关键词: 浓度
浓度不确定度(精选十篇)
浓度不确定度 篇1
1 仪器与试药
Sartorius BP211D电子分析天平(精度为0.1 mg);酸式滴定管(50 ml,A级);基准无水碳酸钠(纯度:99.98%);盐酸(AR)。
2 实验方法与结果
2.1 测定法[1]
【溶液配制】取盐酸9.0 ml,加水适量使成1 000 ml,摇匀。
【溶液标定】取在270~300℃干燥至恒重的基准无水碳酸钠约0.15 g,精密称定,加水50 ml使溶解,加甲基红-溴甲酚绿混合指示液10滴,用本液滴定至溶液由绿色转变为紫红色时,煮沸2 min,冷却至室温,继续滴定至溶液由绿色变为暗紫色。每1 ml盐酸滴定液(0.1 mmol/L)相当于5.30 mg的无水碳酸钠。根据本液的消耗量与无水碳酸钠的取用量,算出本液的浓度,重复做6份,求平均即得。
2.2 结果与讨论[2]
2.2.1 数学模型
式中:C(HCl)———盐酸滴定液的实际浓度,mmol/L;W(Na2 CO3)———基准无水碳酸钠称样量,g;P(Na 2CO3)———基准无水碳酸钠纯度;V(HCL)———消耗盐酸滴定液的体积,ml;M(Na2 CO3)———基准无水碳酸钠的摩尔质量。
2.2.2 各量值不确定度的识别和分析
2.2.2. 1 Na2CO3的摩尔质量M(Na2 CO3)的不确定度Uc[M(Na2 CO3)]
按照均匀分布引用不确定度等于3·S,故标准偏差S=
按直接相加得标准偏差:2×0.0000012=0.0000024
同理:C=12.0107,标准偏差为:0.00047
标准偏差为:3×0.00018=0.00054
所以:M(Na 2CO3)=45.97954+12.0107+47.9982=105.98844
Uc[M(Na CO)]=[(0.0000024)2+(0.00047)2+(0.00054)=0.00072 g/mol2312
2.2.2. 2 Na2CO3称量的不确定度Uc[W(Na 2CO3)]
称量不确定度来自两个方面:一是称量变动性,根据历史记载,在50 g以内,变动性标准偏差为0.07 mg;二是天平校正产生的不确定度,按检定证书给出的在95%置信概率时为:±0.15 mg,换算成标准偏差为0.1/1.96=0.077 mg。基准无水碳酸钠的平均称样量为:0.14605 g。
此两项合并的称量的标准偏差为:
2.2.2. 3 Na2CO3纯度的不确定度Uc[P(Na2 CO3)]
按照国家标准物质中心所给纯度为:(99.982±0.008)%,即0.99982±0.00008,按均匀分布转换成标准偏差为:Uc[P(Na2 CO3)]=0.00008/=0.0000473
2.2.2. 4
消耗盐酸滴定液体积的不确定度Uc[V(HCl)]不确定度来源为:(1)滴定管体积的不确定度,按省计量院给定为±0.006 ml(不再考虑盐酸滴定液与水相对密度的不同造成的差异),按均匀分布换算成标准偏差为:0.006/3=0.0035 ml;(2)读数的不确定度,重复10次统计出标准偏差为0.0098 ml;(3)滴定管和溶液温度与校正温度不同引起的不确定度,校正温度为22.7℃,滴定时温度为25.0℃,相差2.3℃,对水体积膨胀系数为2.1×10-4/℃。6次消耗盐酸滴定液的平均体积为:26.18 ml,则95%置信概率时体积变化的区间为:26.18×2.7×2.1×10-4=0.015 ml,转换成标准偏差为:0.015/1.96=0.0077 ml;以上三项合成得出:
2.2.3 各量值的合成标准不确定度见表2。
盐酸滴定液浓度:
2.2.3 C(HCl)的扩展不确定度,取包含因子K=2(置信概率约为
95%),则伸展不确定度为:2×0.000097mol/L≈0.0002 mol/L;测量结果表达为:C(HCl)=(0.1053±0.0002)mol/L,(K=2)
3 总结
3.1 由上述结果可知,在盐酸浓度不确定度的有关分量中,W(Na CO2)和3 V(HCl)贡献较大,P(Na CO2)次3之,M(Na CO2)最3小。
3.2 评估出的滴定液浓度测定的扩展不确定度为:0.0002 mol/L,表明供试品测定结果的分散程度在规定范围内,测定结果准确可靠。
参考文献
[1]国家药典委员会主编.中华人民共和国药典[M].第2版.北京:化学工业出版社.2005,161
浓度不确定度 篇2
水中油份浓度分析仪示值误差测量不确定度评定
摘要:本文分析了用烷苯(OCB)混合标准物质测量水中油份浓度分析仪各分量相对不确定度的关系,并对水中油份浓度分析仪示值误差测量结果的不确定度进行评定.作 者:陈志杰 作者单位:湛江市质量计量监督检测所,广东,湛江,524022期 刊:广西质量监督导报 Journal:GUANGXI QUALITY SUPERVISION GUIDE PERIODICAL年,卷(期):,(7)分类号:X7关键词:水中油份浓度分析仪 示值误差 不确定度评定
三坐标测量不确定度评定 篇3
摘 要:本文对三坐标测量以?40mm3等标准环规进行了实例评定,对三坐标尺寸检测方法的改进有一定意义。
关键词:三坐标;不确定度
中图分类号: U467 文献标识码: A 文章编号: 1673-1069(2016)18-190-2
1 试验部分
1.1 试验任务
测量?40mm3等标准环规刻度线处的直径D。
