面的面积和

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)方法三:(上面的面积+前面的面积+左面的面积)×2(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)

(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业

1.完成教材第23页“做一做”。2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结

今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?

五、课后作业

板书设计

长方体和正方体的表面积(1)长方体的表面积=(长×宽+长×高+宽×高)×2 正方体的表面积=边长×边长×6

第2课时 长方体和正方体的表面积(2)

教学内容: 求一些不是完整六个面的长方体、正方体的表面积,(教材25页第5题、教材第26页第9、10题)。

教学目标:

1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲 教学重点: 能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。教学难点: 求一些不是完整六个面的长方体、正方体的表面积。

一、复习导入 师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板? 2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

二、新课讲授

1.教材25页第5题

(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?(2)学生读题,看图,理解题意。

(3)“上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)(4)学生尝试独立解答。(5)集体交流反馈。

方法一:10×12×2+6×12×2=240+144=384(cm2)方法二:(10×12+6×12)×2=(120+72)×2=384(cm2)答:这张商标纸的面积至少需要384平方厘米。2.教材26页第8题

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)(2)学生读题,看图,理解题意。(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。3×3×5=9×5=45(dm2)

答:制作这个鱼缸时至少需要玻璃45平方分米。

三、课堂作业

完成教材第26页练习六第9、10题。

四、课堂小结

提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获?

五、课后作业

完成练习册中本课时练习。

板书设计

长方体和正方体的表面积(2)一个长方体的饼干盒,长10cm、宽6cm、高12cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米? 方法一:10×12×2+6×12×2 =240+144 =384(cm2)方法二:(10×12+6×12)×2 =(120+72)×2

=384(cm2)答:这张商标纸的面积至少需要384平方厘米。

一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米? 3×3×5 =9×5

=45(dm2)答:制作这个鱼缸时至少需要玻璃45平方分米。

3.长方体和正方体的体积 第1课时体积和体积单位

教学内容: 体积和体积单位(教材第27、28页的内容)。

教学目标:

1.使学生理解体积的概念,了解常用的体积单位,形成表象。2.培养学生比较、观察的能力。

3.通过学生的动手实践,加强学生空间概念的发展。教学重点: 常用体积单位。教学难点: 常用体积单位。

一、复习导入

口答:1米、1分米、1厘米是什么计量单位?

1平方米、1平米分米、1平方厘米又是什么计量单位?

二、新课讲授

1.认识体积的概念。

(1)故事导入 :多媒体课件演示乌鸦喝水的故事。看完后,老师提问:乌鸦是怎么喝到水的?为什么把石头放进瓶子里,瓶子里的水就升上来了。引导学生说出石头占了水的空间,所以水就升上来了。

(2)实验证明老师:石头真的占了水的空间吗?我们再来做个实验验证一下。取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒入第二个杯子,让学生观察会出现什么情况。学生通过观察会发现:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了一部分空间,所以装不下了。

(3)观察比较

观察:电视机,影碟和手机,哪个所占的空间大?教师:不同的物体所占空间的大小不同。

(4)体积概念的引入

教师:物体所占空间的大小叫做物体的体积。提问:体积与表面积的概念相同吗?为什么? 2.体积单位的认识。(1)出示两个长方体。提问:怎样比较这两个长方体体积的大小呢?(要比较这两个长方体体积的大小就要用统一的体积单位来测量)

(2)根据常用的长度单位和面积单位,想一想常用的体积单位有哪些? 教师:计量体积要用体积单位,常用的体积单位有立方厘米、立方分米、立方米,可以分别写成cm3,dm3和m3。(3)认识体积单位。

老师:请你猜一猜1cm3,1dm3,1m3是多大的正方体。

学生讨论后回答:棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。教师请学生看教材,证实同学们的回答是正确的。

(4)再次感受体积单位实际的大小。

①一粒蚕豆的大小是1cm3,请同学们估出身边体积是1cm3的物体。②一个粉笔盒的大小是1dm3,请同学们用手捧出1dm3大小的物体。

③用3根1m长的木条做成一个互成直角的架子,把它放在墙角,看看1m3有多大,估计一下,大约能容纳几个同学? 教师:立方厘米,立方分米,立方米是常用的体积单位,要计算一个物体的体积,就要看这个物体中含有多少个体积单位,请同学们用4个1cm3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?(4cm3)为什么?(因为它是由4个体积是1cm3的小正方体摆成的)

(5)练习:完成课本第28页“做一做”第1、2题。

三、课堂作业

教材第32页练习七1~5题。

四、课堂小结

教师:同学们,今天我们认识了体积和体积单位。它们在我们的生活中应用非常广泛。通过今天的学习,大家又有什么收获呢?

