年处理60万吨建筑垃圾回收再利用项目(共5篇)
篇1:年处理60万吨建筑垃圾回收再利用项目
受枣庄市锦山再生资源回收利用有限公司的委托,山东志远安全管理咨询有限公司对《年处理60万吨建筑垃圾回收再利用项目》进行了评估。
作为第三方稳评机构,山东志远本着实事求是的原则,对项目所在地周边环境进行实地勘验,对利益相关者、基层机构开展调研。枣庄市锦山再生资源回收利用有限公司位于枣庄市峄城区底阁镇康庄村,厂区所在地地势平坦,地层稳定,交通便利,通讯畅通,配套设施齐全,适宜项目的建设。而且本项目建厂条件具备,原、燃料充足,建筑垃圾资源化利用是循环经济可持续发展的重要举措,具有较高的科技含量,附加值较高,符合国家产业政策,有利于推动行业技术进步,其发展前景和经济效益十分客观。评估认为,该项目可控性风险均为较小或微小风险,是基本可控的,总体为低风险等级。
篇2:年处理60万吨建筑垃圾回收再利用项目
实现建筑垃圾资源化、减量化、无害化的经济效益、社会效益和生态效益,利用建筑垃圾再生原料加工再生产品,不但保护了环境,而且具有可观的经济效益。建筑垃圾正成为一种可持续发展的资源,越来越受到社会各界的重视,未来很长一段时间内将成为我国可持续发展的动力资源。
中意矿机建筑垃圾回收利用加工机械是可以通过集成组合来适应不同建筑垃圾场地,不同建筑垃圾性质和不同工艺流程,该移动破碎站可灵活组建,通常有振动给料机、颚式破碎机、反击式破碎机(冲击式破碎机)、振动筛和胶带传输机等设备组合而成,生产规模为50~300吨/时。可以缩减其他生产线搭建的时间和成本以及最大程度上提高生产效率。推进新工艺和新技术成果的应用,减少重复建设、投资巨大、影响生产、严重制约科技成果产业化的瓶颈问题,推进新工艺新技术成果的产业化。同时,中意矿机的研究成果有效提升了我国城市建筑垃圾的利用效率,改变现有建筑垃圾开发的粗放处理、加工的现状,提高企业效益,对环境保护和资源保护将起到积极作用。
篇3:年处理60万吨建筑垃圾回收再利用项目
关键词 垃圾回收; 优化模型; 0-1整数规划; 两型社会
中图分类号 O22.1 文献标识码 A
Optimization Model of Garbage Collection with Recycling Demand
JIANG Huabin1, MA Shuangyan2,ZHANG Jianshi2
(1.Hunan Vocational College of Commerce, Department of Information Technology, Changsha,Hunan 410205,China;
2.Finance School of Jilin University, Changchun,Jilin 130012,China)
Abstract It is a fundamental requirement to recycle garbage for construction of resource conserving and environmentalfriendly society (called two types of social). This article investigated the problem of garbage collection with deterministic daily recycled amount by the approach of optimal inverse logistics management. The optimization models were constructed respectively with minimal processing cost in two cases: the processed garbage can be fully reused by shipping to the demand enterprises directly, or the processed garbage can be partially reused by shipping to the demand enterprises or the garbage treatment centers. The models turn out to be 0-1 integer programs, and can be solved directly in the software LINGO. Case study shows that the models are promising.
Keywords Garbage recycling; optimization model; 0-1 integer programming;two types of society
1 引 言
逆向物流是现代物流学中的新概念,美国物流管理委员会(CLM)对这一概念的定义是:实施,计划和控制原料,成品,半成品库存及相关信息,高效且经济地从消费点到起点的过程,从而达到回收价值和适当处理的目的[1]。随着公众环保意识的不断增强,环保法规约束力度的逐步加大,逆向物流的经济价值和社会价值也日益显现.目前,逆向物流的研究已经引起人们的广泛关注. Peirce在废弃物处理设施和处理技术既定条件下,利用线性规划模型研究了中转站、处理设施和长期储存仓库之间运输线路问题[2];Zografos以运输风险、运输时间和处理风险最小化作为研究目标,研究了单一类型废弃物的逆向物流问题[3];Koo等利用模糊理论和多目标优化技术研究了韩国有害废弃物处理中心的区位和车辆线路问题[4];沈雁飞等简要讨论了城市生活垃圾逆向物流网络优化设计的问题,在垃圾回收中心的日回收量确定的情况下,研究了垃圾回收中心和垃圾处理中心匹配问题,以达到费用最少的目标[5]. 万中等人还研究了多态不确定性环境下的城市固废管理问题连续性优化模型及求解算法[6-8].