1.2 试验原理、方法和条件
1.2.1 试验原理
接触式,直接法,绝对测量。
1.2.2 试验方法
在三坐标测量机PRISMO上测量,测量前将标准环规固定于三坐标测量工作平台上,将仪器调整满足测量需要的状态。测量时,首先在环规刻度线处取对称两点x1、x2,构成环规的一条弦x1x2,并确定弦的中心O(以O点为坐标原点),在环规刻度线处取一点A0,连接OA0交环规另一边A(以AA0为坐标X轴),则A、A0在坐标X轴上读数差即是环规刻度线处的直径值D。
1.2.3 试验条件
试验环境温度为(20±1)C,温度变化每小时不应超过0.5℃/h,环境相对湿度为≤65%;
三坐标测量机常年固定安装在实验室内,受测标准环规置于实验室内的平衡时间24小时以上。
2 数学模型
由试验原理和方法,得到数学模型:
4 测量不确定度来源及说明
测量不确定度来源及说明见表1:
5 标准不确定度评定
5.1 由三坐标测量机的示值误差引入的标准不确定度分量u1
根據设备出厂证书三坐标测量机最大允许误差MPE为±(1.4+L/333mm)m,符合均匀分布,k=,
受测标准环规的直径按40mm计算,
则:u1=(1.4+40/333)/=0.8777μm
5.2 由测量重复性引入的标准不确定度分量u2
在各种条件均不改变的情况下,在短时间内重复性测量20次(即n=20)。实验数据见表2。
5.3 由测量环境温度变化引入的标准不确定度分量u3
由于测量设备及环规置于实验室恒温恒湿的环境中足够时间,且测量过程中启用测量设备温度补偿功能,避免温度变化引起设备与环规的热膨胀,因此此项因素引起的测量不确定度分量可忽略不计,则u3=0。
5.4 由测量原理引入的标准不确定度分量u4
测量时,在环规上取两点x1、x2,构成环规的一条弦x1x2,弦x1x2的位置及长度可引入标准不确定度分量,由三坐标测量机最大允许误差MPE为±(1.4+L/333mm)m,符合均匀分布,k=,受测标准环规的弦x1x2按30mm计算,则:
u4=(1.4+30/333)/=0.86m
5.5 由测量对象(标准环规)引入的标准不确定度分量u5
根据JJG894-1995《标准环规检定规程》3等标准环规=10~50mm的最大直径变动量和锥度分别是0.5m和0.8m,并假定其在该范围内等概率分布,则由标准环规引入的标准不确定度分量u5/=0.545m。
6 合成标准不确定度
6.1 主要标准不确定度分量汇总表
浓度不确定度 篇4
1 方法原理与测量步骤
按照《锅炉烟尘测试方法》GB5468—1991, 用动压等速采样方式, 用滤筒捕集废气中烟尘, 用捕集到的烟尘净重除以抽气体积得到实测烟尘排放浓度;同时测试废气中含氧量, 用含氧量计算过量空气系数, 用过量空气系数与标准过氧系数比值乘以实测浓度得到烟尘排放浓度。利用自动烟尘测试仪测试某企业一台锅炉为例, 锅炉满负荷运行, 排气管直径0.3m, 在管道中心点设一采样点, 以动压等速采样方式按标准要求进行测试, 即气体进入采样嘴的速度与采样点废气流动速度相等。
对锅炉烟尘进行测量, 结果见表1。
2 建立数学模型
烟尘实测浓度计算公式:
烟尘排放浓度计算公式:
把式 (1) 代入式 (2) 得:
式中C——烟尘排放浓度mg/m3;
g2——滤筒终重;
g1——滤筒初重;
Vnd——标态采气总体积, L;
aS——在排放点实测的过量空气系数;
a——标准过量空气系数, 1.8。
则合成标准不确定度为:
式中u[C]——烟尘排放浓度的标准不确定度;
u[g]——烟尘重量g的标准不确定度;
u[V]——采气体积的标准不确定度;
u[a]——过量空气系数的标准不确定度。
3 烟尘排放浓度的不确定度分量的识别分析与量化
3.1 烟尘重量g的标准不确定度
烟尘重量g的标准不确定度来源有3个方面, 第一滤筒称量设备产生的不确定度, 记u1;第二滤筒失重产生的不确定度记u2;第三是捕集率产生的不确定度记u3。
3.1.1 u1的计算
电子天平校正产生的不确定度, 按检定证书给出的称量误差为±0.15mg, 换算成标准偏差为±0.15/ (31/2) =±0.09mg滤筒要经过两次称量, 故滤筒在称量时相对标准不确定度为2×0.09=0.18mg。
3.1.2 u2的计算
滤筒在200℃下使用1h失重在2mg以下, 滤筒总重在1000mg左右。按均匀分布转换成标准不确定度为:2/31/2=1.15mg, 则相对标准不确定度为0.00115mg。
3.1.3 u3的计算
滤筒的捕集率在99.9%以上, 按均匀分布转换成相对标准不确定度为:
合成以上烟尘重量g的标准不确定度:
3.2 采气体积的不确定度
采气体积的不确定度有两方面组成, 其一是采样时等速的不确定度, 采气体积的相对误差一般为:-5%~+10%。按正态分布转换等速时相对不确定度为:其二是根据仪器制造商给定的技术指标, 仪器给定的相对标准不确定度为±2.5%;按均匀分布转换成相对标准不确定度为:
合成以上烟尘采气体积的标准不确定度:
3.3 过量空气系数的标准不确定度分析
仪器给定的相对标准不确定度为±2.5%;按正态分布转换成相对标准不确定度为2.5%/3=0.0083。
4 合成不确定度计算
5 扩展不确定度 (取k=2)
取包含因子k=2 (近似95%置信概率) U=k×ux=2×2.28=4.56。
6 结果
经过计算锅炉排放浓度为:75.9mg/m3, 扩展不确定度U=4.56 (k=2) 。