五、课后作业

完成练习册中本课时练习。

板书设计

1.体积和体积单位

物体所占空间的大小叫做物体的体积。常用的体积单位有立方厘米,立方分米,立方米。可分别写成cm,dm,m。

33第2课时长方体和正方体的体积

教学内容: 长方体、正方体的体积计算

教学目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。2.指导学生运用公式正确计算长方体、正方体的体积。3.培养学生积极思考、探索新知的思维品质。教学重点: 长方体、正方体体积计算。教学难点: 长方体、正方体体积计算

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些? 2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入第29页表格。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。板书:长方体的体积=长×宽×高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh(3)质疑:求长方体的体积公式需要知道什么条件? 2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=a.a.a=a(a表示棱长)(a3读作a的立方,表示3个a相乘)3.运用长方体的体积公式解决问题。(1)出示教材第30页的例1。(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。(4)指名说出长方体的体积公式。3(5)指名学生上台板演过程,其他同学判断。(6)老师订正书写。V=abh=7×4×3=84(cm)(7)看图,学生独立在练习本上完成。(8)指名板演,集体订正。

三、课堂作业

完成课本第31页“做一做”第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计

2.长方体和正方体的体积 长方体的体积=长×宽×高

V=abh

正方体体积=棱长×棱长×棱长

V=a.a.a=a

3第3课时体积单位间的进率

教学内容: 体积单位间的进率 教学目标:

1.通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的改写。

2.使学生学会用名数的改写解决一些简单的实际问题。

3.培养学生根据具体情况灵活应用不同的单位进行计算的能力。教学重点: 掌握名数的改写方法。教学难点: 用名数的改写解决一些简单的实际问题。

一、复习导入

1.口答:说一说常用的体积单位有哪些? 2.填一填。

1千米=()米

1米=()分米=()厘米 1平方米=()平方分米 1平方分米=()平方厘米

二、新课讲授

1.学习体积单位间的进率。

(1)老师板书教材第34页例2:一个棱长为1dm的正方体,它的体积是1dm3。想一想,它的体积是多少立方厘米。(2)学生读题,理解题意。

(3)老师出示棱长为1dm的正方体模型。

提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)(4)计算。请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米? 学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说: ①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。老师根据学生的回答,板书:V=a3 10×10×10=1000(cm3)1dm3=1000cm3(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)

(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。老师板书:1立方米=1000立方分米(7)观察板书内容。想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。2.体积单位,面积单位,长度单位的比较。

(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。(2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。

(3)体积单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。

3.学习体积单位名数的改写。

(1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)(2)学习教材第35页的例3。

板书:3.8m3是多少立方分米?2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。指名让学生说一说是怎样做的。

板书:3.8m=(3800)dm2400cm3=(2.4)dm3(3)学习教材第35页的例4。

学生理解题意明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少?

学生独立思考,然后解答,指名板演。

V=abh=50×30×40=60000(cm)=60(dm)=0.06(m)4.巩固:完成课本第35页的“做一做”第1题。学生完成后,要求他们口述解答的过程。

3.5dm=(3500)cm3700dm=(0.7)m

三、课堂作业

完成课本第36~37页练习八的第1~9题。

1.第1题此题是巩固单位间进率的习题。练习时先让学生独立完成,反馈时,让学生说说思考的过程。

2.第2题这是一道实际应用的问题。包装盒是否能够装得下玻璃器皿,关键要看包装盒的高是多少,因为从已知条件中我们已经知道包装盒的长、宽都比玻璃器皿的长、宽要长。只要包装盒的高大于18cm,就能够装得下。练习时,让学生独立计算出包装盒的高,提醒学生注意统一计量单位后,全班反馈。3.第3-9题由学生独立完成。

四、课堂小结

今天我们学习了体积单位间的进率,在这节课里,你有哪些收获呢?