考虑到经垃圾处理中心处理后的垃圾可全部利用或部分利用的情形,本文将研究一类新的垃圾回收处理问题的离散型优化模型,除垃圾回收中心和处理中心外,本模型还引入了垃圾再利用需求企业和垃圾终端环保处理中心.在给定模型各要素之间的的时间和空间关系的条件下,对垃圾的回收方式和可再利用垃圾的运输途径进行决策优化,目标是最小化运输成本.
其中,C表示运输费用因子,即每一单位重量物品的运输费用与运输距离或者运输时间的比值;xij为决策变量, 表示垃圾回收中心vi的垃圾是否运往垃圾处理中心uj进行处理. 若“是”,则取“1”, 否则取“0”;Di表示垃圾回收中心vi的日回收量;Wj表示垃圾处理中心uj的日处理能力;Si表示垃圾回收中心vi结束回收的时刻即开始运往处理中心uj的时刻;aj表示处理中心uj开始工作的时刻;bj表示处理中心uj结束工作的时刻;tij表示垃圾回收中心vi到垃圾处理中心uj的运输时间.
考虑到经垃圾处理中心处理后的垃圾可全部利用或部分利用,本文引入处理后的垃圾进行再利用的需求企业,并分全部或部分可被再利用两种情形建立新的优化模型,不能再利用的垃圾则最终由终端环保处理中心进行环保处理.
2.1 全部被再利用的情形
当考虑经过垃圾处理中心处理过后的全部垃圾均可被再利用时,需要加入需求企业,此时,不仅要考虑哪个垃圾回收中心的垃圾应该运往哪个垃圾处理中心,还应该考虑哪个垃圾处理中心的垃圾应该运往哪个需求企业. 因此,为构造新的运输费用函数,作以下模型假设:①一个垃圾回收中心的垃圾只能运往到一个垃圾处理中心;②假设垃圾处理中心的个数小于垃圾回收中心的个数;(③假设不考虑垃圾处理中心本身的建设费用和运营费用;④假设单位重量物品的运输费用与运输距离成正比;⑤假设所有垃圾车将垃圾从垃圾回收中心运往垃圾处理中心的速度是固定的;⑥假设不考虑需求企业本身的建设费用和运营费用;⑦假设垃圾只有经过垃圾处理中心的处理之后才能运往需求企业,而不能直接由垃圾回收中心运往需求企业;⑧假设从垃圾处理中心运往需求企业的车子的运输速度与从垃圾回收中心运往垃圾处理中心的车子的速度是相同的;⑨假设所有垃圾处理中心对垃圾的处理率相同.
nlc202309021823
首先引入如下记号:
垃圾回收中心: V={vi|i=1,2,…,m};
垃圾处理中心: U={uj|j=1,2,…,r};
需求企业的集合:T={tk|k=1,2,…,n};
dij: 垃圾回收中心vi到垃圾处理中心uj的运输距离;
djk:垃圾处理中心uj到需求企业tk的运输距离;
C: 运输费用因子(每单位重量物品的运输费用与运输距离成正比);
xij: 为0,1决策变量, 表示由垃圾回收中心vi的垃圾是否运往垃圾处理中心uj进行处理;
xjk: 为0,1决策变量, 表示可回收垃圾是否从垃圾处理中心uj运往需求企业tk.若“是”,则取“1”, 否则取“0”;
Di: 垃圾回收中心vi的日回收量;
Wj: 垃圾处理中心uj的最大处理能力j=1,2,…,r;
Rk:需求企业tk的最大需求量,k=1,2,…,n;
Si: 垃圾回收中心vi结束回收的时刻即从此时开始运往处理中心uj的时刻;
aj: 处理中心uj开始工作的时刻j=1,2,…,r;
bj:处理中心uj结束工作的时刻j=1,2,…,r;
v: 运送垃圾的平均速度;
tij:垃圾回收中心vi到垃圾处理中心uj的运输时间,即tij=dij/v;
t′jk:垃圾处理中心uj到需求企业tk的运输时间,即t′jk=djk/v;
η:垃圾处理中心对垃圾的处理率.
