关键词: 向量
高中数学必修4人教A教案2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例(精选2篇)
篇1:高中数学必修4人教A教案2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例
2.5.1平面几何中的向量方法
教学目的:
1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;
2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.; 3.让学生深刻理解向量在处理平面几何问题中的优越性.教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.教学难点:如何将几何等实际问题化归为向量问题.教学过程:
一、复习引入:
1.两个向量的数量积: ab |a||b|cos.2.平面两向量数量积的坐标表示: abx1x2y1y2.3.向量平行与垂直的判定: a//bx1y2x2y10.abx1x2y1y20.4.平面内两点间的距离公式:
|AB|5.求模:
(x1x2)2(y1y2)2
aaa
a
二、讲解新课: 例
x2y a(x1x2)2(y1y2)2
1.平行四边形是表示向量加法与减法的几何模型.如图,AC ABAD,DB ABAD,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?
DABC
思考1:
如果不用向量方法,你能证明上述结论吗?
练习1.已知AC为⊙O的一条直径,∠ABC为圆周角.求证:∠ABC=90o.(用向量方法证明)
思考2:
运用向量方法解决平面几何问题可以分哪几个步骤?
用向量方法解决平面几何问题的“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.例2.如图,□ ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗? FD
E RT
A B
三、课堂小结
用向量方法解决平面几何的“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.四、课后作业
习题2.5 A组第1题
C 2
2.5.2向量在物理中的应用举例
教学目的:
1.通过力的合成与分解模型、速度的合成与分解模型,掌握利用向量方法研究物理中相关问题 的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识;
2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力,体会 数学在现实生活中的作用.教学重点:运用向量的有关知识对物理中的力的作用、速度分解进行相关分析来计算.教学难点:将物理中有关矢量的问题转化为数学中向量的问题.教学过程:
一、复习引入: 1.讲解上节作业题.已知A(1,0),直线l:y2x6,点R是直线l上的一点,若RA2AP,求点P的轨迹方程.2.你能掌握物理中的哪些矢量?向量运算的三角形法则与平行四边形法则是什么?
二、讲解新课:
例1.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种形象吗?
探究1.设两人拉力分别为F1,F2,其夹角为,旅行包的重力为G。(1)为何值时,|F1|最小,最小值是多少? 3
(2)| F1|能等于|G|吗?为什么? 探究2: 你能总结用向量解决物理问题的一般步骤吗? 用向量解决物理问题的一般步骤是:
(1)问题的转化:把物理问题转化为数学问题;(2)模型的建立:建立以向量为主体的数学模型;
(3)参数的获得:求出数学模型的有关解——理论参数值;(4)问题的答案:回到问题的初始状态,解决相关物理现象.例2.如图,一条河的两岸平行,河的宽度d=500 m,一艘船从A处出发到河对岸.已知船的速度|v1|=10 km/h,水流速度|v2|=2 km/h,问行驶航程最短时,所用时间是多少(精确到0.1 min)?
思考
3、: “行驶最短航程”是什么意思?怎样才能使航程最短?
三、课堂小结
向量解决物理问题的一般步骤:(1)问题的转化:把物理问题转化为数学问题;(2)模型的建立:建立以向量为主体的数学模型;
(3)参数的获得:求出数学模型的有关解——理论参数值;(4)问题的答案:回到问题的初始状态,解决相关物理现象.四、课后作业
习题2.5 A组第4题
篇2:高中数学必修4人教A教案2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例
平面向量复习课
(一)一、教学目标
1.理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。4.了解向量形式的三角形不等式:||a|-|b|≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a|2+|b|2)=|a-b|2+|a+b|2.5.了解实数与向量的乘法(即数乘的意义): 6.向量的坐标概念和坐标表示法
7.向量的坐标运算(加.减.实数和向量的乘法.数量积)
8.数量积(点乘或内积)的概念,a·b=|a||b|cos=x1x2+y1y2注意区别“实数与向量的乘法;向量与向量的乘法”
二、知识与方法
向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视.数量积的主要应用:①求模长;②求夹角;③判垂直
三、教学过程
(一)重点知识:
1.实数与向量的积的运算律:
(1)(a)()a(2)()a aa(3)(ab)ab
2.平面向量数量积的运算律:
(1)abba
(2)(a)b(ab)a(b)
(3)(ab)c acbc
3.向量运算及平行与垂直的判定: 设a(x1,y1),b(x2,y2),(b0).则ab(x1x2,y1y2)
ab(x1x2,y1y2)
abx1x2y1y2
a//bx1y2x2y10.abx1x2y1y20.4.两点间的距离:
|AB|(x1x2)2(y1y2)2
5.夹角公式: cosab a bx1x2y1y2 x1y1x2y22222
6.求模:
aaa
ax2ya(x1x2)2(y1y2)2
(二)习题讲解:第二章 复习参考题
(三)典型例题
例1. 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设OA=a,OB=b,OC=c,且|a|=2,|b|=1,| c|=3,用a与b表示c
解:如图建立平面直角坐标系xoy,其中i, j是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-3),也就是a=i -3j, b=j,c=-3i所以-3a=33b+c|即c=3a-33b
(四)基础练习:
(五)、小结:掌握向量的相关知识。
(六)、作业:
第二章
平面向量复习课
(二)一、教学过程
(一)习题讲解:
(二)典型例题
例1.已知圆C:(x3)(y3)4及点A(1,1),M是圆上任意一点,点N在线
22段MA的延长线上,且MA2AN,求点N的轨迹方程。
练习:1.已知O为坐标原点,OA=(2,1),OB=(1,7),OC=(5,1),OD=xOA,y=DB·DC(x,y∈R)
求点P(x,y)的轨迹方程;
2.已知常数a>0,向量m(0,a),n(1,0),经过定点A(0,-a)以mn为方向向量的直线与经过定点B(0,a)以n2m为方向向量的直线相交于点P,其中R.求点P的轨迹C的方程;
例2.设平面内的向量OA(1,7), OB(5,1), OM(2,1),点P是直线OM上的一个动点,求当PAPB取最小值时,OP的坐标及APB的余弦值.
解
设OP(x,y).∵
点P在直线OM上,∴ OP与OM共线,而OM(2,1),∴
x-2y=0即x=2y,有OP(2y,y).∵ PAOAOP(12y,7y),PBOBOP(52y,1y),∴ PAPB(12y)(52y)(7y)(1y)
= 5y2-20y+12 = 5(y-2)2-8.
从而,当且仅当y=2,x=4时,PAPB取得最小值-8,此时OP(4,2),PA(3,5),PB(1,1).
于是|PA|34,|PB|2,PAPB(3)15(1)8,∴ cosAPBPAPB|PA||PB|8342417 17小结:利用平面向量求点的轨迹及最值。
相关文章:
基于高硬度水性家具漆的生产工艺研究01-19
浆液法高密度聚乙烯生产工艺及催化剂研究01-19
脱氢二氢茉莉酮酸甲酯的合成工艺01-19
邻苯二甲酸酯类增塑剂01-19
化工生产工艺研究01-19
白酒的生产工艺01-19
酒厂酵母发酵残液中氨基酸初提工艺研究01-19
硫酸生产工艺研究01-19
腻子的生产工艺01-19