第一篇:导数证明不等式方法
构造函数法证明导数不等式的八种方法
导数专题:构造函数法证明不等式的八种方法
1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法:
1、移项法构造函数 【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有11ln(x1)x x
12、作差法构造函数证明 【例2】已知函数f(x)
3、换元法构造函数证明
【例3】(2007年,山东卷)证明:对任意的正整数n,不等式ln(
4、从条件特征入手构造函数证明
【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证:.af(a)>bf(b)
5、主元法构造函数
1223xlnx. 求证:在区间(1,)上,函数f(x)的图象在函数g(x)x23的图象的下方;
1111)23 都成立. nnn1x)x,g(x)xlnx 例.(全国)已知函数f(x)ln((1) 求函数f(x)的最大值;
第 1 页 共 2 页 (2) 设0ab,证明 :0g(a)g(b)2g(
6、构造二阶导数函数证明导数的单调性 例.已知函数f(x)aexab)(ba)ln2. 212x 2(1)若f(x)在R上为增函数,求a的取值范围; (2)若a=1,求证:x>0时,f(x)>1+x
7.对数法构造函数(选用于幂指数函数不等式) 例:证明当x0时,(1x)
8.构造形似函数
例:证明当bae,证明abba
【思维挑战】
1、(2007年,安徽卷) 设a0,f(x)x1lnx2alnx
22求证:当x1时,恒有xlnx2alnx1, 11xe1x2
2、(2007年,安徽卷)已知定义在正实数集上的函数
f(x)
52122x2ax,g(x)3a2lnxb,其中a>0,且ba3alna, 求证:f(x)g(x)
22xb,求证:对任意的正数a、b,恒有lnalnb1. 1xa
3、已知函数f(x)ln(1x)
4、(2007年,陕西卷)f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a < b,则必有
(
)
(A)af (b)≤bf (a) (C)af (a)≤f (b)
(B)bf (a)≤af (b) (D)bf (b)≤f (a)
第 2 页 共 2 页
第二篇:导数压轴题 导数与数列不等式的证明
导数与数列不等式的证明
例1.已知函数f(x)alnxax3aR (1)讨论函数f(x)的单调性; (2)证明:112131nln(n1)(nN*) (3)证明:ln22ln33ln44ln55lnnn1nn2,nN* n(4)证明:ln2ln3ln4ln5lnn1n122324252n22nn2,nN* (5)证明:ln24ln34ln44ln54lnn4(n1)224344454n44nn2,nN* ln22ln32(6)求证:lnn2n12n12232...n22n1n2,nN (7)求证:122114211182...1122nenN
例2.已知函数f(x)lnxx1。 (1)求f(x)的最大值; nnn(2)证明不等式:12nennne1nN*
例3.已知函数fxx2lnx1
(1)当x0时,求证:fxx3;
(2)当nN时,求证:nf1111151 k1k2333...n342nn1
例4.设函数f(x)x2mln(x1)m0
(1)若m12,求f(x)的单调区间; (2)如果函数f(x)在定义域内既有极大值又有极小值,求实数m的取值范围; (3)求证:对任意的nN*,不等式lnn1nn1n3恒成立。
例5.已知函数f(x)ln(x1)k(x1)1(kR), (1)求函数f(x)的单调区间; (2)若f(x)0恒成立,试确定实数k的取值范围; (3)证明:ln23ln34lnnn1n(n1)4nN,n1.
导数与数列不等式的证明 收集整理:张亚争 联系电话:15936380010 1 / 2 例6.已知函数f(x)axbc(a0)的图像在点(1,f(1))处的切线方程为yx1。 x(1)用a表示出b,c;
(2)若f(x)lnx在[1,)上恒成立,求a的取值范围; (3)证明:1
例7.已知函数f(x)2alnxx21。
(1)当a1时,求函数f(x)的单调区间及f(x)的最大值; (2)令g(x)f(x)x,若g(x)在定义域上是单调函数,求a的取值范围; 111nln(n1)(n1). 23n2(n1)3n2n222222(3)对于任意的n2,nN,试比较与的ln2ln3ln4ln5lnnn(n1)*大小并证明你的结论。
1ln(x1)(x0) x(1)函数f(x)在区间(0,)上是增函数还是减函数?证明你的结论。
k(2)当x0时,f(x)恒成立,求整数k的最大值; x1(3)试证明:(112)(123)(134)(1n(n1))e2n3(nN*). 例8.已知函数f(x)
例9.已知函数fxxalnxa0 (1)若a1,求fx的单调区间及fx的最小值; (2)若a0,求fx的单调区间; ln22ln32lnn2n12n1(3)试比较22...2与n2,nN的大小,并证明。 23n2n1
例10.已知函数fxlnx,gxxaaR, x(1)若x1时,fxgx恒成立,求实数a的取值范围。 (2)求证:
例11.已知函数fxlnxxax
2ln2ln3lnn1n2,nN 34n1n(1)若函数fx在其定义域上为增函数,求a的取值范围; (2)设an1
例12.设各项为正的数列an满足a11,an1lnanan2,nN.求证:an2n1. 122Lanlnn12n nN,求证:3a1a2...ana12a2n导数与数列不等式的证明 收集整理:张亚争 联系电话:15936380010 2 / 2
第三篇:构造函数,利用导数证明不等式
湖北省天门中学薛德斌2010年10月
例
1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).