此时,总的运输费用应该由两部分组成,一部分是从垃圾回收中心运往垃圾处理中心的运输费用,另一部分是从垃圾处理中心运往需求企业的运输费用.每个需求企业都有一个最大需求量,运往该需求企业的总需求量必须不超过这个需求企业的最大需求量[9].为了使模型更更加贴合实际,具有实用性,认为垃圾经过处理中心的处理,必然会有一部分损失,故需在模型中加入垃圾处理中心对垃圾的处理率.除此之外,在垃圾处理中心运往需求企业这个过程中,若需求企业的个数少于垃圾处理中心的个数,为使模型简单化,则必须有一个垃圾处理中心的垃圾只能运往一个需求企业,多个垃圾处理中心的垃圾可以运往同一个需求企业;若需求企业的个数大于垃圾处理中心的个数,则必须有对于每一个需求企业,至少需要接受从一个垃圾处理中心运过来的垃圾.若需求企业的个数等于垃圾处理中心的个数,此时考虑必须有一个垃圾处理中心的垃圾只能运往一个需求企业和必须有对于每一个需求企业至少接受从一个垃圾处理中心运来的垃圾两种情况是相同的,所以可归于任何一种情况.在此将需求企业个数等于垃圾处理中心个数的情况归于需求企业个数多于垃圾处理中心个数的情况.基于上述论述,分情况建立优化模型.
1) 需求企业数目少于垃圾处理中心数目
此时新增假设:一个垃圾处理中心的垃圾只能运往一个需求企业,多个垃圾处理中心的垃圾可以运往同一个需求企业.从而可建立如下模型(记为M1):
在模型(M1)和(M2)中,目标函数为总的运输费用成本;第一个约束条件表示一个垃圾回收中心的垃圾只能由一个垃圾处理中心负责处理;第二个约束条件分别表示一个垃圾处理中心的垃圾只能运往一个需求企业,多个垃圾处理中心的垃圾可以运往同一个需求企业,以及每一个需求企业至少需要接受从一个垃圾处理中心运过来的垃圾;第五个约束条件表明运往一个垃圾处理中心的垃圾量不能超过该处理中心的最大处理能力;第六个约束条件表明运往一个需求企业的垃圾量不能超过该需求企业的最大需求量;第七个约束条件确保垃圾运输车在处理中心工作时间范围内到达, 否则视为无效解.模型(M1)和(M2)均为0-1整数规划模型.
2.2 部分垃圾可被再利用的情形
下面考察经过垃圾处理中心处理的垃圾部分可被利用,另外一部分不能被利用,需要进行环保处理的情形,即在(M1)和(M2)的基础上再加入一个环保处理过程.
当部分垃圾可以被再利用时,不仅需要考虑垃圾回收中心到垃圾处理中心的运输费用,经垃圾处理中心处理过后可以被再利用的垃圾从处理中心到需求企业的运输费用,还需要考虑不能被再利用的垃圾从处理中心到环保处理的运输费用.此时,假设:①假设不能利用的垃圾全部运往一个地方进行环保处理;②假设不考虑环保处理的费用;③假设所有垃圾的可再利用率相同;④假设运输车从垃圾处理中心运送垃圾到环保处理中心的速度与其他的运输车的速度相同;
新增加的符号为:
d′j:垃圾处理中心uj到环保处理中心的运输距离;
t′j:垃圾处理中心uj到环保处理中心的运输时间,即t′j=d′j/v;
ρ:垃圾经过处理中心的处理之后的可再利用率.
此时,总的运输费用应该由三部分组成,第一部分是从垃圾回收中心运往垃圾处理中心的运输费用,第二部分是从垃圾处理中心运往需求企业的运输费用,第三部分是由垃圾处理中心到环保处理中心的运输费用.为将模型简化,假设只有一个环保处理中心的情况,即经过垃圾处理中心处理过的所有不能被再利用的垃圾均运往一个地方:垃圾终端环保处理中心 [10].
1) 需求企业数目少于垃圾处理中心数目
3 模型实证研究
本节结合实际问题证实模型的合理性.考虑某城市共有10个垃圾回收中心,3个垃圾处理中心,5个需求企业,为了使城市环境良好,市政每天早上派遣专门的垃圾车从所有居民区收集所产生的生活垃圾,8点前运到附近的垃圾回收中心,然后再由垃圾回收中心派遣专门的车辆将垃圾运往最后的目的地——垃圾处理中心.为提高垃圾处理中心的工作效率,使机器能够得到合理的利用,不至于出现空闲的机器,采取将垃圾进行集中处理的办法,在此规定垃圾处理中心每天的工作时间为9点到17点.然后经过处理的垃圾再有运输车运往需求企业[11].每个处理中心的处理能力如表1所示.
nlc202309021823
每个垃圾回收中心的日回收量如表2所示. 每个垃圾回收中心到处理中心的运输距离如表3所示,每个垃圾处理中心到需求企业的运输距离如表4所示,运输车运输的平均速度为10km/h,垃圾回收中心结束回收的时刻,即开始运往垃圾处理中心的时刻如表5所示,各个需求企业的最大需求量如表6所示,为简化问题,将运输费用因子取1处理[9].