五、课后作业

完成练习册中本课时练习。板书设计

体积单位间的进率 1立方分米=1000立方厘米 1立方米=1000立方分米

333

第4课时容积和容积单位(1)

教学内容: 容积和容积单位 教学目标:

1.使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。

2.掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。3.感受1毫升的实际意义,和应用所学知识解决生活中的简单问题。教学重点: 容积单位换算 教学难点: 容积单位换算

一、复习导入

1.什么叫物体的体积?

2.常用的体积单位有________、_________、_________,相邻两个体积单位之间的进率是_________。

3.一个长方体的纸盒,长2dm、宽1.8dm、高1dm,它的体积是多少立方分米? 学生在练习本上完成,然后小组交流检查。

二、新课讲授

1.教学容积的概念。

(1)教师把长方体的纸盒打开,问:盒内是空的可以装什么?学生交流后汇报。教师:我们把这个纸盒所能容纳物体的体积叫做它的容积。如:金鱼缸里面可以放满水,水的体积就是鱼缸的容积。(2)学生举例说一说什么是容积? 教师引出课题并板书:容积

(3)比较物体的体积和容积的异同。

请学生想一想,体积和容积有什么相同点,有什么不同点。学生独立思考,小组内交流,全班反馈。

相同点:体积和容积都是物体的体积,计算方法一样。不同点:①体积要从容器外面量出它的长、宽、高;而容积要从容器的里面量长、宽、高。

②所有的物体都有体积,但只有里面是空的,能够装东西的物体,才能计算它的容积。

(4)容积的计算方法。

教师:容积的计算方法与体积的计算方法相同,但要从里面量出长、宽、高。这是为什么呢?

教师出示一个木盒。演示为什么容积应该从里面量出长、宽、高。2.教学容积单位。

(1)教师:计量物体的容积,需要用到容积的单位。(完成课题板书)

(2)学生自学教材第38页内容。组织学生汇报学习的内容,教师板书:升、毫升

(3)出示量杯和量筒,倒入1升的水进行演示,让学生得出 1升=1000毫升(1L=1000mL)

(4)容积单位与体积单位的关系。试验:把水倒入量杯1mL处,然后再把1mL的水倒入1cm3的正方体容器里面,刚好倒满

提问:这个实验说明什么?1mL=1cm。(板书)

提问:大家想一想1升是多少立方分米?相互讨论,得出:1L=1dm3。(板书)3.新知应用。出示例5,指一名学生读题。(1)分析理解题意:求这个油箱可以装多少汽油就是求这个油箱的什么?必须知道什么条件?应该怎样算?(2)学生独立完成,然后指名汇报,全班集体订正。5×4×2=40(dm)40dm=40L 答:这个油箱可装汽油40L。

三、课堂作业

完成教材第40-41页练习九的第1-6题。

四、课堂小结

通过今天的学习,你有哪些收获?学生交流学习所得。

五、课后作业

完成练习册中本课时练习。

板书设计

容积和容积单位(1)

1L=1000mL1L=1dm

1mL=1cm

例5:5×4×2=40(dm)

40dm=40L

答:这个油箱可以装汽油40L。

3第5课时 容积和容积单位(2)

教学内容: 求不规则物体的体积(课本第39页的例6)教学目标:

1.使学生进一步熟练掌握求长方体和正方体容积的计算方法。2.能根据实际情况,应用排水法求不规则物体的体积。

3.通过学习,让学生体会数学与生活的紧密联系,培养学生在实践中的应变能力。

教学重点: 运用具体方法求不规则物体的体积。教学难点: 运用具体方法求不规则物体的体积

一、复习导入 1.填空

6.7m3=()dm3=()cm3 2L=()mL3 450mL=()L 0.82L=()mL=()dm3 提问:单位换算你是怎样想的? 2.判断

(1)容积的计算方法与体积的计算方法是完全相同的。

(2)容积的计算方法与体积的计算方法是完全相同的,但要从里面量出长、宽、高。

(3)一个量杯能装水10mL,我们就说量杯的容积是10mL。

(4)一个量杯最多能装水100mL,我们就说量杯的容积是100mL。(5)一个纸盒体积是60cm3,它的容积也是60cm3。

通过判断的练习,要让学生理解容积与体积的区别与联系。

二、新课讲授

出示课本第39页教学例题6。(1)出示一块橡皮泥。

提问:你能求出它的体积吗?(把它捏成一个长方体或正方体,用尺子量出它的长、宽、高,就可以算出它的体积)