摘要:对测量锅炉烟尘排放浓度的不确定度产生的原因进行分析, 得出其测量扩展不确定度, 结果令人满意。
关键词:烟尘排放浓度,产生的原因,不确定度
参考文献
测量不确定度评定的简化应用 篇5
专业论文
测量不确定度评定的简化应用
测量不确定度评定的简化应用
摘要:测量不确定度评定是计量专业实验数据处理中的一项重要内容,但由于应用频率低,要求高,因此一直是基层计量人员业务能力薄弱所在。由于测量不确定度评定方法复杂流程繁琐,不易掌握,因此在评定工作中常出现原理性的错误。本文对如何正确评定测量不确定以及评定方法提出了自己的观点,同时指出了评定中的难点及其处理方法,同时用图表的方式表示了评定的流程,对测量不确定度的应用进行了简化。通过文章的介绍,希望能使更多的计量人员提升对测量不确定的认识,并在实际工作中正确熟练地使用不确定度评定的方法。
关键词:建标、不确定度,测量评定
中图分类号: P207+.2 文献标识码: A
1引言:
由于混淆了不确定度和误差的关系,使评定出来的不确定度结果与真实值相差过大,不能正确的对测量仪器做符合性判定。评定的过程中引入过多的影响较小的不确定度分量,评定流程不明确让整个评定过程变得复杂。
概述:
我国JJF-1999规范《测量不确定度评定和表示》和国际规范《测量不确定度表示指南》中,对“测量不确定度”做出如下定义:表征合理地赋予被测量之值的分散性,与测量结果相关系的参数。是在统计状态下进行的测量,确定由随机误差引起的测量结果可能出现的区间。
测量不确定度评定应用的范围很广,对于不同的领域,测量不确定度评定的原理和步骤是相同的。图1是用流程图的方式表示测量不确定度评定步骤。
最新【精品】范文 参考文献
专业论文
文章通过对数字多用表误差的不确定进行评定,以实例的方式对不确定度评定中的难点进行了分析和解释。
图1
测量不确定度来源分析
在对不确定度分析与评定时,明确不确定度来源,才能有效减少测量不确定度的分量,简化不确定度测量的工作程序,提高不确定度测量的工作效率。在数字多用表不确定度评定中,不确定来源主要考虑几个方面:
被测装置测量重复性引入的标准不确定度;
标准表的示值最大允许误差引入的标准不确定度;
标准表的校准引入的标准不确定度;
被测直流电压表(装置)分辨力引入的标准不确定度;
2.1 建立数学模型
为了提高不确定度测量的准确性,要建立相适应的评定模型,利用模型公式计算来减少测量不确定度的分量,提高合成标准不确定度的科学性和准确性。
通常建标技术报告中的数学模型就是检定规程中的误差计算公式,根据所评定内容将各种不确定度分量带入公式中。评定数字多用表不确定度,采用的数学模型为:
△V=Vx-VN
式中:Vx----被测装置的示值;
VN----直流标准电压表的示值;
△V---数表误差。
2.2各输入量的标准不确定度的评定
不确定度通常由多个分量组成,对每一分量都要求评定标准不确定度。评定方法分为A、B两大类。A类标准不确定度评定是用对观
最新【精品】范文 参考文献
专业论文
测列进行统计分析的方法,实现标准偏差表征。B类标准不确定度评定则用不同于A类的其他方法求的,以估计的标准偏差表示。各标准不确定度分量的合成称为合成标准不确定度。
2.4不确定度的A类评定:
标准不确定度的A类评定是对一个被测量在重复性条件下重复测量了n次(n≥10),得到n个观测结果 ,根据贝塞尔公式s(x)=,求的标准偏差。如果观测列数据出现一些明显偏离正常值的数据时,可依据拉依达准则剔除。
在重复性条件下对数字多用表150V测点重复测量十次,根据贝塞尔公式求的标准偏差,s(x)==8.60×10-4
自由度x=18
2.5不确定度B类评定:
B类不确定度是根据经验和资料及假设的概率分布估计的标准偏差表征,含有主观鉴别的成分。一般情况下取均匀分布,其标准偏差估算公式:
σ(x)=ɑ/√3…公式1
通过说明书等资料查的数表的固有指标,根据公式1求的数表各不确定度分量
3合成标准不确定度的计算
合成标准不确定UC用标准偏差给出,按《JJF1001》定义:当测量结果是由若干个其他量的值求得时,按其他各量的方差和协方差算得标准不确定度。当测量结果的标准不确定度由若干标准不确定度分量构成时,按方和根得到的标准不确定度。
得到各个标准不确定分量Ui后,需要将各个分量合成得到被测量的合成标准不确定度UC。
各不确定度分量汇总及相对扩展不确定度计算电子表格
最新【精品】范文 参考文献
专业论文
合成前必须确保所有的不确定度分量均用标准不确定度表示,如果存在其他形式表示的分量,则必须将其换算成标准不确定度。
在进行测量不确定度评定时应尽可能避免各分量之间的相关性或者减弱相关性产生的作用。
合成标准不确定度uc的计算
检定装置检定/校准直流电压表的合成标准不确定度各输入量估计值彼此不相关,合成标准不确定度=0.00105V 自由度的确定
各输入分量合成后的自由度称为有效自由度νeff,可按韦尔其一萨特思韦特公式计算:
…公式2
前面我们已经求出每一个输人分量的自由度νi,根据公式2求的eff =33.00
5扩展不确定度的合成
扩展不确定度是确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间。扩展不确定度是由合成标准不确定度的倍数表示的测量不确定度。通常用符号U表示:
U = k(95)UC,-----------(6)
是合成标准不确定