在LINGO10软件平台上编程求解模型(M3),利用分枝定界算法可得全局最优解:xi1=1,i=1,3,4,6;xi2=1,i=7,8,9,10;xi3=1,i=2,5;x3k=1,k=1,2,3,4,5.其他决策变量的最优值为0.最小费用为3277.53.
若垃圾处理中心到环保处理中心的运输距离见表7[11]. 在LINGO10软件平台上编程求解模型(M4) ,可得同样的全局最优解,其最小费用为8 398.52.
4 结束语
本文从垃圾可回收再利用的角度分析了逆向物流在垃圾回收处理中的应用,考虑了在垃圾回收中心的日回收量确定的条件下,经处理过后的垃圾全部都可被再利用和部分可被再利用的情况,为解决实际问题提供了很好的方法.
参考文献
[1] 吴刚.逆向物流规划体系及其基础理论研究[M].成都:西南交通大学出版社,2008.
[2] Peirce J J, Davidson G M. Linear programming in hazardous waste management[J]. Journal of Environmental Engineering, 1982, 108(5): 1014-1026.
[3] Zografos, K G, Samara S. Combined locationrouting model for hazardous waste transportation and disposal [J]. Transportation Research Record, 1990, 1245:52-59.
[4] Koo J K, Shin H S, Yoo H C. Multiobjective siting planning for a regional hazardous waste treatment center[J]. Waste Management and Research, 1991, 9(3): 218-250.
[5] 沈雁飞,牧云志.城市生活垃圾逆向物流网络优化[J].经济论坛,2007(12):68-71.
[6] 万中, 冯燕茹, 梁文冬. 多态不确定性环境下的城市固废管理模型及求解方法[J]. 湖南大学学报:自然科学, 40(2): 89-94, 2013.
[7] 万中,阳彩霞, 郝爱云. 地市级可再生资源能源利用优化[J]. 经济数学, 26(2):36-41, 2009.
[8] 费威. 基于可替代资源的稀缺资源利用问题研究[J]. 经济数学, 29(1):6-9, 2012.
[9] A I BARROS, R DEKKER, V SCHOLTEN.A twolevel network for recycling sand: a case study [J]. European Journal of Operational Research, 1998, 110(2): 199-214.
[10]L OVIDIU, D ROMMERT. A stochastic approach to a case study for product recovery network design[J]. European Journal of Operational Research, 2005, 160(1): 268-287.
[11]J BAUTISTA, J PEREIRA. Modeling the problem of locating collecting areas for urban waste management. An application to the metropolitan area of Barcelona [J]. Omega, 2006, 34(6): 617-629.
篇4:年处理60万吨建筑垃圾回收再利用项目
关键词:建筑垃圾回收再利用设备 移动破碎站