(2)出示一个雪花梨。

提问:你能求出这个雪花梨的体积吗? 学生展开讨论交流并汇报。

最优方法:把它扔到水里求体积。

(3)给每个小组一个量杯,一个雪花梨,一桶水,请大家动手实验,把实验的步骤记录下来,让学生分工合作。

(4)汇报试验过程,请一个组一边汇报过程,一边演示,先往量杯里倒入一定量的水,估计倒入的水要能浸没雪花梨,看一下刻度,并记下。接着把雪花梨放入量杯,要让其完全浸没再看一下刻度,并记下。最后把两次刻度相减就是雪花梨的体积。

即:450-200=250(mL)=250(cm3)(5)提问:为什么上升那部分水的体积就是雪花梨的体积?学生展开讨论后并回答。

(6)用排水法求不规则物体的体积要注意什么?要记录哪些数据?(要注意把物体完全浸入到水中,要记录没有浸入之前的刻度和完全浸入之后的刻度)(7)想一想,可以利用上面的方法测量乒乓球、冰块的体积吗?为什么?也是可以的,但必须把它们完全浸入水中。

三、课堂作业

完成课本第41页练习九第7~13题。

第7题:教师引导学生理解题意,要根据已知条件算出水深是13cm时水和土豆合在一起形成的长方体的体积,放入土豆后高是13cm,根据“底面积×高”的公式,可以求出放入土豆后的体积,再从中减去5L水,就得出土豆的体积。第13题:一个大圆球加一个小圆球排出的水是12mL,一个大圆球加四个小圆球排出的水是24mL,这样可知3个小圆球共排出的水是24-12=12(mL),由此可得出3个小圆球的体积是12cm3,则1个小圆球的体积为4cm3,所以大圆球的体积为12-4=8(cm3)

第16题:这是个思考题,教师引导学生弄清图意,让学生在四人小组内进行交流、讨论,全班反馈时,可让学生说说思维过程。

四、课堂小结 今天这节课,同学们都能用学到的知识解决生活中常见的问题,希望大家在今后的计算中要多加小心。

五、课后作业

完成练习册中本课时练习。

板书设计 容积和容积单位(2)不规则物体的体积 ↓排水法

篇7:五年级下册数学长方体与正方体奥数练习题

《长方体和正方体》

新乡市第一实验学校 周云霄

第三单元《长方体和正方体》的主要教学内容有:长方体和正方体的认识、长方体和正方体的表面积、长方体和正方体的体积。现将本单元中教学中的一些感悟总结如下:

1.长方体和正方体表面积与体积的计算。

长方体和正方体表面积与体积的计算对学生来说是一个难点。例:如果长方体表面积的计算出现特殊情况(没有底面、没有上面、只围四周),学生在计算时困难更大,正方体表面积特殊情况的计算相对容易一些,只需理解需要求出几个面的面积即可。

2.在括号里填入合适的单位。

这类题目不仅需要学生理解体积单位和容积单位的含义,还要学生建立1cm、1dm、1m的表象,并与生活中的一些物体建立联系。

3.单位换算。

单位换算对于学生而言也是一个难点,这需要学生熟知不同的单位之间的进率,掌握高级单位与低级单位之间相互换算的方法。在单位换算中,形如8.05 m =()m()dm,1 dm5cm=()dm,更需要加强方法的指导以及专项练习。32

323

4.不规则物体的体积。

不规则物体的体积一般采用排水法,使用排水法求物体的体积时变化形式多样,例如:容器中注满水或没有注满水、容器是否能完全淹没到水中,都需要学生充分观察分析题意。

姬冠珍已阅张永万已阅李治佳已阅

篇8:五年级下册数学长方体与正方体奥数练习题

课例回放:

片段一:直观演示,整体感知。

师:(出示火柴盒)同学们,我们今天利用火柴盒来研究一些数学问题,好吗?火柴盒是我们认识过的什么立体图形?

生:火柴盒是个长方体

师:谁来说说长方体有哪些特征?