k 是包含因子,这里 k值一般为2,有时为3。取决于被测量的重要性、效益和风险。扩展不确定度是测量结果的取值区间的半宽度,可期望该区间包含了被测量之值分布的大部分。而测量结果的取值区间在被测量值概率分布中所包含的百分数,被称为该区间的置信概率、置信水准或置信水平,用 表示。这时扩展不确定度用符号表示,它给出了区间能包含被测量的可能值的大部分(比如95%或99%)。
扩展不确定度的评定
最新【精品】范文 参考文献
专业论文
检定装置检定/校准交流电压表的扩展不确定度的评定
取置信概率p=95%,由=33,查《JJF1059一1999》附录A即可得到对应于扩展不确定度的包含因子k(95)=2.03
U95=k95×uc=0.0021(V)
不确定度报告
检定0.05级直流电压表(装置)150V点示值误差测量结果的扩展不确定度为:U95=0.0021V , eff=33。相对扩展不确定度为:U95rel =0.0014%,eff=33。结论:
本文以实例的方式解决了基层计量人员计量不确定度评定时出现的原理性错误。通过本文能正确掌握A、B类评定的区别,能快速熟悉整个不确定度评定流程以及注意事项,在实际工作中准确地运用测量不确定度来促进计量检定工作的分析与评定。
参考文献:
[1] 葛琳,数字多用表不确定度评定方法探析《青海电力》 2006.9
[2] 刘天怀,自由度估算若干问题探讨《中国计量》 2001.9
[3] 李维明,测量不确定度自由度的评定方法及一般取值范围的探讨《Industrial Measurement》2007
[4]沈渭奎、余建平、杨华,测量不确定度在计量检定中的简化应用《中国计量》2012.3
[5] 江继延、郭海生、孙朝斌,数字电感测量仪现场测量不确度来源分析 2012.2
常用玻璃量器测量结果不确定度评定 篇6
关键词:常用玻璃量器 测量不确定度 示值误差 评定
1 概述
常用玻璃量器广泛应用在石油化工、食品卫生、环境检测等实验分析工作中。它包括滴定管、分度吸量管、单标线吸量管、单标线容量瓶、量筒和量杯六类玻璃量器,JJG196-2006《常用玻璃量器》对常用玻璃量器的容量允许误差进行了详细的规定,但仍不能满足一些行业部门对玻璃量器不确定度的要求。本文就选用10mL碱式滴定管,对其5mL和10mL两个检定点进行不确定度分析,以满足各行各业应用玻璃量器的化验室的需要。
2 概论
2.1 测量依据
JJG196-2006《常用玻璃量器》检定规程
2.2 测量方法
采用衡量法,通过天平称出被测量器中蒸馏水的质量,乘以测量温度下的K(t)值,即得20℃下的实际容量。
2.3 测量环境
室温为(20±5)℃,且变化量不大于1℃/h,水温与室温之差不大于2℃。
2.4 标准器
电子天平:(0~210)g/0.1mg;温度计:(15~25)℃/±0.2℃。
2.5 被测量器
被测量器为10mL,分度值为0.05mL的A级碱式滴定管。
3 数学模型
V20=m×K(t)
式中:V20——20℃下被测量器的实际容量,mL;
m——天平称出的蒸馏水的质量,m;
K(t)——测量温度下的修正值,mL/g。
4 不确定度来源
常用玻璃量器测量不确定度由以下3个分量组成:①检定点测量重复性引入的不确定度;②标准器引入的不确定度;③人员估读引入的不确定度。
5 不确定度一览表
■
6 不确定度评定
6.1 测量仪器天平引起的标准不确定度分量u1
此分量属于B类标准不确定度,(0~210)g天平证书给出的扩展不确定度为0.06mg(k=2),因此:
u1=0.06mg/2=0.03mg。
转换为容量单位u1=0.00003mL。
6.2 液面读数误差带来的标准不确定度分量u2
此分量属于B类标准不确定度。液面的正确观察方法是:前面的标线与后面的标线相重合,此时观察者的视线与液面在同一水平线上,然后用弯月面的最低点与分度线的上缘水平相切,由于操作人员掌握的方法不一致,所以产生一定的误差。10mL碱式滴定管分度值为0.05mL,由实际操作经验,可估读至最小分度值的1/5,为0.01mL,属均匀分布,故标准不确定度:
u2=0.01/■=0.006mL。
6.3 测量重复性误差带来的标准不确定度分量u3
此分量属于A类标准不确定度。分别对10mL碱式滴定管5mL和10mL两个检定点重复测量10次,具体数据如下:
5mL检定点:
■
运用贝塞尔公式得实验标准偏差:s(x)=■=0.0023mL
标准不确定度:u3=■=■=0.00073mL
10mL检定点:
■
运用贝塞尔公式得实验标准偏差:s(x)=■=0.00276mL
标准不确定度:u4=■=■=0.00087mL
7 合成标准不确定度和扩展不确定度
以上各不确定度各不相关,故10mL碱式滴定管5mL和10mL两个检定点的合成不确定度分别为:
5mL:uc1=■
=■=0.006mL
10mL:uc2=■
=■=0.006mL
扩展不确定度分别为:
5mL:U95=2×uc1=0.012mL (k=2)
10mL:U95=2×uc2=0.012mL (k=2)
8 结束语
修正值K(t)的引入大大减少了常用玻璃量器测量结果不确定度评定的工作量,也使得不确定度评定具有很高的相近性,符合上述条件的测量结果,一般可直接使用本不确定度的评定。
参考文献:
[1]JJG196-2006,常用玻璃量器[S].
[2]JJF1059-1999,测量不确定度评定与表示[S].