中意矿机经过技术专家的不断研发在全国范围内率先研发成功国内首台建筑垃圾处理设备——建筑垃圾回收再利用设备,解决了未来社会建筑垃圾处理的难题,具有良好的社会意义,并填补了国内破碎设备在移动装备技术领域的空白。该移动破碎站处理专业用于建筑垃圾处理领域,其在冶金、矿山、建材、水电、高速铁路、公路领域也有不俗的表现。
针对建筑垃圾回收处理技术,郑州中意矿山机械有限公司研发生产的建筑垃圾回收再利用设备可用来破碎和分离建筑垃圾等废弃物,实现建筑垃圾回收利用。中意矿机将独立研发的移动建筑垃圾破碎设备,不仅考虑到由于建筑垃圾的堆放复杂,而且处于城市中的各个角落,所以设计成为移动式的机器设备,更具有在城市中的利用价值,大大降低了使用过程中携带式的问题,而且移动破碎站占地面积小,设备灵活、方便,机动性强,节省大量基建及迁址费用。能够对物料进行现场破碎而不必将物料运离现场再破碎,并可随原料开采面的推进而移动,从而大量降低了物料的运输费用。移动破碎站配置灵活,可以根据实际现场设计改型或特殊性移动破碎站,非常适合建筑垃圾破碎。
篇5:建筑垃圾再回收利用可行性报告
可行性报告
西安文昊新型建材有限公司
前言
胡锦涛总书记在党的十七大报告中指出,建设生态文明,基本形成节约能源和资源,保护生态产业结构、增长方式、消费模式。循环 经济形成较大规模、可再生能源比重显著上升。主要污染物排放得到有效控制,生态环境质量明显改善。西安市近年来城市建设突飞猛进,新建高楼拔地而起,城中村大规模拆迁,使建筑垃圾排放量急剧增长。大量的建筑垃圾给西安市的生态环境、市容卫生管理及交通运输带来巨大压力,同时建筑垃圾的排放占用了大量的土地,污染土壤和地下水源,运输和排放过程带来日益严重的环境污染,严重的影响到西安市作为我国西部开发的龙头和城市园林化的国际都市地位。另一方面,随着城市建设的发展,大量的建筑材料消耗加剧了开采运输能源的消耗。我国人均矿产资源只有世界平均水平的一半,人均占有土地和耕地面积为世界平均水平的四分之一。从循环经济角度考虑,将建筑垃圾中的砖、石、混凝土块(占建筑垃圾80%以上)资源化利用,直接将建筑垃圾破碎为再生粗细骨料代替天然砂石料,或利用建筑垃圾中各组分的特点生产出新产品。资源化利用建筑垃圾是解决高消耗、高污染、高排放、低效益的重要措施,是节约土地、节约资源的重要途径,是发展循环经济、建设环境友好型和资源节约型社会的重要举措,是贯彻落实科学发展观、实施可持续发展、保护环境的必然要求。与发达国家相比,我国建筑垃圾资源化水平差距相当大,日本建筑垃圾资源重利用达到98%,欧盟国家平均综合利用也超过70%。我国建筑垃圾资源化利用已列入十一五和十二五规划,但大中城市建筑垃圾的资源化利用均处在探索阶段。西安市作为国际化大都市更应该加大对建筑垃圾资源化利用的投入,尽快建立本地建筑垃圾资源化利用示范性工程,为西北地区乃至全国探索适合建筑垃圾资源化利用的模式,发挥事发作用,带动资源化利用建筑垃圾工作全面发展。
近年来,西安市通过大力发展经济开发区、新区、旅游等经济,全力打造“中国内地大都市”、“中国旅游名城”,努力建设开放、富裕、文明、魅力、和谐的现代化国际知名城市,经济社会实现了快速发展。西安成为大西北最具发展活力、最有开发潜力的地区之一。西安在大力建设发展。与新型墙体材料相关的产业和项目主要有:楼盘开发,道路维修新建和周边农村女房屋规划,新型墙体材料可以生产各种类型的符合各种项目的材料,标砖适合楼房建筑,道路维修和新建可以用于路肩,农村房屋规划可以使用标砖和空心砖结合。新型墙体砖覆盖面广,伸缩性大,节能环保,是传统红砖的理想替代品。
第一章 建筑垃圾简介
建筑垃圾大多为固体废弃物,一般是在建筑过程中或旧建筑物维修、拆除过程中产生的。不同结构的建筑各种成分的含量虽然有所不同,但其基本组成是一致的,主要由土、渣土、散落的砂浆和混凝土、剔凿产生的砖石和混凝土碎块、打桩截下的钢筋混凝土桩头、金属、竹木材、装饰装修产生的废料、各种包装材料和其他废弃物组成,其中,砖石生产粗细骨料,可用于生产相应强度等级的混凝土、砂浆或制备诸如砌块、墙板、地砖等建材制品,具有实现建筑垃圾减量化、资源化、节约天然资源、保护生态环境等优势。用设备将建筑垃圾破碎,筛分后,生产出的产品可以广泛应用于免烧砖、道路基础、建筑等行业,真正实现变废为宝利国利民,为城市建设走上了持续发展的循环轨道提供了一条新的发展思路。