例
2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.
求证:(1)f(0)f(2)2f(1);(2)f(2)2f(1).
例
3、已知m、nN,且mn,求证:(1m)(1n).
nm
例
4、(2010年辽宁卷文科)已知函数f(x)(a1)lnxax21,其中a2,证明: x1,x2(0,),|f(x1)f(x2)|4|x1x2|.例
5、(2010年全国Ⅱ卷理科)设函数fxxaIn1x有两个极值点x
1、x2,且
2x1x2,证明:fx2
12In2.
4a0,b0,例
6、已知函数f(x)xlnx,求证:f(a)(ab)ln2f(ab)f(b).xln(1x)x; 1x
11112ncln(2)设c0,求证:.2cn1cn2c2ncnc例
7、(1)已知x0,求证:
第四篇:不等式证明方法
1.比较法 比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。
2.综合法 利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2 B3„ BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。
3.分析法 分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。用分析法证明AB的逻辑关系为:BB1B1 B3 „ BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有„,这只需证明B2为真,从而又有„,„„这只需证明A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件。
4.反证法 有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B。凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法。
5.换元法 换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一
个参数表示。此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ,y=sinθ;②若x2+y2≤1,可设x=rcosθ,
y=rsinθ(0≤r≤1);③对于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。
6.放缩法 放缩法是要证明不等式A
(3)同分子(分母)异分母(分子)的两个分式大小的比较。常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③应用均值不等式进行放缩。[1]
编辑本段重要不等式
柯西不等式
对于2n个任意实数x1,x2,„,xn和y1,y2,„,yn,恒有
(x1y1+x2y2+„+xnyn)^2≤(x1^2+x2^2+„+xn^2)(y1^2+y2^2+„+yn^2)
柯西不等式的几种变形形式
1.设aiÎR,bi>0 (i=1,2,„,n)则,当且仅当bi=lai
(1£i£n)时取等号
2.设ai,bi同号且不为零(i=1,2,„,n),则,当且仅当b1=b2=„=bn时取等
柯西不等式的一般证法有以下几种: ①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2. 我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2) 则我们知道恒有 f(x) ≥ 0. 用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0. 于是移项得到结论。 ②用向量来证. m=(a1,a2......an) n=(b1,b2......bn)
mn=a1b1+a2b2+......+anbn=(a1^+a2^+......+an^)^1/2乘以
(b1^+b2^+......+bn^)^1/2乘以cosX. 因为cosX小于等于1,所以:a1b1+a2b2+......+anbn小于等于a1^+a2^+......+an^)^1/2乘以
(b1^+b2^+......+bn^)^1/2 这就证明了不等式. 柯西不等式还有很多种,
这里只取两种较常用的证法. 【柯西不等式的应用】 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。 巧拆常数: 例:设a、b、c 为正数且各不相等。 求证: (2/a+c)+(2/b+c)+(2/c+a)>(9/a+b+c) 分析:∵a 、b 、c 均为正数 ∴为证结论正确只需证:2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]>9 而2(a+b+c)=(a+b)+(a+c)+(c+b) 又 9=(1+1+1)(1+1+1)
证明
2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]=[(a+b)+(a+c)+(b+c)][1/a+b)+(1/b+c)+(1/c+a)]≥(1+1+1)(1+1+1)=9 又 a、b 、c 各不相等,故等号不能成立 ∴原不等式成立。 [2]
排序不等式
对于两组有序的实数x1≤x2≤„≤xn,y1≤y2≤„≤yn,设yi1,yi2,„,yin是后一组的任意一个排列,
记S=x1yn+x2yn-1+„+xny1,M=x1yi1+x2yi2+„+xnyin,L=x1y1+x2y2+„+xnyn,那么恒有S≤M≤L。
编辑本段其他重要不等式
琴生不等式
均值不等式绝对值不等式权方和不等式赫尔德不等式闵可夫斯基不等式贝努利不等式
第五篇:不等式的证明方法
中原工学院
1 常用方法
1.1比较法(作差法)[1]
在比较两个实数a和b的大小时,可借助ab的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等. 例1 已知:a0,b0,求证:证明 ab2ab2ab.