浓度不确定度 篇7
根据EJ/T1075-1998《水中总α放射性浓度的测定厚源法》, 测量原理为将水样酸化使之稳定;蒸发浓缩;转化为硫酸盐态;再蒸发至干;然后在350℃下灼烧。将部分经准确称量过的残渣转移到样品盘, 用α测量仪测定其α计数。以适量的硫酸钙为模拟载体, 在其中加入适量的α辐射标准溶液, 用以制备标准源, 令它的质量厚度与样品源的相同, 而且它们的放射性活度相近。用这样的标准源对仪器进行刻度, 从而求出总放射性浓度。
2 使用的标准、量具和仪器
241Am标准溶液, 核素活度为27.91Bq/g, 扩展不确定度3.0% (k=3) ;分析天平, 感量0.1mg, (扩展不确定度0.2mg, k=3) ;量筒, 1L (±10m L) ;低本底α、β测量仪。
3 数学模型
式中:C:水中α的放射性浓度, Bq/L;Rx:样品源的总计数率, s-1;R0:样品盘本底计数率, s-1;Rs:标准源底总计数率, s-1;as:标准固态物的比活度, Bq/g;m:V升水样灼烧后残渣的质量, mg;V:水样体积, L。
4 不确定度分析
公式 (1) 表明, 分析水中总α放射性浓度时, 共有样品测量不确定度ur1-ur3、样品体积不确定度ur5-ur7、标准物质不确定度ur8以及样品称量不确定度ur4、ur9、ur104个方面存在不确定度因素。
4.1 样品测量引起的不确定度
计数统计涨落引起的水样放射性浓度的标准偏差, 由下式计算:其中Rx=0.0013 s-1, R0=0.00014 s-1, tx=14400s, t0=14400s, ur1=27.3%。
标准源的计数标准偏差, 由下式计算:其中Rs=0.08s-1, R0=0.00014 s-1, ts=600s, t0=14400s, ur2=14.46%。
铺样的分散性, 铺10个样品, 所测得计数如下表所示:
平均值x的标准偏差为计算其相对标准差Ur3=u3/x=5.15/46=11.20%。
铺样称量的不确定度, 天平的扩展不确定度为±0.2mg, 铺样的质量为160mg, 计算其标准不确定度为:
4.2 待测水样体积V的不确定度
待测水样体积V的标准偏差uv, 有三项:灌水至量筒刻线处的重复性、校准和温度。
4.2.1 灌水重复性
取1个量筒, 将待测水样倒入其中至刻线处, 称其质量, 重复10次, 共获得10个质量值。
平均值m的标准偏差为, 计算其相对标准差计算其相对标准差Ur5=U5/m=2.12/1000.5=0.2%。Á
4.2.2 体积校准
制造商给出量筒在20℃的体积为 (1000±10) m L, 但没有给出其不确定度的置信水平或分布。假定为三角形分布, 因为认为标定值比极限值可能性更高。该项标准不确定度为:U6=10/6-1/2=4.08m L;其相对标准差Ur6=u6/V=4.08/1000=0.408%。
4.2.3 温度影响
量筒在20℃校准;而实验室的温度在±4℃变化, 因膨胀系数作用可引起量筒和液体体积变化。液体体积变化明显大于量筒, 因而此处只考虑前者。水的体积膨胀系数为2.1×10-4℃, 那么体积变化为± (1000×4×2.1×10-4) =0.84±m L。假定温度变化为矩形分布, 其标准偏差U7=0.84/31/2=0.485m L。计算其相对标准差
4.3 标准物质的不确定度
比活度as的扩展不确定度由证书直接给出。
计算其标准不确定度为Ur8=U/K=3.0%/3=1.0%。
4.4 样品称量的不确定度
V升水样灼烧后残渣的质量m的不确定度来自两次天平的称量。
第一次称量的标准不确定度为
第二次称量的标准不确定度为
4.5 计算合成标准不确定度
样品测量结果为y1=3.3Bq/L。
用绝对值表示:uc (y1) =y1×urc (y) =3.3×32.9%=1.1Bq/L。扩展不确定度U=Kuc (y1) =2.2Bq/L;k取2。
5 结语
从上述数据来看, 样品测量引起的不确定度最大, 样品体积不确定度、标准物质不确定度以及样品称量不确定度相差不大, 对整体不确定度贡献较小。样品测量使用低本底α、β测量仪来进行的, 其统计涨落误差较大, 故测量结果的不确定度相对较大。
参考文献
[1]中国实验室国家认可委员会.化学分析中不确定度的评估指南[M].北京:中国计量出版社, 2001.
浓度不确定度 篇8
关键词:总粉尘浓度,工作场所,不确定度评定
我国工作场所中的粉尘测量分析评价体系还很不完善。粉尘测量过程容易受环境因素的影响, 分析过程中有些条件也没有严格控制, 可能造成测量分析结果与实际情况有较大的偏差。测量不确定度是指表征合理地赋予被测量之值的分散性, 是判定测量结果质量的依据。我们根据国家标准方法《工作场所空气中粉尘测定第1部分:总粉尘浓度》 (GBZ/T 192.1-2007) [1]和中华人民共和国国家计量技术规范《测量不确定评定与表示》 (JJF 1059-1999) [2]对测定工作场所空气中总粉尘浓度的方法进行了不确定度分析和评定计算, 得出该方法的测量扩展不确定度, 使监测人员对影响测量结果的各个环节产生的不确定度有所了解和认识, 以提高测量的准确性。
1 概述
1.1 测量方法
依据《工作场所空气中粉尘测定第1部分:总粉尘浓度》 (GBZ/T 192.1-2007)
1.2 环境条件
温度-10 ~-45 ℃, 相对湿度小于95%。
1.3 测量标准
电子天平:210 g/0.1 mg, 最大允许误差为+0.0007。
1.4 被测对象
工作场所空气中总粉尘浓度。
1.5 测量过程
样品的称量:称量前, 将采样前后的滤膜置于干燥器内2 h以上, 除静电后, 在分析天平上准确称量, 记录采样前滤膜质量m1, 采样后滤膜和粉尘的质量m2。