一、建筑垃圾分类和组成
建筑垃圾主要来源于土地开挖、破旧建筑材料(使用过的建筑材料)、道路开挖和建筑施工工地。按来源进行建筑垃圾分类并没有将其真正,难以指导循环利用。按照可再生性和可利用价值,建筑垃圾可分为可直接利用的材料、可作为材料再生或可以用于热回收的材料以及没有利用价值的废料等三类。
建筑垃圾组成因地区经济发展水平、建筑结构、拆除方式、回收方式不同而变化,通常包括水泥基材料、陶瓷基材料、天然石材、金属和其它(如木材、塑料)等。随着垃圾堆场的日益短缺及处理费用的提高,采取选择性拆除措施或在拆除现场对建筑垃圾预分选,将显著提高建筑垃圾的再生价值。
二、中国建筑垃圾的排放和利用情况
自上世纪80年代以来,我国建筑垃圾的排放量迅速增长,组成也发生了质的变化,可循环利用的组分比例不断提高。据统计,我国每年仅施工建设所产生的可循环利用的组分比例不断提高。如今建筑垃圾基本上未经任何处理,便被施工单位运往郊外或乡村露天堆放,或简单填埋,耗用大量土地和运输费用。随着我国耕地和环境保护等有关法律法规的颁布和实施,循环利用建筑垃圾已成为建筑施工企业和环保部门必须组织实施的产业。多个城市全面禁止生产实心粘土砖,我国从2003年7月1日起已在170多个城市全面禁止生产实心粘土砖,作为建筑垃圾存放的主要场所锐减。另一方面,大量有再生价值的材料也因填埋而浪费,如北京在重建西直门立交桥和大北窑立交桥时,拆除的数千方优质混凝土没有作任何处理,直接买地填埋。核心问题是建筑垃圾的循环利用在我国没有引起足够的重视,往往将它归于只能用于地基等低级要求的低档材料,更没有将建筑垃圾循环再生作为一个产业来发展。尽管如此,近年来我国在建筑垃圾再生利用方面的研究工作已逐渐展开,并取得进展。
三、国外建筑垃圾的排放和利用情况
发达国家已经和正在积极探索将垃圾变为一种新资源,一直发展成一个新兴的大产业。据美国“新兴预测委员会”和日本“科技厅”等有关专家做出的预测:在未来30年间,全球在能源、资源、农业、食品、信息技术、制造业和医疗领域,将出现“10大新兴技术”。
总体来讲,国外大多实行“建筑垃圾源头削减战略”,即在建筑垃圾形成之前,就通过科学管理和有效措施将其减量化,并采用科学手段,使其具有再生资源功能。
对建筑垃圾的处理,我认为应从源头抓起,借鉴国外先进理念,进一步推行建筑行业朝着法制化、规范化、环保化方向发展。建筑物所有人拆除所属建筑物时,应到建设及环保部门登记备案,先期缴纳一定数额的建筑垃圾处置保证金,交由有资质的拆除企业承担拆除任务,利用率不得低于一定比例,如能达标,则退还建筑垃圾处置保证金;如不能达标,则没收建筑垃圾处置保证金,乃至罚款,由政府出面对建筑垃圾进行环保化处理。此举旨在规范拆除行业施工秩序,促进资源再生利用和环境保护,既保证业主利益,又兼顾企业环保责任。当然这样一套制度的出台并实施,有赖于政府机关进一步论证和有力支持。
第二章
国家对新型建筑材料的扶持政策
国家为鼓励发展节能、节地、利废的新型墙体材料,以替代大量面广的实心粘土砖,推出一系列新政策,按照国务院令第82号、建科1991619号、国发199266号、财税字1994001号、财税字199544号、国发199636号、国发199737号、建科函199868号、国办发199972号、建住1999295号等文件之规定,这些政策概括起来有以下内容:
1.发展新型墙体材料的基建、扩建、技改项目、实行固定资产投资方向节税税率0%的政策;
2.发展新型墙体材料的项目,可列入国家开发银行的基本建设政策性投资项目,可享受政策性贷款;
3.发展新型墙体材料项目,引进过外先进设备,免征进口设备关税和进产品增值税;
4.凡企业利用企业外的大宗煤矸石、炉渣、粉煤灰作主要原料生产产品的所得,自经营之日起,免征所得税五年;
5.对企业秤的原料中掺有不少于30%的煤矸石、粉煤灰、炉渣及其他废的建材产品,免征产品增值税;