b)2abab2ab2ab2ab(a20,
故得 1.2作商法
. 在证题时,一般在a,b均为正数时,借助作商——变形——判断(大于1或小于1). 例2 设ab0,求证:aabbabba. 证明 因为 ab0, 所以 而
abaab1或
ab1来判断其大小,步骤一般为:
1,ab0.
baababbabab1,
故 aabbabba. 1.3分析法(逆推法)
从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆. 例3 求证:57115. 证明 要证351941557115,即证1223516215,即
35215,,41516,154,1516. 由此逆推即得 57115. 1.4综合法
1 [2]
中原工学院
证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法. 例4 已知:a,b同号,求证:证明 因为a,b同号, 所以 则
ababba2.
ab0,baabbaab0, ba2ba2,
即 1.5反证法[3]
2. 先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的. 例5 已知ab0,n是大于1的整数,求证:nanb. 证明 假设 nanb, 则 n即
baba1,
1,
故 ba, 这与已知矛盾,所以nanb. 1.6迭合法
把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证. 例6 已知:a1a2an1,b1b2bn1,求证: a1b1a2b2anbn1. 222222[4]证明 因为a1a2an1,b1b2bn1, 所以 a1a2an1,b1b2bn1. 由柯西不等式
a1b1a2b2anbna1a2an222222222222222b1b2bn111,
222中原工学院
所以原不等式获证. 1.7放缩法[5]
在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的.值得注意的是“放”、“缩”得当,不要过头.常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法. 例7 求证: 21345656999910000999910000220.01. ,则 证明 令pp2123412234225622999910000121232241999910000221110001110000,
所以 p0.01. 1.8数学归纳法[6]
对于含有n(nN)的不等式,当n取第一个值时不等式成立,如果使不等式在nk(nN)时成立的假设下,还能证明不等式在nk1时也成立,那么肯定这个不等式对n取第一个值以后的自然数都能成立. 例8 已知:a,bR,nN,n1,求证:anbnan1babn1. 证明 (1)当n2时,a2b2abab2ab,不等式成立; (2)若nk时,akbkak1babk1成立,则
ak1bk1a(ab)abkkkbk1a(ak1babk1)abkbk1
=akbabk(a2bk12abkbk1)akbabkbk1(ab)2akbabk, 即ak1bk1akbabk成立. 根据(1)、(2),anbnan1babn1对于大于1的自然数n都成立. 1.9换元法
在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化. 例9 已知:abc1,求证:abbcca13.
中原工学院
证明 设a13t,b13at(tR),则c13(1a)t,
111111abbccatatat(1a)tt(1a)t33333313(1aa)t22
13,
13所以 abbcca1.10三角代换法
. 借助三角变换,在证题中可使某些问题变易. 例10 已知:a2b21,x2y21,求证:axby1. 证明 设asin,则bcos;设xsin,则ycos 所以 axbysinsincoscoscos()1. 1.11判别式法
通过构造一元二次方程,利用关于某一变元的二次三项式有实根时判别式的取值范围,来证明所要证明的不等式. 例11 设x,yR,且x2y21,求证:yax1a2. 证明 设myax,则yaxm 代入x2y21中得 x2(axm)21, 即 (1a2)x22amx(m21)0 因为x,yR,1a20,所以0,
即 (2am)24(1a2)(m21)0, 解得 m1a2,故yax1a2. 1.12标准化法[8]
形如f(x1,x2,,xn)sinx1sinx2sinxn的函数,其中0xi,且
x1x2xn为常数,则当xi的值之间越接近时,f(x1,x2,,xn)[7]
的值越大(或不变);当x1x2xn时,f(x1,x2,,xn)取最大值,即
中原工学院
nf(x1,x2,,xn)sinx1sinx2sinxnsinx1x2xnnAB2. 标准化定理:当AB为常数时,有sinAsinBsin证明:记ABC,则
f(x)sinAsinBsin22.