1.6 评定结果的使用
在符合上述条件下的测量, 一般可直接使用本不确定度的评定结果。
2 数学模型
undefined
C=m2-m1/v.t×1000
式中:y—工作场所空气中总粉尘浓度数值mg/m3;undefined—测量6次几何平均值mg/m3;C—空气中总粉尘的浓度数值mg/m3;m2—采样后的滤膜质量数值mg;m1—采样前的滤膜质量数值mg;v—采样流量数值L/min;t—采样时间数值min。
3 不确定度来源分析
工作场所空气中总粉尘浓度, 使用的主要仪器是北京劳动保护科学研究所生产的FC-4型粉尘采样器和瑞士梅特勒产的AG 204电子天平。由于仪器系统效应和操作的随机效应导致测量结果的不确定度。因此测量结果的不确定度来源有以下方面:①随机效应产生的不确定度主要为粉尘浓度测量的重复性引入的不确定度;②系统效应产生的不确定度主要包括样品质量引入的不确定度, 采样体积引入的不确定度。
4 不确定度分量的评定
4.1 随机效应产生的标准不确定度u1 本实验选择了2009年5月对某饮料建设项目职业病危害控制效果评价的生产线原料投料岗位的测量记录进行测量标准不确定度评定。连续采样3 d, 每日上、下午各1次, 每测同一点不同时间内测定, 采取样品3个, 共6批次18个样品, 结果见表1。
根据文献[2]贝赛尔公式, 进行A类不确定度评定, 计算出合并样品标准差
undefined
实际测量情况在重复性条件下连续测量3次, 以该3次测量几何平均值为测量结果, 则可得到
undefined
undefined
undefined
投料工作岗位接触粉尘时间为8 h, TWA为1.1 mg/m3
4.2 系统效应产生的标准不确定度 系统效应产生的测量不确定度, 主要是粉尘采样器和电子天平的检定证书、技术说明等给出的技术指标采用B类方法进行评定。
4.2.1 样品质量测量引入的标准不确定度u2 样品质量测量的不确定度主要来源于采样器对于粉尘的捕集效率, 空气湿度对滤膜质量影响以及天平称量样品所引入的标准不确定度。①粉尘捕集效率引入的标准不确定度u21。依据文献[3], 空气收集器的采样效率应大于90%, 计算标准不确定度假设变化是均匀分布, 则
u21=10%=0.058 mg
设可靠程度为90%, 则v21=1/2 (10/100) 2=50
②空气湿度对滤膜质量的影响引入的标准不确定u22。据文献[4], 空气湿度对滤膜质量影响最大可增重至0.5 mg, 计算标准不确定度假设变化是均匀分布, 则
undefined
设可靠程度为90%, 则v22=1/2 (10/100) 2=50
③样品称量引入的标准不确定度u23。210 g/0.1 mg电子天平最大允许误差的测定结果为0.0007 g, 半宽为0.00035 g, 属均匀分布, 包含因子undefined。上述分量必须计算2次, 一次作为空盘, 另一次为毛重, 因为每一次称量均为独立观测结果, 两者的线性影响是不相关的, 因此, 得到的标准不确定度分量应乘以undefined, 故标准不确定度分量为
undefined
设可靠程度为90%, 则v23=1/2 (10/100) 2=50。
样品质量测量引入的标准不确定度
u2= (u212+u222+u232) 1/2= (0.0582+0.292+0.292) 1/2=0.41mg
undefined
4.2.2 采样体积引入的标准不确定度u3 采样体积引入的标准不确定度有粉尘采样器流量示值误差和计时误差引入的标准不确定度。
①流量误差引入的标准不确定度u31 粉尘采样器经计量检定流量示值误差为2.3%, 假设变化是均匀分布, 则
undefined
设可靠程度为90%, 则自由度为v31==1/2 (10/100) 2=50
②计时误差引入的标准不确定度u32 计时误差产品技术指标提供为0.1%, 假设变化是均匀分布, 则
undefined
设可靠程度为90%, 则自由度为v32=1/2 (10/100) 2=50
根据合成不确定度的计算, 则采样体积引入的标准不确定度为
undefined
5 标准不确定度一览表
6 合成标准不确定度
uc (y) = (u12+u22+u32) 1/2
=0.0422+0.412+0.0142) 1/2=0.41mg/m3
7 有效自由度
undefined
8 扩展不确定度
undefined
undefined
9 最后结果展示
undefined
10 讨论
本实验室按照国家标准分析方法测定工作场所空气中总粉尘浓度, 测定结果的扩展不确定度为0.81 mg/m3, veff=100, P=95%, 工作场所空气中总粉尘浓度为 (1.1±0.81) mg/m3, 符合GBZ 2.1-2007《工作场所有害因素职业接触限值第1部分:化学有害因素》 (其他粉尘, PC-TWA, 8 mg/m3) [5]。由标准不确定度汇总表可以看出, 在粉尘测定过程中样品质量测量引入的不确定度分量在各个不确定度分量中贡献最大, 是影响不确定度的主要因素, 因此, 严格按照标准分析方法控制实验条件, 减少系统效应特别是电子天平称量和空气湿度影响导致的不确定度, 对于保证本实验测定结果的准确性尤为重要。
参考文献
[1]GBZ/T192.1-2007工作场所空气中粉尘测定第1部分:总粉尘浓度.
[2]中华人民共和国国家计量技术规范.JJF1059-1999.测量不确定评定与表示.
[3]GB/T17061-1997.作业场所空气采样仪器的技术规范.
[4]杨磊, 陈卫红, 王正伦, 等.工作场所空气中粉尘采样的一些理论和技术问题.中华劳动卫生职业病杂志, 2007, 25 (1) :54-57.