生1:长方体有6个面,8个顶点,12条棱。

生2:长方体是由6个长方形面围成的图形,有的长方体会有2个相对的面是正方形。

生3:长方体相对的面完全一样,它上面对下面,左面对右面,前面对后面。因此,长方体的面可分为3组。

生4:长方体的棱也分为3组,长、宽、高各是4条。

师:那么,什么是长方体的表面积?请同学们研读教材第33至34页相关内容。

(学生活动。)

师生归纳:长方体6个面的总面积,叫做长方体的表面积。

片段二:分类实践,探究算法。

师:同学们,你认为长方体每个面的大小跟哪些因素有关呢?让我们一起用火柴盒探究!

活动一:摆一摆,找一找。

学生分别将火柴盒平放、侧放、立放在桌面上,找一找并指出长方体不同摆放位置时的长、宽、高。

活动二:想一想,说一说。

让学生再次结合火柴盒的三种不同摆放位置想一想,如何根据长方体的长、宽、高确定每组面的长和宽?说一说,怎样计算每个面的面积?

总结归纳:长×宽=上(下)面的面积

长×高=前(后)面的面积

宽×高=左(右)面的面积

活动三:量一量,算一算

师:同学们,老师要把一个火柴盒用彩纸完全包装起来,请你们动手量一量计算所需要的数据,算一算至少需要多大面积的彩纸才够?

(学生分组测量并尝试计算其表面积。)

汇报时出现三种不同的计算方法:(1)6个面面积相加的方法;(2)三组相对的面相加的方法;(3)运用分组法(上面+前面+右面)×2计算。随即师生互评,优化方法。[选用方法(3)的学生较多。]

片段三:巩固内化,灵活运用。

1.右图画出了长

方体的长、宽、高,学生据图示想象该长方体并同桌互说,指出所要计算的面的面积及相应的算式。

2.分组计算,男生计算火柴盒外套纸板的面积是多少?女生计算火柴盒内匣纸板的面积是多少?

3.议一议,生活中计算哪些物体的表面积像火柴盒的外套这样需要算四个面?哪些物体的表面积像火柴盒的内匣要算五个面呢?

反思:

1.巧选素材,让学生亲近数学。在数学教学中,如何让数学贴近学生的生活实际,从而使学生对数学产生一种亲近感,与数学结下“深情厚谊”呢?教学中我选取农村孩子熟悉的火柴盒,通过对比计算整个盒子的外套、内匣,使学生不仅看得见、摸得着,而且直观形象地领会丫计算长方体表面积的方法;通过回顾、观察、操作,探寻长方体长、宽、高交替变化的过程,明确底面中较长的棱为长,较短的棱为宽,垂直于底面的棱为高,进而探究出每个面的面积大小与哪些因素有关。在对长方体不同摆放位置的观察、思考、找寻中,师生共同总结归纳出相应面的计算方法,为学生主动建构表面积模型建立了清晰表象。

2.活动引领,寻求主导与主体的平衡。教学活动是教师的教与学生的学的双边活动。最近,笔者观摩了几位老师在教学长方体的表面积时,为凸显学生的主体地位,放手让学生对长方体盒子展开,结合平面展开图逐一计算每个长方形的面积,并明确指出长方体六个面的总面积叫做长方体的表面积。其间的操作,缺失应有探究味,降低了思维含量,难以达到培养学生的创新精神和实践能力的目的。鉴于此,我认真思考了在教学中应如何结合教学内容和学生的认知水平进行有效引领,使教师的主导作用与学生的主体作用有机结合起来。如本课教学就是通过“摆一摆”、“想一想”、“说一说”、“算一算”等活动,引导学生进行有序思考,加强学法指导,培养学生兴趣,张扬学生个性(运用不同方法计算表面积),在新旧知识之间架设“桥梁”,建立长、宽、高任意两因数的积与每组面面积的一一对应关系,弄清了知识的“关节点”,实现了知识的正迁移。

本文来自 古文书网(www.gwbook.cn),转载请保留网址和出处

相关文章:

一年级上奥数01-06

冷库保温施工方法01-06

奥数数学01-06

小学奥数教学01-06

奥数常见试题01-06

奥数教案01-06

小学奥数老师01-06

奥数加法原理教案01-06

父亲的奥数01-06

六年级的奥数01-06

注:本文为网友上传,旨在传播知识,不代表本站观点,与本站立场无关。若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:66553826@qq.com

上一篇:一年级上奥数 下一篇:奥数教案