6.排渣单位不准以任何名义对生产新型墙体材料的废渣收费或变相收费利用废渣生产新型墙体材料的企业,排渣企业应积极给予支持,有条件的还可以给予补贴;
7.对生产新型墙体材料企业,可视具体情况减免土地使用税,对生产实心粘土砖企业应征收土地使用税; 8.对应用新型墙体材料建造的北方节能住宅,实行固定资产投资方向调节税率0%的政策;
9.在城市建设中限制使用实心粘土砖作为框架结构的填充材料,禁强度等级MU10.0以下的实心砖在5层以上的建筑中使用;
10.将发展节能建筑和新型墙体建筑纳入城市建筑总体规划,确保新型材建筑每年按一定比例增长;
11.积极推行按使用面积计算房屋售价;
12.对使用实心粘土砖在价外加收一定费用,建设发展新型墙体材料“项基金”,用于墙体企业的技术改造和建筑应用技术研发与开发;
13.各地从技术改造资金中划拨一定比例用于墙体企业技术改造; 14.采暖地区要按期达到国家颁布《民用建筑节能设计标准》,非采暖区要结合改善建筑物热环境制定应用新型墙材的具体规划,并大力组织实施,以此推动墙体材料和保温隔热材料发展促进节能建筑全面推广;
15.大中城市对节能建筑和新型墙体建筑,应根据当地情况,适当减免市政设施配套费用。
第三章
免烧砖项目产品市场分析
一、行业发展情况
1.行业发展特点分析
免烧砖瓦突出的特点就是强度高并且持续增长,使用寿命长,成本低。我免烧砖厂则能规避传统烧砖对环境造成危害的风险,对工业废渣进行回收处理可以起到改善环的作用,降低产品成本和提高建筑用砖的质量。本项目符合国家的政策和发展方向,本行业有着光明的发展优势。
另外,生产免烧砖所采用的主要材料为丰富廉价的废渣资源,所以单位成本比粘土砖低,加上其环保节能,强度高,参与市场竞争,必然能够替代粘土砖,发展前景十分广阔。我厂引进的免烧砖设备工艺精湛,运作可靠,生产效率高。2.行业盈利能力分析
由于现在,西安建设的发展和建设都需要建筑最基本的单位砖,所以对砖的需求量很大,有很大的市场前景。就现在市场行情来看,一个普通的机器,一年能够产生的利润在50万左右。3.行业生产技术情况
(1)免烧砖原料配比工艺。由于可做免烧砖的原料有上百种,而每种原料都有其特性,在免烧砖原料配比当中拥有不同的比例要求。同时还要考虑到所用原料的价格问题。所以目前大多数免烧砖厂的原料配比都存在问题。本着质量最优和成本最低的原则,我们针对西安区位和地理优势量身定做合适的原料比配方。我厂注重每种原材料的特性和价格,做出合理的原料配比,有利于保证免烧砖的成型和密实度以及早期强度。
(2)免烧砖专用化学添加剂配方。MSZ18-C型免烧砖化学添加剂是免烧砖生产过程当中必须添加的外加剂。本剂主要提高砖的早期强度,保水性能良好及透气性好,缩短养护周期。它在降低制砖成本的同时还将大大提高免烧砖的整体质量。因此我生产厂的免烧砖后期质量的干燥值较高,抗冻融性强。
(3)免烧砖后期养护技术。我厂注重科学合理的后期养护技术,不仅能够有效保证免烧砖的成品质量,更能有效缩短自然养护周期。
二、产品原材料供给情况分析
免烧砖是利用粉煤灰、煤渣、煤矸石、尾矿渣、化工渣或者天然砂、海涂泥等(以上原料的一种或数种)作为主要原料,不经高温煅烧而制造的一种新型墙体材料。我公司生产的空心砖主要以建筑垃圾为原材料,便于就地取材。由于建筑业的发展,对建筑用砖的需求不断增大,而砖的来源仍主要以传统的耗能毁田的粘土窑烧方式来生产供应(95%),据统计,我国年生产实心砖7000亿块,毁田数十万亩。为此,国家从90年代后就大力提倡利用工业废料造砖。总的来说,产品原材料供应市场充足。
三、项目产品市场分析
1.产品技术发展趋势
免烧砖生产线主要配套设备是免烧砖机,即俗称的压砖机或制砖机,是生产免烧砖的主要设备,此免烧砖机具有广泛的材料适用能力,能够利用多种材料制备免烧砖;同时本公司还具备为免烧砖机配备的材料搅拌和输运设备。这种设备具有结构紧凑、压制力大、刚性强、全密封防尘、循环润滑、操作简单、产量高、经久耐用的特点。喂料机构变速、回转盘转动等部位采用最先进技术,传动力大,运转平稳,到位准确,维修率低等优点。此外,本工艺设计了计量装置、配料准确、产品质量稳定。总之,本技术的利废、保土、节能、投资少、成本低、上马快、用灰渣量大,操作方便等优点,有很好的环保效益,而且有很好的经济效益。生产过程免蒸、免烧,一次成型,生产过程中不产生二次污染。2.项目建设的必要性