浓度不确定度 篇9
1 材料与方法
1.1 主要仪器及试剂
梅特勒-托利多(METTLER TOLEDO)AL204型电子天平。
重铬酸钾(基准物质)。
1.2 重铬酸钾标准滴定液配制
按GB/T 6730.65-2009的规定,称取2.4515g预先在140~150℃干燥2h并在干燥器中冷却至室温的重铬酸钾(基准物质)于250mL烧杯中,加水溶解,移入1000mL容量瓶中,稀释至刻度,充分混匀,得到C(1/6 K2Cr2O7)=0.05000 mol·L-1的重铬酸钾标准滴定液。记下配制标准溶液时的温度。
1.3 数学模型
以式(1)计算重铬酸钾溶液的浓度:
式中:C(1/6 K2Cr2O7)—重铬酸钾溶液物质的量浓度,mol·L-1;
m—重铬酸钾基准物质重量,g;
V—容量瓶体积,mL;
M—重铬酸钾的摩尔质量,g·mol-1。
则配制的重铬酸钾溶液浓度为:
2 浓度不确定度来源
配制好的重铬酸钾标准滴定液浓度的不确定度来源主要有以下几个方面:(1)基准物质称量引入的标准不确定度;(2)基准物质纯度引入的标准不确定度;(3)基准物质的摩尔质量引入的标准不确定度;(4)配制重铬酸钾溶液的体积引入的标准不确定度。
3 溶液浓度不确定度评定
3.1 基准物质称量引入的标准不确定度
配制C(1/6 K2Cr2O7)=0.05000mol·L-1重铬酸钾标准滴定液1000mL,用指定质量称量法称得重铬酸钾基准物质重量为2.4515 g。称量引起的不确定度主要来自两个方面:
(1)称量变动性。METTLER TOLEDO-AL204型电子天平提供的技术参数标明,该型号天平的称量变动性标准不确定度为:u1=0.0001g。
(2)天平称量产生的不确定度。METTLER TOLEDO-AL204型电子天平提供的技术参数标明,该型号天平的最大允许误差为±0.0001g,按照均匀分布评定,其包含因子K=,其标准不确定度为:
尽管本次称量用的是去皮法,但称量分量必须计算2次,一次是皮重,另一次为重铬酸钾重量,所以天平称量产生的标准不确定度为:
由以上两项合成称量标准不确定度为:
3.2 基准物质纯度引入的标准不确定度
根据基准物质重铬酸钾的标签说明,重铬酸钾纯度为100%±0.05%,按照均匀分布评定,其包含因子K=,基准物质纯度引入的标准不确定度为:
3.3 基准物质的摩尔质量引入的标准不确定度
根据IUPAC于1997年发布的元素原子量不确定度[4],计算出重铬酸钾中各元素的总不确定度见表1。
K2Cr2O7摩尔质量为:M=2×39.0983+2×51.9961+7×15.9994=294.1846 g·mol-1。
在重铬酸钾摩尔质量M的不确定度中,各元素的不确定度分量是独立的,因此,其标准不确定度u(M)用方和根方法合成得到:
3.4 配制重铬酸钾溶液的体积引入的标准不确定度
配制重铬酸钾溶液的体积引入的不确定度主要来源为容量瓶允差、重复性、温度、人员读数等4个方面:
(1)容量瓶允差。使用1000m L容量瓶,其检定证书给出的允差为±0.40m L,按照均匀分布,其包含因子K=,其标准不确定度为:u(V1)==0.23mL。
(2)重复性。通过对1000 mL容量瓶的重复性实验,估算定容产生的不确定度(A类评定)。重复定容次数10次,称量求其标准偏差,采用贝塞尔方法计算标准偏差。标准不确定度等于1倍标准偏差:
(3)温度效应。根据JJG-2006规定,容量瓶的检定或校准是在室温20℃环境下进行的,如果配制标准溶液时的温度不是20℃,由于环境温度变化而引起溶液体积膨胀以及玻璃膨胀而产生溶液体积不确定度。由于液体的体积膨胀系数远大于玻璃,所以由玻璃膨胀引起的体积不确定度可以忽略不计。设配制标准溶液是在(20±5)℃的环境下进行,这时温差为5℃,水的膨胀系数为2.1×10-4·℃-1,温差产生的体积变化为:±(1000×5×2.1×10-4)=±1.05 mL。
按照均匀分布,其包含因子K=,由此引起的标准不确定度为:u(V3)==0.61mL。
(4)人员读数。尽管容量瓶的刻度线很明显,但由于1000 mL容量瓶刻度线处内径比较大,根据经验,读数误差±0.02 mL比较合理,按三角分布,其包含因子K=,人员读数引起的标准不确定度为:
以上4项不确定度分量都是独立的,所以,1000 mL的体积不确定度为:
3.5 计算不确定度分量的相对标准不确定度
由各个不确定度分量的标准不确定度计算相对标准不确定度,结果见表2。
3.6 合成标准不确定度
配制重铬酸钾标准溶液C(1/6 K2Cr2O7)的4个不确定度分量相互独立,其合成相对标准不确定度为:
其合成标准不确定度为:
3.7 扩展不确定度
按95%置信概率,取扩展因子K=2,则扩展不确定度为:U=K(C)=2×0.0000355=0.00007mol·L-1。
3.8 评定结果
本次配制的重铬酸钾标准滴定液的浓度为:
4 结论
通过对配制的重铬酸钾标准滴定液浓度的不确定度评定,发现溶液体积标准不确定度对合成标准不确定度贡献最大,其次是基准物纯度引入的不确定度;而对溶液体积标准不确定度贡献最大的是环境温度引入的不确定度,其次是容量瓶允差引入的不确定度。因此,在实际配制及使用时,应尽可能在与标准温度(20℃)相差±5℃以内的环境下进行,并考虑对容量瓶体积进行校正,另外,建议使用级别更高的基准重铬酸钾,以获得更准确的结果。
摘要:依照国标JJF1059-1999《测量不确定度评定与表示》等规范的规定,对重铬酸钾标准滴定制备液浓度进行不确定度评定,以期找出影响制备该溶液浓度不确定度的主要因素,提高制备质量,并为下一步使用该溶液对样品进行检测做不确定度评定时提供必要的上一级不确定度信息。经评定,制备的C(1/6 K2Cr2O7)=0.05000 mol.L-1溶液浓度扩展不确定度为0.00007mol.L-1,K=2。不确定度评定结果表明,对本制备液浓度不确定度贡献最大的是溶液体积,其次是重铬酸钾基准物质的纯度,在制备时应加以重视。
关键词:重铬酸钾标准滴定制备液,浓度不确定度,评定
参考文献
[1]JJF1509-1999,测量不确定度评定与表示[S].