AB2sinAsin(CA)sin2C2, 求导得 f(A)sin(C2A), 由f(A)0得 C2A,即AB. 又由 f(A)cos(BA)0, 知f(A)的极大值点必在AB时取得. 由于当AB时,f(A)0,故得不等式. 同理,可推广到关于n个变元的情形. 例12 设A,B,C为三角形的三内角,求证:sin证明 由标准化定理得, 当ABC时, sinA2sinB2sinA2sinC2B2sin12C2A2sinB2sinC218.
, 取最大值,
8181故 sin1.13等式法
. 应用一些等式的结论,可以巧妙地给出一些难以证明的不等式的证明. 例13(1956年波兰数学竞赛题)、a,b,c为ABC的三边长,求证:
2ab2ac2bcabc222222444.
12(abc)证明 由海伦公式SABC两边平方,移项整理得
16(SABC)2p(pa)(pb)(pc),其中p.
2ab2ac2bcabc222222444
而SABC0, 所以 2a2b22a2c22b2c2a4b4c4. 1.14分解法
按照一定的法则,把一个数或式分解为几个数或式,使复杂问题转化为简单易解的基
中原工学院
本问题,以便分而治之,各个击破,从而达到证明不等式的目的. 例14 n2,且nN,求证:1证明 因为 11213112131nn(nn11).
111n(11)111n23n
2324312n1n13n1nn23243n1nnnn1. 所以 11.15构造法[9-10]
n(nn11). 在证明不等式时,有时通过构造某种模型、函数、恒等式、复数等,可以达到简捷、明快、以巧取胜的目的. 例15 已知:x2y21,a2b22,求证:b(x2y2)2axy2. 证明 依题设,构造复数z1xyi,z2abi,则z11,z22 所以 z12z2(xyi)2(abi)[a(x2y2)2bxy][b(x2y2)2axy]i
b(xy)2axyIm(z1z2)z12222z22
故 b(x2y2)2axy1.16排序法[11]
利用排序不等式来证明某些不等式.
2. 排序不等式:设a1a2an,b1b2bn,则有
a1bna2bn1anb1a1bt1a2bt2anbtna1b1a2b2anbn,
其中t1,t2,,tn是1,2,,n的一个排列.当且仅当a1a2an或b1b2bn时取等号. 简记作:反序和乱序和同序和.
例16 求证:a2b2c2d2abbccdda. 证明 因为a,b,c,dR有序,所以根据排序不等式同序和最大, 即 a2b2c2d2abbccdda. 1.17借助几何法[12]
中原工学院
借助几何图形,运用几何或三角知识可使某些证明变易. 例17 已知:a,b,mR,且ab,求证:
ambmab. 证明 (如图1.17.1)以b为斜边,a为直角边作RtABC. 延长AB至D,使BDm,延长AC至E,使EDAD,过C作AD的平行线交DE于F,则ABC∽ADE,令CEn, 所以 aABam
又CECF,即nm, 所以
bACbnamabmambnb.
EnFCbDmBaA
图1.17.1
中原工学院
2 利用函数证明不等式
2.1函数极值法
通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的. 例18 设xR,求证:4cos2x3sinx2证明 f(x)cos2x3sinx12sin当sinx3218.
231x3sinx2sinx2
48时, f(x)max2;
481当sinx1时,
f(x)min4. 故 4cos2x3sinx22.2单调函数法[13-14]
当x属于某区间,有f(x)0,则f(x)单调上升;若f(x)0,则f(x)单调下降.推广之,若证f(x)g(x),只须证f(a)g(a)及f(x)g(x),(x(a,b))即可. 例 19 证明不等式
ex1x,x0.
证明 设f(x)ex1x,则f(x)ex1.故当x0时,f(x)0,f严格递增;当x0,f(x)0,f18. 严格递减.又因为f在x0处连续,
则当x0时,
f(x)f(0)0,
从而证得
ex1x,x0
2.3中值定理法
利用中值定理:f(x)是在区间[a,b]上有定义的连续函数,且可导,则存在,ab,满足f(b)f(a)f()(ba)来证明某些不等式,达到简便的目的.