随着国家对“保护土地资源,淘汰秦砖汉瓦”国策的长期大力宣传,每个老百姓对红砖的负面影响都有了一定的认识,加上各地政府一方面对粘土烧结砖瓦厂加大力度征收土地资源税及各种费用,促进了粘土烧结砖瓦厂关闭转产,占地取土严重污染环境的传统砖瓦厂已是各地政府首先关停并转的对象,而免烧砖瓦行业以其优势顺应了历史潮流,避免传统瓦厂的负面效应,制砖生产设备的开发成功和广泛应用,对我国的工业废料污染治理和利用、对节约能源、保护 我国日益减少的土地资源和促进新型墙体材料工业将产生重要的影响。3.项目产品市场优势比较
近年来,由于生活水平不断得到提高,人们的住房水平发生很大的变化,建材方面消耗剧烈增加,但是由于取土造砖,对土地资源造成的破坏性很大,有些地方甚至出现了无土可取,一些不法商家更是打起了可耕地的主意,真是投机取巧。这是国家所不允许的,政府也出台了相应法令,取缔了很多无照砖厂,免烧砖的发展趋势已经成为必然。另一方面,粘土砖标号一般在75号到100号之间相对局限,而免烧砖最大可以达到300号一行,其强度与利用率远大于红砖,抗压高达35Mpa,使用寿命比粘土砖长很多。
四、该项目企业在同行业中的竞争优势分析
各地区人均耕地面积、经济水平及资源的差异,造成部分地区还在使用粘土砖,其主要原因是因为当地砖瓦厂没及时转型,没有面烧砖这样的新型墙体材料替代粘土砖,可又不能因此停止建房,导致粘土红砖在短期内存在。但是,由此带来的市场前景和商机也正是投资办厂,领先他人的最佳时机,此时生产免烧砖利润空间也最大。
第四章
建筑垃圾用量估算
我公司拟在西安市未央区汉城街道楼阁台村选址建厂,占地18亩,预注册资金70万元,主要生产免烧挤压空心砖(后有附图)。
该产品是一种新型建筑材料,主要用于建筑结构墙体填充。其选用的原材料是建筑垃圾,包括废砖、混凝土块、石子等,主要生产设备有主体挤压机,粉碎机,筛分器。生产过程无废气、废料、废渣等废弃物排出,绿色环保。它具有质轻、高强、保温、隔音、抗震、抗渗、适应性强,生产能耗低等特点。
目前,国家标准的挤压砖类型主要有三种,以几何尺寸为例,有240×115×53mm(实心),240×115×90mm(多空),390×190×190mm(两孔),这三种标准的挤压砖质量分别约为2.6Kg,3.8Kg,13Kg,主要原材料不同,重量也有所差别)。鉴于以上三种砖的尺寸及质量的不同,各自在建筑中的主要用途也不同。
由于传统烧制粘土砖浪费土地,生产过程污染环境,近年来已被政府部门限制使用。以390×190×190mm两孔空心砖为例,我厂每天可生产2万余块,每天可以用掉建筑垃圾300m3以上,每年可以回收至少10万m3的建筑垃圾。具有成本低,环保节能,砖体强度高,不怕水,抗风化,耐腐蚀,抗冻融等优点,因此必然要取代粘土砖成为新的墙体材料。目前,建筑行业已经大量使用混凝土加气块,这种砌块也是利用了河沙、粉煤灰、矿砂等作为原材料,变废为宝,利于环保,并且具有容重轻,耐高温,保温隔热性能好,加工性能好等优点,在框架结构,剪力墙的结构中得到广泛应用。鉴于挤压砖和混凝土加气块有着相似的优点,我们可以想象这种新型的挤压砖在建筑市场上也应该有着明朗的使用前景,当然这要建立在这种砖的各项指标都要符合使用规范要求的基础上。
附图:
建筑垃圾随处乱倒,堆叠如山:
将建筑垃圾收集处理:
相关文章:
千万吨炼厂减压转油线管道设计要点浅析02-13
万吨列车无线通信论文02-13
1000万吨/年常减压装置进口泵轴承故障分析及处理02-13
5万吨年泡花碱项目环境影响报告书02-13
万吨食用菌基地建设项目可行性研究报告02-13
年产万吨项目建议书02-13
百万吨死亡率02-13
8万吨/年丙烯酸装置氧化反应操作要点浅析02-13