[2]杜玫玫.浅谈测量不确定度评定过程中的几个问题[J].大众标准化,2008,5(s1):29.
[3]GB/T6730.65-2009,铁矿石全铁含量的测定三氯化钛还原重铬酸钾滴定法(常规方法)[S].
浓度不确定度 篇10
1 测量方法
在职业卫生检测中,全血中铅浓度检测通常按WS/T 174-1999方法进行。在全血样本中加入150 μl的5%硝酸混匀消解、放置稳定后经离心沉淀蛋白,然后取上清液上石墨炉原子吸收283.3 nm波长进行测定。通过对标准溶液系列进行测定,制作标准工作曲线,利用标准工作曲线对全血铅样品进行定量分析。
2 标准不确定度分量的评定
首先对该实验过程中产生的不确定度因素进行分析,找出该实验过程中的主要影响因素及其不确定度分量值,然后对各分量因素进行合成,得出其合成不确定度。影响全血铅测定测量不确定度的主要因素有以下4种。
2.1 铅标准溶液的相对标准不确定度u1
铅标准溶液GBW 08619(1 0002) mg/L(国家标准物质中心提供,95%置信水平)。
undefined
2.2 在制定标准工作曲线后由标准曲线得出全血中铅浓度时产生的不确定度u2
标准系列制定:采用稀释后的铅标准溶液加入150 μl正常人血混合后配制成表1中的标准系列试剂空白除不加入正常人血外,其余同标准测定。标准系列测定方法同上述样品测定方法,在283.3 nm吸收波长下进样20 μl,测定其吸光度值,每个标准重复测定3次,制作标准工作曲线。测定结果见表1。
本次测定采用GBW 09139,标准值为(122±15) μg/L。由中国疾病预防控制中心职业卫生与中毒控制所提供标准样品,在样品测定过程中对该血铅标准质控样品进行同步测定,所测定3次平行的铅浓度分别为:C1=127.8 μg/L,C2=121.4 μg/L,C3=119.3μg/L。平均值C均=122.8 μg/L。
在下述公式中:A为测定吸光度值,C为测定的浓度,测定线性相关系数r=0.999 8,斜率b=0.000 813,截距a=-0.000 29。
标准系列线性方程:A=bC+a=0.000 813C-0.000 29。
在测定过程中由标准工作曲线求血中铅浓度时产生的相对标准不确定度u2可按下述公式计算:
undefined
undefined
P值取3(每个浓度Ci重复测3次),n值取5(5个浓度标准溶液),i=1~3 ;j=1~5,C均
undefined
undefined
当C2=121.4,u22=1.7%
当C3=119.3,u23=2.1%
比较u21,u12,u13取最大值。u2=2.8%
2.3 在实验过程中,样品处理、稀释和配制标准溶液时所用刻度吸管、移液管、容量瓶以及微量加样器带来的不确定度u3
①采用1 000 mg/L国家标准标准溶液配制成标准贮备溶液,以及样品稀释所带来的相对标准不确定度u31
本实验室在配制10 mg/L铅标准贮备液时,采用1 000 mg/L标准溶液稀释制备,在稀释过程中需要使用2支A级10.0 ml移液管,不确定度为100.02 ml;2A级100 ml容量瓶,不确定度为1 000.10 ml;在样品稀释时需要用200~1 000 μl可调移液器1支,不确定度为(1 000±2.0) μl;20~200 μl的可调移液器1支,不确定度为(200±0.40) μl。
在上述过程中所带来的相对标准不确定度u31为:
②采用10.0 mg/L铅标准贮备液制作标准系列的过程中,标准工作曲线所带来的相对标准不确定度u32,及在实验过程中由溶液温度的变化而产生的溶液体积变化带来的相对标准不确定度u33皆很小,在计算过程中对不确定度的贡献值非常低,可以忽略不计,因此
u3=u31+u32+u33≅u31=0.26%
2.4 所用的石墨炉原子吸收仪器在测定铅时的不确定度u4
本次测定采用美国瓦里安240FS+GTA120石墨炉原子吸收仪,根据该仪器的出厂检定证书所提供石墨原子吸收测定镉的相对不确定度为2.5%。测铅时也可采用此值,则u4=2.5%
3 不确定度的计算
3.1 合成不确定度的计算
各不确定度的分量(%):u1为0.115,u2为2.8,u3为0.26,u4为2.5。
合成不确定度计算见下式:
u=(∑u2)1/2=(uundefined+uundefined+uundefined+uundefined)1/2%=3.8%
3.2 扩展不确定度计算(K=2)
u=K×u×C均=2×3.8%×122.8=9.3 μg/L
4 结 果
报告结果血中铅的浓度为(122.8±9.3) μg/L。
5 讨 论
该检测结果[(122.8±9.3) μg/L]在该标准物质的标准值[(122±15) μg/]L范围内,结果测定准确可靠。
参考文献
[1]WS/T174-1999.血中铅、镉的石墨炉原子吸收光谱测定方法[S].
[2]JJF1059-1999.测量不确定度评定与表示[S].
[3]郭瑞娣.简便快速测定血铅的石墨炉原子吸收法[J].中国自然医学杂志,2006,8(4):252-253.
[4]潘莹宇.全血中铅的石墨炉原子吸收光谱测定法[J].职业与健康,2009,25(22):2385.