中原工学院
例20 求证:sinxsinyxy. 证明 设 f(x)sinx,则sinxsiny(xy)sin(xy)cos 故 sinxsiny(xy)cosxy. 2.4利用拉格朗日函数
例 21 证明不等式
3(1a1b1c)13abc, 其中a,b,c为任意正实数. 证明 设拉格朗日函数为对
L(x,y,z,)xyz(1x1y1z1r).
对L求偏导数并令它们都等于0,则有
Lxyzx20,
Lyzxy20,
Lzxyx20,
L1x1y1z1r0.
由方程组的前三式,易的
1x1y1zxyz.
把它代入第四式,求出13r.从而函数L的稳定点为xyz3r,(3r)4.
1x1y1z1r为了判断f(3r,3r,3r)(3r)3是否为所求条件极小值,我们可把条件看作隐函数zz(x,y)(满足隐函数定理条件),并把目标函数f(x,y,z)xyz(x,y)F(x,y)看作f与zz(x,y)的复合函数.这样,就可应用极值充分条件来做出判断.为此计算如下:
zxzx22,zyzy22,
Fxyzyzx2,Fyxzxzy2,
中原工学院
F2yz3,Fzz2z22z3,
xxx3xyyxxy2xz3Fyyy3.
当xyz3r时,
Fxx6rFyy,Fxy3r,
F2xxFyyF27r20.
xy由此可见,所求得的稳定点为极小值点,而且可以验证是最小值点.这样就有不等式xyz(3r)3(x0,y0,z0,111xyz1r).
令xa,yb,zc,则r(111abc)1,代入不等式有
abc[3(11a1b1c)]3
或 3(111ab1c)3abc(a0,b0,c0).
中原工学院
3 利用著名不等式证明
3.1利用均值不等式[15-16]
设a1,a2,,an是
n个正实数,则
a1a2anna1a2an,当且仅当
na1a2an时取等号.
nn例22 证明柯西不等式 (a22nibi)(ai)(b2i).
i1i1i1证明 要证柯西不等式成立,只要证
nnn aa2ibiib2i (1)
i1i1i1nn令 a2iA2,b2iB2, (2)
i1i1n式中A0,B0,则(1)即 aibiABi1
naibi即
i1AB1 (3)
a2b22211下面证不等式(3),有均值不等式,
a1b1A2B2A2B22,
2即
2a1b1a21ABA2b1B2,
2a22b22a22a2ABA2b2nbna2同理
nB2, ,
ABA2bnB2. 将以上各式相加,得
nn2na2ib2i(abi11ABii)2i2i1AB (4)
中原工学院
根据(2),(4)式即
2AB(aibi)2.
i1n因此不等式(3)成立,于是柯西不等式得证. 3.2利用柯西不等式[17-18]
n例23 设aiR,i1,2,„,n.求证:i11n2aiai.
ni12证明 由柯西不等式
nnnn2n22aiai1ai1nai.
i1i1i1i1i122两边除以n即得.
说明:两边乘以1n后开方得
1niani11n2iani1.当ai为正数时为均值不等式中的算术平均不大于平方平均. 3.3利用赫尔德不等式[19] 例24 设a,b为正常数,0xab2,nN,求证:
n22n22 nansinxcosx2bn22
n2bn2bn2aa22证明 n= sinxcosxn2 nnnsinxcosxsinxcosx2a nsinx2n2sinx22nn22bncosxn2cosx2nn2
即
asinxn= an2bn2
n2ancosxb2n2bn222
3.4利用詹森不等式[20] 例 25 证明不等式
abc(abc)3abc, 其中a,b,c均为正数.
abc证明 设 f(x)xlnx,x0.由f(x)的一阶和二阶导数
f(x)lnx1,f(x)1x
中原工学院
可见,f(x)xlnx在x0时为严格凸函数.依詹森不等式有
f(abc3)13(f(a)f(b)f(c)),
从而
abcabc3ln313(alnablnbclnc),
即
(abccbc3)abaabc.
又因3abcabc3,所以
abc (abc)3aabbcc.
相关文章:
证明不等式的基本方法01-09
浅谈不等式的证明方法01-09
如何搞好企业民主管理工作01-09
浅析如何搞好企业管理01-09
搞好群众文化工作01-09
如何搞好企业宣传工作01-09
如何搞好企业内部监督01-09
时代光华如何搞好企业培训管理试题及答案01-09
黄山游记高三作文01-09
搞好农机安全管理01-09